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Abstract

The IceCube Neutrino Observatory has been continuously taking data to search for ( – )0.5 10 s long neutrino bursts
since 2007. Even if a Galactic core-collapse supernova is optically obscured or collapses to a black hole instead of
exploding, it will be detectable via the ( )10 MeV neutrino burst emitted during the collapse. We discuss a search for
such events covering the time between 2008 April 17 and 2019 December 31. Considering the average data taking
and analysis uptime of 91.7% after all selection cuts, this is equivalent to 10.735 yr of continuous data taking. In order
to test the most conservative neutrino production scenario, the selection cuts were optimized for a model based on an
8.8 solar mass progenitor collapsing to an O–Ne–Mg core. Conservative assumptions on the effects of neutrino
oscillations in the exploding star were made. The final selection cut was set to ensure that the probability to detect
such a supernova within the Milky Way exceeds 99%. No such neutrino burst was found in the data after performing
a blind analysis. Hence, a 90% C.L. upper limit on the rate of core-collapse supernovae out to distances of ≈25 kpc
was determined to be 0.23 yr−1. For the more distant Magellanic Clouds, only high neutrino luminosity supernovae
will be detectable by IceCube, unless external information on the burst time is available. We determined a model-
independent limit by parameterizing the dependence on the neutrino luminosity and the energy spectrum.

Unified Astronomy Thesaurus concepts: Core-collapse supernovae (304); Supernova neutrinos (1666); Neutrino
telescopes (1105)

1. Introduction

Stars with masses larger than ≈8Me end their lives with the

gravitational collapse of their core, followed by neutrino

emission over a timescale of about 10 s and a shock-driven

luminous explosion called a supernova. The expected volu-

metric rate of core-collapse supernovae (CCSNe) in the

Universe today is R 10 yr MpcSN
4 1 3. By compiling

results obtained with various methods, the rate of stellar

collapses in the Milky Way, including those obscured in the

optical wave band, was estimated to be 1.63± 0.46 per

century (Rozwadowska et al. 2021). This corresponds to a

mean time between CCSNe of T 61 14
24 yr.

In spiral galaxies, observations indicate that CCSNe occur

preferentially in the disk rather than the bulge component—and

therefore point to a relatively young progenitor population

(Hakobyan et al. 2015). For this paper, we assume a Milky

Way progenitor radial distribution model (Ahlers et al. 2009)

that takes into account the geometry of the spiral arms (see

Figure 1).
In principle, it is simpler to estimate the CCSN rates in the

Large and Small Magellanic Clouds at respective distances

≈49.5 kpc and ≈62.8 kpc, because our view is not obscured by

the dense bulge of the Milky Way. The rates can be estimated by

counting the number of observed supernova remnants (Vink 2020)

and the use of an isotope measure to distinguish between core-

collapse and Type Ia supernovae (Maggi et al. 2016). In spite of

the relatively small number of visible stars in the Large and Small

Magellanic Clouds compared to the Milky Way, both add

estimated CCSN rates of 11%± 6% to the Milky Way
CCSN rate.
The detection of neutrinos from CCSNe is important, as they

reveal the conditions in the core region of the star at the time of
the collapse. Neutrino experiments will also tell astronomers
when and where they should point their telescopes, with several
hours lead time (Abe et al. 2016; Brdar et al. 2018; Linzer &
Scholberg 2019; Coleiro et al. 2020).
The fraction of supernovae that will be missed in optical

observations depends on how regularly the complete sky is
monitored by astronomers and automated systems, and on
whether the supernova is obscured by dust. Infrared photons
can penetrate dust in the inner region of the galaxy. Assuming
an optimistic model of dust extinction and all-sky coverage by
optical telescopes, 96% of the supernovae in the Milky Way
should be observable in the optical (Adams et al. 2013). For
other dust models, this fraction may be lower, although dust
extinction can be mitigated by automatic wide-angle infrared
transient surveys (Moore & Kasliwal 2019). Predictions have
also been obtained for the more distant Magellanic
Clouds (Adams et al. 2013).
Massive stars may create a black hole that consumes the

nascent supernova before the massive explosion. This is
indicated by an observed deficit of supernova progenitors
between 18 and 25Me (Kochanek et al. 2008) and the merging
of >20Me black holes observed by Advanced LIGO (Abbott
et al. 2016), which were likely formed from failed supernovae.
The fraction of supernovae that end up in black holes is not
well known, however. A data-driven way to estimate the
fraction is an optical search for progenitors that “suddenly
disappear.” An 11 year optical search (Neustadt et al. 2021)
identified one clearly detected failed supernova candidate,
corresponding to a 90% confidence interval of 0.04 � f � 0.39
for the fraction f of core collapses resulting in failed or aborted
supernovae. Failed supernovae would be identifiable by the fast
drop of the neutrino emission and a longer-lasting echo of
higher-energy neutrinos that may be observable by
IceCube (Gullin et al. 2022).
It has been more than three decades since the first and only

supernova was observed by neutrino detection. On 1987

64
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February 23, a burst of neutrinos with energies of a few tens of

MeV emitted by the supernova SN1987A was recorded

simultaneously by the Baksan (Alekseev et al. 1987),

IMB (Bionta et al. 1987), and Kamiokande-II (Hirata et al.

1987, 1988) detectors, a few hours before its optical counter-

part was discovered. With just 24 neutrinos collected,

important limits on the mass of the e, its lifetime, its magnetic

moment and the number of leptonic flavors were

derived (Kotake et al. 2006).
The small observed number of events can be explained by

the source distance (≈50 kpc) and the limited active volumes of

the detectors operational in 1987. As will be explained below,

IceCube will register ( – )10 105 6 photons from interacting

neutrinos if a supernova explodes at the Galactic Center. Such a

high statistical accuracy will permit a study of detailed features

of the neutrino emission that carries important information

about the explosion dynamics and neutrino properties.
Several neutrino detectors have searched for nearby CCSNe in

the last decades or have provided their sensitivity, e.g., water

Cherenkov detectors (Ahrens et al. 2002; Abbasi et al. 2011;

Aiello et al. 2021; Mori et al. 2022), scintillator detectors

(Ambrosio et al. 2004; Aharmim et al. 2011; Agafonova et al.

2015; Novoseltsev et al. 2020; Rumleskie & Virtue 2020; Acero

et al. 2021; Abe et al. 2022), and lead-based detectors

(Rosso 2021), as well as liquid noble gas neutrino (Abi et al.

2021) and dark matter detectors (Lang et al. 2016).
The most stringent experimental limits have been published

by the Baksan Collaboration (Novoseltsev et al. 2022) over the

period 1980 June 30 to 2021 June 30 with a livetime of 35.5 yr.

In the absence of a positive observation, they quote a rate of

<6.5 CCSNe per century within 20 kpc at 90% C.L. The LVD

Collaboration quotes a rate of <8 CCSNe per century within

25 kpc at 90% C.L. over the period 1992 to 2021 January

4 (Vigorito et al. 2021).
Both LVD and Baksan determined their limits referencing

phenomenological models that have been parameterized to fit
the 1987A observation, and thus correspond to massive

( ) M20 progenitors. No neutrino oscillations were assumed

by the Baksan Collaboration, whereas a normal neutrino

hierarchy and MSW oscillations were taken into account in the

LVD analysis.

The possibility to monitor supernovae in our Galaxy with
high-energy neutrino telescopes was first pointed out by Pryor
et al. (1988) and Halzen et al. (1996). A first search (Ahrens
et al. 2002) based on 215 days of data taken in 1997 and 1998
with the still incomplete AMANDA detector demonstrated the
feasibility of the approach. Since 2009, IceCube has been
sending real-time messages to the Supernova Early Warning
System (SNEWS; Antonioli et al. 2004; Al Kharusi et al.
2021).
While the observation time of IceCube is shorter than that of

Baksan and LVD, the large volume of IceCube provides
sensitivity to a wide variety of models, ranging from the
lightest CCSNe to heavy progenitors that end up in a
black hole.
Following a description of supernova phenomenology and

neutrino production (Section 2), we briefly discuss the
detection principle, data cleaning, statistics, and simulation
(Sections 3–6), before we summarize the results (Section 7) and
conclude (Section 8).

2. Supernovae and Neutrinos

Neutrinos play a crucial role at all stages of the collapse of
massive stars. In the initial phase of the collapse, the release of
electron neutrinos by converting protons to neutrons accel-
erates the infall by removing the electron degeneracy pressure
(“deleptonization phase”). The continuous accretion of outer
layers of the progenitor star (“accretion phase”) will eventually
lead to the collapse and the formation of a dense and compact
neutron star or a black hole. Matter bounces off this core (“core
bounce”) and emits a shock wave. The absorption of electron
neutrinos and antineutrinos in the material surrounding the
neutron star invigorates the shock so that the star is blown
apart. Due to their small interaction cross section, only
neutrinos and antineutrinos of all flavors carry away the
gravitational binding energy of the compact and dense remnant
(“cooling phase”). Subtleties in neutrino interactions, oscilla-
tions, and transport play a surprisingly large role. For a
compilation of many aspects of supernova research, see Alsabti
& Murdin (2017).
The supernova core is sufficiently hot and dense to host a

thermal population of neutrinos of all species that diffuse out
and eventually reach the Earth. The neutrino thermal energy
spectrum is expected to peak between 10 and 20MeV, with νe
and e carrying lower energies because they are more strongly
coupled to matter and evaporate later than μ and τ neutrinos.
Neutrinos carry away 99% of the gravitational binding energy
released in the collapse, typically ≈3× 1046 J, roughly equally
distributed between the six neutrino and antineutrino species.
Flavor-mixing effects can change the expected neutrino rates

as well as the energy spectra compared to the original time-
dependent νe flux, F

0
e
, and e flux, F0

e
. Deep inside the core,

where the neutrino mean free path is comparable to the size of
the proto-neutron star, flavor mixing may be ignored. Farther
away from the core, but within ≈200 km from the center of the
star, the density of neutrinos exceed that of electrons and the
coherent scattering of neutrinos on each other can no longer be
neglected (Lund & Kneller 2013). Such collective effects after
the core bounce may lead to complex energy and time-
dependent neutrino flavor conversions and the swapping of
electron neutrinos with muon and tau neutrinos. At larger radii,
the neutrino flavor conversion is driven by coherent scattering
on electrons. Resonant enhancements for flavor conversion

Figure 1. Probability density distribution of progenitor distances in the Milky
Way assumed in this paper. The spikes reflect the higher star density in the
spiral arms. Also shown are additional relative contributions from the SMC and
LMC with scale uncertainty estimates.The uncertainties do not enter the
analysis.
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occur at densities around 106 and 104 kg m−3. Already in the
vicinity of the supernova, the coherence of the mass eigenstates
is lost, leading to wave packet separations at Earth of many
meters (Kersten & Smirnov 2016).

The second- and third-generation neutrinos ≔ , ,x

, are mostly produced in the cooling phase, and their
fluxes are roughly equal. The mixing of the ν and fluxes is
then given by

· ( ) · ( )F p F p F1 10 0
e e x

· ( ) · ( )F p F p F1 . 20 0
e e x

The probabilities p, p depend on the θ12 mixing angle,
collective effects, state-transition probabilities, and matter
densities (Mirizzi et al. 2016). If one neglects collective effects
and assumes a static supernova matter profile with adiabatic
state transitions, one obtains the simple relations (Dighe &
Smirnov 2000)

∣ ∣ ∣ ∣ ( ) ( )p U p U; NH 3e e3
2

1
2

∣ ∣ ∣ ∣ ( ) ( )p U p U; IH 4e e3
2

2
2

for the normal neutrino mass hierarchy (NH) and inverted

hierarchy (IH). When testing the effect of oscillations on

models, we will use the no-oscillation case as well as

Equations (3) and (4) with with the PMNS elements

|Ue1|= 0.825, |Ue2|= 0.546, and |Ue3|= 0.148 (Esteban

et al. 2020).
Oscillation effects can alter the detected signal, as cross

sections, fluxes, and energy spectra vary between flavors.
While energies and fluxes are similar during the cooling phase,
substantial differences in the early phase of neutrino emission
may strongly modify the time-dependent flux. As the CCSN
neutrino-induced hit rate in IceCube roughly rises with E 3

(Abbasi et al. 2011), it is particularly sensitive to oscillation-
induced changes in the energy spectra. For each model, we
chose the oscillation scenario that leads to the lowest rate.

Finally, when neutrinos enter the material of the Earth,
oscillations will occur that depend on the neutrino energy, the
path length in matter, and the material density. The resulting
effect on the measured signal in IceCube will be discussed as
part of the systematic uncertainties.

The initial phase of the neutrino emission is rather
insensitive to the supernova progenitor mass. The total energy
release in neutrinos depends directly on the mass of the neutron
star (Lattimer & Prakash 2001) and only indirectly on the
supernova progenitor mass. From 22 historic supernova
remnants, Díaz-Rodríguez et al. (2021) find that the progenitor

mass distribution is proportional to M a, with a 2.61 1.18
1.05

with a minimal progenitor mass of 8.60 0.41
0.37 Me. Assuming

these values, a substantial fraction, 10%–40%, of all supernova
progenitors, would have masses below 20Me.

Various theory groups have performed extensive simulations
of the supernova neutrino emission with ever-increasing levels
of detail (e.g., Janka 2012; Burrows & Vartanyan 2021). Public
codes exist that provide links between such simulations and
simulations of neutrino detectors (Migenda et al. 2021; Baxter
et al. 2022) and to quickly test physics signatures in current and
future detectors (Malmenbeck & O’Sullivan 2019; Scholberg
et al. 2022). While state-of-the-art calculations are performed in
three-dimensional space, such calculations are very time
consuming, and only a few cover more than the first few
hundred milliseconds until the explosion takes place (or not).

For very low-mass progenitors, and the early and late phases of
neutrino emission, spherically symmetric simulations work
reasonably well and will often lead to a neutrino-driven
explosion in the simulation.
For the lowest expected signal, we chose a ≈9 s long

simulation of a supernova from a 8.8Me progenitor star that is
triggered by electron-capture reactions and forms an O–Ne–Mg
core (Hüdepohl et al. 2010), henceforth referred to as the
“Hüdepohl model.” With a total emitted energy of 1.7 × 1039 J
and a low mean neutrino energy of E 12.9 MeV

e
, it

represents a conservative lower limit for a supernova search.
The second choice is a 19Me progenitor whose collapse was

modeled in three-dimensions up to 1.756 s after the core
bounce (Bollig et al. 2021). Using an adaptive procedure, this
simulation was stitched to a spherically symmetric simulation
that continued into the cooling phase. The third model starts
from a 27Me model (Burrows & Vartanyan 2021) and follows
the collapse and explosion with a cylindrically symmetric
calculation that extends up to 4.5 s post-bounce.
On the high-mass side, the gravitational collapse of stars

exceeding ( ) M25 will lead to a partial stellar explosion,
while stars exceeding ( ) M50 are not expected to explode at
all (Smartt 2015; O’Connor 2017). In both cases, a black hole
will develop (1) s after core bounce. At this point, the
neutrino emission vanishes abruptly in nonrotating systems.
For the analysis presented in this paper, we select a model
assuming a 40Me progenitor and a hard equation of
state (Shen et al. 1998) for the neutron star (Sumiyoshi et al.
2007). This one-dimensional simulation of a nonrotating star
ends in a black hole after ≈1.3 s. The model was also used in
LVD’s result (Vigorito et al. 2021).
The time series of the neutrino emission differs substantially

between the models. While it has been shown for one-
dimensional simulations that most of the codes agree between
various groups within 5% (O’Connor et al. 2018), there are
substantial differences when extending the calculations to more
independent dimensions.
In the figures, we will refer to the models discussed in this

section with the short forms “8.8Me,” “19Me,” “27Me,” and
“40Me.” The two low (high) progenitor mass models yield
the lowest rate in the no-oscillation (inverted-hierarchy
MSW) case.
To summarize, neutrinos are crucial during all stages of the

stellar collapse and the explosion. They are, besides gravita-
tional waves, the only means to obtain immediate information
from the central regions of a dying star.

3. The Detection Principle of IceCube

The IceCube Neutrino Observatory is a cubic-kilometer
Cherenkov detector installed in the ice at the geographic South
Pole (Aartsen et al. 2017) between depths of 1450 and 2450 m.
The detector was constructed from 2005 January 28 to 2010
December 18 by drilling holes into the Antarctic ice sheet in a
hexagonal grid layout. Eighty-six cables (known as “strings”),
instrumented with digital optical modules (DOMs) containing
10 inch hemispherical Hamamatsu R7081 photomultiplier
tube (Abbasi et al. 2010), were lowered into the ice. Strings
are spaced about 125 m apart and each contains 60 DOMs
vertically separated by 17 m. Six central strings, with smaller
string and sensor separations and equipped with ≈35% higher
quantum efficiency photosensors (HQE), are used in the
DeepCore subarray (Abbasi et al. 2012). The data used in this
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paper include the construction period where 2400, 3540, and
4740 DOMs became available to the data analysis during the
first halves of 2008, 2009, and 2010, respectively. The final
detector consists of 5160 DOMs, of which 98.4% are available
to the analysis (Aartsen et al. 2017).

IceCube was designed to detect neutrinos with TeV energies
and above. However, the neutrinos expected from CCSNe
typically carry only ( )10 MeV energies, and only about 0.2%
of interactions within the detector volume will lead to at least
one detected Cherenkov photon produced by secondary
particles. Still, with a sufficient number of low-energy
neutrinos interacting in the detector volume, a Galactic CCSN
will produce a detectable correlated rise in the hit rate of all
DOMs. Details of the detection method, the data acquisition
system, and the physics capabilities can be found in Abbasi
et al. (2011).

A dedicated pulse-counter-based data acquisition is used to
search for signatures of CCSNe. The search algorithm is based
on count rates of individual DOMs stored in 1.6384 ms time
bins, which are downsampled to 500 ms intervals to perform
various statistical analyses. An artificial deadtime on individual
pulses of τ= 249.6 μs was introduced to suppress time-
correlated super-Poissonian photomultiplier pulses at low
temperatures that are most probably due to a temperature-
dependent radiative dissipation of energy deposited by radio-
active decays in the glass (Meyer 2010; Heereman von
Zuydtwyck 2015). This deadtime leads to a model- and
distance-dependent inefficiency that can be parameterized by

( · )r0.87 1dead time SN , where rSN denotes the excess
rate per optical module from a CCSN (Abbasi et al. 2011). The
resulting DOM background rate is below 300 Hz (see
Figure 2).

The stability of the DOM background rates is crucial for
IceCube’s sensitivity to detect supernovae. By using automatic
online procedures, faulty modules are excluded while acquiring
the data. In the final 86-string configuration, ≈1.4% of the
5160 modules were permanently excluded from the analysis,
and only modules with dynamically calculated background
rates below 10 kHz were accepted. Operational modules were
removed from the analysis if they exhibited either a variance
much larger than the Poissonian expectation or a high
skewness (Abbasi et al. 2011). Typically, only one or two

DOMs are affected by the real-time quality selection. In the
very rare cases where the number of qualified modules dropped
below a threshold of 100, the corresponding time periods were
discarded as a safeguard to prevent sending false alerts to
SNEWS.
By buffering the full photomultiplier raw data stream that is

stored around candidate neutrino burst or external alerts,
additional information can be retrieved (Heereman von Zuydt-
wyck 2015; Aartsen et al. 2017). For example, the average e

energy can be estimated from rare coincidences between
adjacent DOMs (Fritz & Kappesser 2021), and the precision of
the burst onset time can be improved.
Inverse beta decay, p n ee , dominates the inter-

action in water or ice (Abbasi et al. 2011). The signal hit rate
per DOM for the inverse beta decay is given by

( )
( )

( )

( ) ( ) ( )

R t
n t

d E t
dE dE

d

dE
E E V f E E t

4

, , , , , 5

dead time
target SN

2
0

e
0

e
e e

eff

where ntarget is the density of proton targets in ice, d is the

distance to the supernova, ( )tSN its neutrino luminosity, and

f (Eν, 〈Eν〉, αν, t) is the normalized Eν distribution depending on

a shape parameter αν and on the average neutrino energy 〈Eν〉.

In this formulation, ( )E E,
d

dE e
e

is the differential cross

section for producing a positron of energy Ee from a neutrino

with energy Eν interacting via the inverse beta decay. The

effective volume for a single positron,V
e
eff , strongly varies with

the photon absorption in the ice but shows little dependence on

photon scattering. It is also directly proportional to the positron

track length—and thus to the positron energy (Abbasi et al.

2011).

4. Data Preparation

The data used in this analysis cover the time between 2008
April 17, 03:43:54.16 UTC and 2019 December 31,
19:12:24.97 UTC (11.707 yr), and they were taken with four
detector configurations of 40, 59, 79, and 86 strings,
respectively. The data-taking efficiency improved with time
from 96% in 2009 to 99.7% in 2017. The average livetime was
98.4% during this period.
The analysis requires that the detector works faultlessly in

each of the ≈700 million half-second time intervals studied.
Therefore, additional measures are required to clean the data.
Short runs (<20 minutes), as well as runs taken with calibration
light sources, with an incomplete detector configuration, or
containing data-taking errors, were all discarded. The total
number of contributing DOMs was required to be larger than a
minimum number—for example, 5060 DOMs out of a total of
5160 DOMs, in the case of the final IceCube detector
configuration. We also required that the data acquisition for
reconstructing muon tracks was working perfectly and that
there was no known electromagnetic interference from external
sources, such as radar surveys of the experimental site at the
South Pole.
After rejecting such problematic data, the uptime available to

the analysis ranged between 86.6% and 96.8%, with an average
value of 91.7%. The selected clean data, joined together, would
correspond to 10.735 yr of continuous data taking.

Figure 2. The blue dots show the average DOM photoelectron count rate for
IceCube DOMs with standard-efficiency photomultipliers. The red curve shows
the rate after hits associated with muon tracks have been removed. We note that
the data still show rare artifacts due to sporadic rate increases of individual
DOMs. This effect is addressed with the test statistic discussed in Section 5.
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Atmospheric muons constitute a background to the search
for CCSNe even though their energy when entering the ice
sheet needs to be above ≈550 GeV to trigger the IceCube
eightfold majority trigger (Kelley 2015). Hence, hits from
muon tracks that fail the trigger requirements are mostly found
in the upper detector layers or clip the corners of the detector.
Due to atmospheric density changes that are correlated to the
air temperature, the muon rate shows a seasonal dependence
and short-term variations.

Because dust layers absorb light and many muons range out,
the atmospheric muon-induced rate is depth-dependent and
adds 3–30 Hz to the ∼280 Hz optical module background rate.
This can be seen in Figure 2, where the averaged count rate per
DOM is shown as a function of time (blue points). The
contribution from muons varies with the season. The red points
show the rates after hits from identified muons were removed;
the seasonal effect due to atmospheric muons is strongly
reduced. The ≈5% reduction in rate is thought to be due to
relieved stress in the refrozen ice near each DOM that decreases
the effect of triboluminescence. It has been verified that the
effect is not due to PMT aging (Aartsen et al. 2020a).

5. Test Statistic for the Supernova Search

The test statistic used to search for Galactic supernovae with
IceCube is the significance proxy

( ), 6

where

( )
( )

r r
7

i

N
i i i

i

2

1
2

DOM

is the most likely collective rate deviation of all NDOM rates ri
from their running average. The average of the rates, 〈ri〉, and
the corresponding standard deviations, 〈σi〉, are calculated from

sliding 285 s time intervals before and after the central

investigated time interval of 29.5 s duration. The factors òi

account for relative quantum efficiency differences of the

DOMs. In this analysis, the settings òi= 1 for standard

quantum efficiency DOMs and òi= 1.35 for high quantum

efficiency DOMs were used. We note that Δμ has the structure

of a weighted average sum. The squared uncertainty on Δμ,

⎜ ⎟
⎛
⎝

⎞
⎠

( ), 8
i

N
i

i

2

1

2

2

1
DOM

is calculated from the data and thus accounts for non-

Poissonian behavior in the background rates. In purely

uncorrelated Poissonian processes, the significance should be

centered at zero with unit width.
The calculation in the data acquisition was done in

consecutive, nonoverlapping 500 ms wide time intervals as
well as in sliding 1.5, 4, 10 s time intervals overlapping by
500 ms. The sliding window approach introduces correlations
and—picking the highest significance—distorts the Gaussian
shape of the distribution by adding a high-significance tail. We
chose the 1.5 s time binning for all analyses as a conservative
compromise among the models that were tested. This interval
covers the accretion phase with high neutrino intensity well.

The effect of muons on the significance proxy ξ is much
more pronounced than in the summed hits, because muons
create space- and time-correlated hits. Therefore, the optical
sensor rates are no longer statistically independent, and the
central limit theorem is only partially fulfilled.
In fact, the vast majority of false-positive alerts are due to a

statistical clustering of atmospheric muon-induced hits: the rate
of false alerts is cut by almost three orders of magnitude after
removing hits associated with atmospheric muons.
In order to properly account for DOM rate variations, we

correct for the muon contribution by a decorrelation method,
which has been applied before in Aartsen et al. (2020b). We
define a muon significance proxy by the relation

( )
( )

R R

R
, 9

hit hit

hit

where all quantities are calculated on a per-run basis. Rhit, the

sum over all hits associated to a muon track, is taken as a

measure of the atmospheric muon intensity.
A linear function is fit to the correlation between the

supernova significance proxy ξ and ξμ (see Figure 3 for
an example 8 hr run). A corrected significance proxy

·b R acorr
hit is calculated from the resulting offset

a and slope b.
With the muon-corrected significance proxy ξcorr defined,

one can determine the false-alert rate as function of the
significance proxies ξ and ξcorr. Figure 4 shows that the false-
alert rate can be reduced by a factor of ≈400 for a significance
proxy of 6, by applying the muon correction.
A slightly less effective atmospheric muon correction is

already incorporated in the data acquisition by transmitting the
subset of hits associated with IceCube’s simple majority
triggers (Kelley 2015) to the supernova data acquisition system.
The method has allowed us to lower the alert thresholds and

Figure 3. Upper plot: correlation of the atmospheric muon significance proxy
ξμ with the significance proxies ξ and ξcorr. The application of the decorrelation
discussed in the text leads to the red distribution. Lower plot: the projections
demonstrate the sharpening of the significance distribution after decorrelation.
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reduce the number of false-positive alerts. For example, the
SNEWS alert efficiency for potential supernovae in the Large
Magellanic Cloud rose from 12% to 82% while meeting the
SNEWS requirement that alerts are sent with a frequency of
less than one alert per 14 days.

Lower-threshold alerts are issued by the supernova data
acquisition system at a rate of about 10 times per day. In this
sense, the analysis discussed in this paper is not strictly “blind.”
However, the recalculation of the atmospheric muon-corrected
data offline uses a much wider range of triggers and hits. We
opted for an unblinding procedure to minimize the influence of
prior knowledge by restricting the initial studies to a data set
with ξcorr< 7.

6. Simulation

A GEANT4-based simulation of the interaction of individual
supernova neutrinos in the ice and a computationally optimized
tracking (Schwanekamp et al. 2022) of individual Cherenkov
photons that can be run on graphical processing units was used
to determine IceCube’s effective volume for supernova
detection. Calibration measurements with light sources in the
ice (Aartsen et al. 2017; Rongen et al. 2020) and a dust
logger (Aartsen et al. 2013a) allow one to fit the depth-,
position-, and direction-dependent photon absorption and
scattering lengths of the ice. The uncertainties in these
measurements lead to a range of possible ice models. The
model used in this paper incorporates position-dependent
scattering and absorption coefficients as well as an observed
anisotropic attenuation effect aligned with the local flow of the
ice (Rongen & Chirkin 2021; Abbasi et al. 2022).

Other important uncertainties arise from optical module
sensitivities, photon tracking in the presence of Mie scattering,
and neutrino cross-section uncertainties, though these are
sizable only for interactions on 16O and 18O (Abbasi et al.
2011). The effective volume per optical module was deter-
mined by injecting 1.4× 109 positrons of 10MeV energy with
random directions and random positions inside a sphere with
radius 250 m around every optical module along every string.

Figure 5 shows the energy-independent quantity V E
e
eff

e ,
which was determined from the fraction of positrons that
generated photoelectrons at the cathode surface as function
of depth. The ≈35% higher quantum efficiency of the

photomultipliers in the high-density DeepCore subdetector,

installed in two ice regions below and above the main dust

layer, is apparent. The effective volume scales linearly with the

optical module sensitivities.
While a lot of effort has gone into in situ calibrations of the

ice properties (Aartsen et al. 2013b; Abbasi et al. 2022),

uncertainties remain. The ice density is known to better than

0.2%. The uncertainties on the scattering length, λs, and

absorption length, λa, are presently estimated at 5%

each (Abbasi et al. 2023). Figure 6 shows the result of studies

with Monte Carlo samples of 107 generated positrons each,

where λa was varied within ±10%. A quantitative evaluation

shows a strong correlation between the effective volume

uncertainty and the change in absorption length with

( ) ( ) · ( )V E 0.7 0.81 0.02 0.04
e
eff

e
m

MeV a
m

MeV

2 3

for IceCube (DeepCore). The correlation with the scattering

length, on the other hand, is very small: ( )V E
e
eff

e

( ) · ( )0.037 0.018 0.015 0.037
m

MeV s
m

MeV

2 3

for IceCube

(DeepCore). The color bands in Figure 6 reflect the 5%

absorption coefficient uncertainty for IceCube and DeepCore.

Figure 4. False-alert rate as function of significance proxy threshold. The
abscissa shows the cut value on the significance proxy ξ (blue curve) or the
muon-corrected significance proxy ξcorr (red curve). The horizontal lines
indicate one false alert per day or year, respectively.

Figure 5. V E
e
eff

e as function of depth. The variations mirror the depth-

dependent absorption coefficient. We note the main dust layer between 1950
and 2100 m, which corresponds to a glacial maximum 60–70 thousand years
ago. The results are given for standard-efficiency DOMs (red) and high-
efficiency DeepCore DOMs (blue).

Figure 6. Left: Systematic uncertainties due to absorption in the ice for
IceCube (red) and DeepCore (blue). The dependence on the scattering is very
small (not shown; see text). For comparison, the published value (Abbasi
et al. 2011) (in red) is shown including its uncertainty. The upper and lower
bands correspond to 5% uncertainties in the absorption lengths.
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The result published in Abbasi et al. (2011) is compatible with

the new determination based on a much improved under-

standing of the ice properties.
Ice properties are not the only source of detector-related

uncertainties (see Table 1). For example, the absolute DOM

efficiency in situ is presently known to 10%. In addition, there

are uncertainties on the cross sections. Neutrino interactions

with oxygen are poorly known; however, they only play a role

at neutrino energies beyond 20MeV (see Table 1). Their

contributions for 8.8Me progenitor (Hüdepohl et al. 2010) and

black hole forming (Sumiyoshi et al. 2007) models are

estimated to be 1% and 14%, respectively.
We also studied potential uncertainties due to neutrino

oscillations in the Earth matter. These become relevant when

comparing the results of detectors at locations with different

neutrino path lengths in the Earth or when the supernova

position is unknown. The effect on the observed IceCube rate

was studied as function of energy and incoming direction. The

range of uncertainty for the low 8.8Me model is given in

Table 1. The uncertainty decreases once the position of the

supernova is known.
Because simulating events with the GEANT4-based Monte

Carlo is computationally expensive, we calibrated a parameter-

ized simulation program with these results. The fast Monte

Carlo provides access to a large number of supernova models

using time-dependent tables of luminosities, average neutrino

energies, and spectral shape parameters. The simulation also

incorporates various oscillation mechanisms and is capable of

injecting signal events into the data stream. One can do without

a detailed time-dependent noise and atmospheric muon

simulation by using random data sampled over the data-taking

period. Figure 7 shows the expected number of hits in IceCube

for such Monte Carlo simulations of the four investigated

models.
Figure 8 shows the significance proxy versus the distance for

the four selected models. The CCSN distances were simulated

to follow the progenitor distribution of Ahlers et al. (2009).
Figure 9 shows the probability densities as function of ξcorr

in our Galaxy within 25 kpc and the Magellanic Clouds for the

four models. The data are shown in the range ξcorr ä [5–7]. The

effect of varying the assumed progenitor distance distribution is
small (not shown).
Large uncertainties in the modeling of supernovae may

remain even if an optical counterpart can be studied in detail.
This is also true for the complex neutrino oscillation effects in
the core of the developing supernova. Addressing these
uncertainties goes beyond the scope of this paper.

7. Results on the Galactic CCSN Search

From the probability density distributions in Figure 9,
including systematic uncertainties, we determined the potential
signal region by requiring that 99% of all CCSNe in our galaxy
for the lightest progenitor studied in this analysis should be
detected. For the complete IceCube detector, including the

Table 1

Summary of Systematic Uncertainties on V
e
eff for the Hüdepohl et al. (2010)

Model

Source of Systematic Uncertainty

Estimated Relative Uncer-

tainty (%)

Rate deviation in sliding average

window

±1.6

Ice density as function of depth ±0.2

Mean e± track length in ice ±5

Ice properties [−3.6, 4.1]

DOM efficiency ±10

Artificial deadtime ±3

Cross sections (e+p, e−p, e O

scattering)

<±1, <±1, ±0.2

Angle-dependent Earth oscillation [−0.2, 4.9]

Notes. The uncertainties on the oxygen cross sections and angle-dependent

Earth oscillations are substantially higher in models with larger and more

variable neutrino energies. Combining the systematic ice and DOM efficiencies

linearly and then in quadrature with the other uncertainties, one obtains an

upper error of 16.2% and a lower error of −15.0%.

Figure 7. The number of hits in IceCube is shown for the four investigated
models assuming a short supernova distance of 1 kpc, both in linear and log
scale. The observed baseline is due to the background rate. Earth oscillation
effects have not been included. We note that the signal rate is roughly

proportional to E 3. Hence, models with higher neutrino energies are much
more prominently seen. For the example of black hole formation, the effect of
MSW oscillations is demonstrated. The effects are much smaller for the low-
mass Huedepohl model (blue), used as a conservative benchmark in the
analysis, where the no-oscillation case yields the lowest hit rate.

Figure 8. Significance proxy vs. distance for four models in 0.5 s bins in the
case of the completed detector with 86 strings. The analysis threshold is
indicated by a horizontal line.
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systematic effects in Table 1, the signal region is defined by
ξcorr> 9.2. The data with ξcorr> 7 were then unblinded and the
subthreshold range ξcorr ä [7, 9.2] and the signal range
ξcorr> 9.2 were investigated. We present in Figure 10 the
accumulated result using the ξcorr distribution. No event in the
signal region ξcorr> 9.2 is found. However, two events entered
the subthreshold range, with ξcorr= 7.69 and ξcorr= 8.57. Both
events are close in time to failed runs. The estimated
background assuming a power-law distribution (Pareto 1964)
in the blinded region ξcorr> 7 amounts to 1.2± 0.8 events.

A 90% C.L. upper limit was determined using the Feldman–
Cousins method (Feldman & Cousins 1998), conservatively
assuming no background and the equivalent of 10.735 yr of

continuous data taking. The limit

( )N yr 0.23 yr 1090%
1

covers supernovae within 25 kpc distance, including those that

are optically hidden or failed to explode.
As can be seen from Figure 9, only high neutrino luminosity

supernovae can be detected in the Small and Large Magellanic
Clouds by IceCube alone. However, the situation improves if
the burst time is known from external sources, such as other
neutrino detectors, a gravitational wave detector, or an
astronomical observation with electromagnetic waves. Unfor-
tunately, the progenitor mass does not uniquely define the
observable neutrino flux. We therefore choose to define a
progenitor-mass-independent measure that is proportional to
the observed rate of hits in IceCube. It scales roughly with the
third power of the neutrino energy Eν and depends on the
spectral shape that is defined in this analysis by the numerical
parameter α (Keil et al. 2003). We introduce the quantity

≔ ( ) ( )

( ( )) · ( ( ))

( ( ) )
( )

X dt t E t

t t

t

2 3

1
11

SN
2

2

to set a lower limit for the observation of supernovae in the

Magellanic Clouds that fulfill the condition X� 2.67×
1061MeV3. Among the models investigated in this paper, the

requirement is satisfied for the 27Me model (Burrows &

Vartanyan 2021) and the black hole model (Sumiyoshi et al.

2007).
The search discussed in this paper was optimized for the

random occurrence of a supernova in the Milky Way and its
dwarf galaxy companions. In principle, the sensitivity would be
higher for phenomena that occur at fixed frequencies, such as a
“neutrino pulsar” (Mushtukov et al. 2018). Checking the data
quality is another reason to study the data set in the frequency
domain. Lomb–Scargle periodograms were used to investigate
the data sample in frequency space, up to Nyquist frequencies
of 1 Hz (Fritz & Kappesser 2021; Fritz 2022). With the
exception of a signature of the diurnal seasonal oscillation of
the muon rate and artifacts from the run transitions and alias
effects at high frequency, no significant signal was found.

8. Conclusions

A search for neutrinos from core-collapse supernovae in the
Milky Way and dwarf galaxy companions using IceCube data
taken between 2008 April 17 and 2019 December 31 was
performed. The period covers the equivalent of 10.735 yr of
uninterrupted data taking. With the cuts defined in this analysis
and for distances smaller than 25 kpc, IceCube has the
sensitivity to detect 99% of all Galactic core-collapse super-
novae with neutrino fluxes equal to or higher than that of the
conservative 8.8Me progenitor model. No candidate event was
found, and a 90% C.L. upper limit on the rate of core-collapse
supernovae out to distances of ≈25 kpc was determined to be
0.23 yr−1. This limit can be extended to the Magellanic Clouds
for models that fulfill the condition X� 2.67× 1061 MeV3,
with the progenitor-mass-independent measure X defined in
Section 7.
As part of the approved IceCube Upgrade, multi-PMT

modules (Abbasi et al. 2021) will be deployed and low-noise
wavelength-shifting sensors (Bastian-Querner et al. 2022) will

Figure 9. Probability densities in our Galaxy (upper plot) and in the Magellanic
Clouds (lower plot) for the four models considered. Monte Carlo results for the
completed detector configuration with 86 strings are shown. The observed
significance proxy ξcorr ä [5, 7] is also shown. The effect of adding the
systematic detector uncertainty is shown for the 8.8 Me progenitor model in the
upper plot (light blue). The overlapping distributions for the Small and Large
Magellanic Clouds cannot be distinguished for the 8.8 Me model.

Figure 10. Measured ξcorr distributions. The fit to a normal distribution (blue
line) indicates a deviation from the expectation of the central limit theorem at
large positive values.

10

The Astrophysical Journal, 961:84 (13pp), 2024 January 20 Abbasi et al.



be tested. They have the potential to increase the distance
reach (Lozano Mariscal et al. 2021) and will substantially
improve the spectral sensitivity.
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