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ABSTRACT: Measurements of the charge-dependent two-particle angular correlation function
in proton-lead (pPb) collisions at a nucleon-nucleon center-of-mass energy of /sy = 8.16 TeV
and lead-lead (PbPb) collisions at ,/syy = 5.02 TeV are reported. The pPb and PbPb data
sets correspond to integrated luminosities of 186 nb ! and 0.607 nb_l, respectively, and were
collected using the CMS detector at the CERN LHC. The charge-dependent correlations are
characterized by balance functions of same- and opposite-sign particle pairs. The balance
functions, which contain information about the creation time of charged particle pairs and
the development of collectivity, are studied as functions of relative pseudorapidity (An)
and relative azimuthal angle (A¢), for various multiplicity and transverse momentum (pr)
intervals. A multiplicity dependence of the balance function is observed in An and A¢
for both systems. The width of the balance functions decreases towards high-multiplicity
collisions in the momentum region < 2 GeV, for pPb and PbPb results. Integrals of the balance
functions are presented in both systems, and a mild dependence of the charge-balancing
fractions on multiplicity is observed. No multiplicity dependence is observed at higher
transverse momentum. The data are compared with HYDJET, HIJING, and AMPT generator
predictions, none of which capture completely the multiplicity dependence seen in the data.
The comparison of results with different center-of-mass energies suggests that the balance
functions become narrower at higher energies, which is consistent with the idea of delayed
hadronization and the effect of radial flow.
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1 Introduction

Ultrarelativistic heavy-ion collisions provide a means to investigate the properties of the quark-
gluon plasma (QGP) [1-6]. This state of matter is formed in the first few moments (~3x 10~
seconds) of such collisions, and is characterized by large energy density compressed into a
small volume. Two-particle angular correlations are used as a tool to study the properties of
the system created in high-energy collisions [7-12]. These correlations are usually measured as
functions of An and A¢, which denote the relative angle in pseudorapidity (1) and azimuthal
angle (¢), respectively. Many physical phenomena manifest themselves in these correlations:
the collective behavior of the medium can be apparent in the long-range longitudinal structure
at small A¢ angles [11-14], the jet-related correlations can be observed as a peak at small
relative An, A¢ angles together with a broad An structure at A¢ ~ m, while correlations in
relative momentum caused by resonance decays or quantum statistics, such as Bose-Einstein
correlations, will appear at small relative angles only.

Recent theoretical studies suggest that the QGP evolves during a high-energy heavy ion
collision, producing quarks in two waves [15]. The first wave occurs during the first 5-10 fm/c
of the collision, when gluons thermalize into the QGP, followed by a isentropic expansion
and hadronization, where most quark production occurs. The motivation behind the study
in PbPb collisions stems from the expectation to differentiate between the early and late
production of charges within the collision dynamics [16].

Charged-particle production is subject to local charge conservation, which ensures that for
each created charge there is always an opposite balancing partner [15, 17]. The electric charge
balance function represents the probability that a charge +q will see its balancing charge —gq



within a limited range of A¢ and An [17]. The width of the balance function represents a
powerful tool to study the dynamics of particle production [7-9, 18]. Specifically, the width
of the balance function is expected to be narrower when the particles are produced at a later
stage of the system evolution. Conversely, a wider distribution would correspond to charge
creation earlier in the evolution. Additionally, collective medium expansion, specifically the
radial flow, may also affect the observed width of the correlated distributions. The azimuthal
width of the balance function depends on the strength of the radial flow, while its longitudinal
spread is related to the longitudinal momentum as An V mg + pgf, where pr is the transverse
momentum and mg is the particle mass [19]. Therefore, radial flow can contribute to the
narrowing of the balance functions for more central collisions.

Additionally, balance functions may provide a sensitive probe to study the hadronization of
jets in proton-proton (pp) collisions [20]. They can be used as a tool for studying the chemistry
of the quark-gluon plasma [15, 16], the collision dynamics [21, 22], the hydrochemistry of
particle formation [23, 24|, and the balancing particle production [25, 26]. Moreover, the
balance functions binned in the relative azimuthal angle, A¢, can effectively determine the
diffusivity of light quarks [23, 24]. Thus, charge balance functions provide some of the most
compelling evidence for forming a state of matter at chemical equilibrium with sufficient
number of light quarks produced in the early stages of the collision [27]. Balance function
integrals relate to net-charge fluctuations, which are crucial to understanding the transition
from hadronic matter to the deconfined state and estimating QGP susceptibilities [23, 25, 28,
29]. Finally, the balance functions are also valuable for confirming the chiral magnetic effect.
The latter predicts an electric charge separation along the direction of the magnetic field, which
can be experimentally observed as a charge-dependent correlation in the momentum space [30].

The STAR collaboration has performed measurements of the balance function in var-
ious collision systems, including AuAu, dAu, and pp collisions [31]. In AuAu collisions
at /sy = 200 GeV, for particles of || < 1.0, the balance function was found to have a
strong centrality dependence in both An and A¢. A similar measurement covering the
range |n| < 0.8 was reported by the ALICE collaboration at the CERN LHC [32]. These
measurements demonstrate that charge separation at kinetic freeze-out is sensitive to the
details of the hadronization dynamics. However, more quantitative comparisons are required
between experimental measurements and theoretical predictions in balance function studies
to fully understand the underlying physics. Extending the acceptance to cover more of
the produced particle pairs could reveal additional details of the mechanism(s) driving the
particle correlations.

In this paper the charge-balance function is measured over a wide coverage of |n| < 2.4
by exploiting the large acceptance of the CMS detector [33]. Results are presented as a
function of charged-particle multiplicity and pr in proton-lead (pPb) and lead-lead (PbPDb)
collisions at /sy = 8.16 TeV and 5.02 TeV, respectively. A comparison of the PbPb and
pPb collisions can provide insight into the origin of long-range correlations observed in
high-multiplicity pPb collisions [8]. This paper is organized as follows. The CMS detector
is briefly discussed in section 2. Section 3 describes the data samples and selection criteria.
Section 4 specifies the analysis procedure. Section 5 reports on the various sources of
systematic uncertainty. Section 6 discusses the balance function results in both pPb and
PbPb collisions, and comparison with models. Section 7 presents the energy dependence



of charge balance functions and comparisons with the previous lower ,/syy measurements.
Finally, section 8 summarizes the findings. Tabulated results are provided in the HEPData
record for this analysis [34].

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal
diameter, providing a magnetic field of 3.8 T. Within the solenoid volume there is a silicon
pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and
a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two
endcap sections. The silicon tracker consists of 1440 silicon pixel and 15,148 silicon strip
detector modules (Phase-0). In 2017, an additional layer was added in both the barrel
and endcap regions of the pixel detector and the number of silicon pixel modules increased
to 1856 (Phase-1). The tracker detector measured the charged particles within the range
In| < 3.0, and provides track resolutions of typically 1.5% in pr and 25-90 (20-75) pm in
the transverse impact parameter [35, 36] in Phase-0 (—1) of pixel detector for nonisolated
particles of 1 < pp < 10GeV [37]. The forward hadron (HF) calorimeter uses steel as an
absorber and quartz fibers as the sensitive material. The two halves of the HF are located
11.2m from the interaction region, one on each end, and together they provide coverage
in the range 3.0 < || < 5.2. The HF calorimeters are subdivided into “towers” with
An x A¢p = 0.175 x 0.175, and energy deposited in a tower is treated as a detected hadron in
this analysis. They also serve as luminosity monitors. A more detailed description of the
CMS detector, together with a definition of the coordinate system used and the relevant
kinematic variables can be found in ref. [33].

3 Data samples and event selections

The analysis presented in this paper is based on PbPb collisions at /sy = 5.02 TeV
collected by the CMS experiment in 2018. Approximately 4.27 x 10° PbPb events were
used, corresponding to an integrated luminosity 0.607 nb [38, 39]. The data samples were
collected by the CMS experiment with a two-tiered trigger system. The first level trigger
(L1) consists of custom hardware processors and, uses information from the calorimeters and
muon detectors to select events at a rate of around 100 kHz within a fixed latency of about
4 ps [40]. The second level or high-level trigger (HLT) consists of a farm of processors running
a version of the full event reconstruction software optimized for fast processing, and reduces
the event rate to around 1kHz before data storage [41]. The MB events are triggered by
requiring signals above the readout threshold of 3 GeV in each of the HF calorimeters [41].
Further selections are applied offline to reject events from background processes (beam-gas
interactions and nonhadronic collisions), as discussed in ref. [42]. In the offline analysis, events
are required to have at least one interaction vertex, based on two or more reconstructed
tracks, with a distance of less than 15 cm from the center of the nominal interaction point
along the beam axis, z,,. The primary vertex is taken to be the vertex corresponding to
the highest track multiplicity in the event, evaluated using tracking information alone, as
described in section 9.4.1 of ref. [43]. In the final analysis, the PbPb collision events are



required to have at least two calorimeter towers in each HF detector with energy deposits
of more than 4 GeV per tower. These criteria select (99 £ 2)% of inelastic hadronic PbPb
collisions. Finding values higher than 100% reflects the possible presence of ultra-peripheral
(nonhadronic) collisions in the selected event sample.

The pPb data were recorded in 2016 and approximately 1.37 x 10? events were used,
corresponding to an integrated luminosity of 186 nb* [39, 44]. The beam energies were
6.5 TeV for protons and 2.56 TeV per nucleon for lead nuclei, resulting in \/syy = 8.16 TeV.
The nucleon-nucleon center of mass in the pPb collisions is not at rest with respect to the
laboratory frame because of the energy difference between the colliding particles. Massless
particles emitted at 7., = 0 in the nucleon-nucleon center-of-mass frame will be detected
at 1 = —0.465 (clockwise proton beam) or 0.465 (counterclockwise proton beam) in the
laboratory frame. To select high-multiplicity pPb collisions, a dedicated high-multiplicity
trigger was implemented [42]. At L1, the pPb events were triggered by requiring at least
one track with pp > 0.4 GeV in the pixel tracker during a pPb bunch crossing and at least
one tower in one of the two HF detectors having an energy above 1 GeV. In addition, the
total number of ECAL4+HCAL towers with the transverse energies above a threshold of
0.5 GeV is required to exceed 120 (ECAL) and 150 (HCAL). The events that pass the L1
trigger are subsequently processed at the HLT.

Track reconstruction is performed online as part of the HLT with the same reconstruction
algorithm used offline [41]. The number of tracks with |n| < 2.4 and pp > 0.4 GeV (denoted
as the primary tracks, i.e. originated at the primary vertex and satisfying the high-purity
criteria [35]), and a distance of closest approach of less than 0.12 cm to the primary vertex, is
determined for each event [45]. The primary tracks are used to perform the analysis, and to
define event categories based on the charged-particle multiplicity (N&%ﬁne). The multiplicity
classification (120-150, 150-185, 185-250, > 250) in this analysis is identical to that used in
ref. [46], where more details are provided, including a table relating N&Tine to the fraction
of minimum bias triggered events. When measuring the charge-balance function in pPb
collisions, the same event may contain multiple independent interactions (pileup), which
constitutes a background for the analysis of high-multiplicity events. The average number of
collisions per event in pPb data varied between 0.10-0.25, and is negligible in PbPb collisions.
A similar procedure to that described in [45] is used for identifying and rejecting events with
pileup, which is based on the number of tracks associated with each reconstructed vertex
and the distance between the vertices.

4 Analysis methods

Charged particle tracks are selected if the significance of the longitudinal (d,) and transverse
(dy,) distance from the beam axis satisfies |d,|/o, < 3 and |d,,|/0,, < 3, where ¢, and o,
are the measurement uncertainties. The relative uncertainty in pr, o, /pT, must be less than
10%. To ensure high tracking efficiency and to reduce the rate of misreconstructed tracks,
particles are selected within |n| < 2.4. For this analysis, we have applied a minimum pr
cutoff value of 0.4 (0.5) GeV for pPb (PbPb) collisions. Simulation studies based on HYDJET
(version 1.8) [47], AMPT (version 1.1) [48] in PbPb and HIJING (version 1.3) [49, 50] in pPb are
used to estimate the geometrical acceptance and efficiency for the primary track reconstruction



as well as the rate of misreconstructed tracks. Each reconstructed track is weighted by the
inverse of the correction factor, f, = AE/(1 — F'), as a function of pseudorapidity and
transverse momentum. The weight factor accounts for the detector acceptance A(n,pt),
reconstruction efficiency F(n,pr), and the fraction of misreconstructed tracks F(n, pr). The
acceptance is defined as the probability that a charged particle generates enough hits in the
tracker to be reconstructed by the track-finding algorithm, while the efficiency is defined as the
likelihood that these hits will be used to reconstruct a track with parameters representative
of the original particle. A detailed analysis of tracking performance based on Monte Carlo
(MC) simulations and collision data can be found in ref. [51]. Simulated MC events show that
the combined geometrical acceptance and reconstruction efficiency for the primary tracks is
about 60% for the 0-5% most central PbPb collisions over the full acceptance of |n| < 2.4
and 65% for |n| < 1.0. The fraction of misreconstructed tracks is within 1-2% for |n| < 1.0
and 14% for |n| < 2.4. The contribution due to the secondary tracks coming from the
beampipe and the detector material is also considered in this analysis and this found to be
less than 0.01% or negligible. We note that the requirements on the distance from the primary
vertex imposed on the selected tracks, as described above, are effective in removing the ete”
contamination in the opposite-sign particle correlations. This contamination stems from
photon conversions in the detector material and is suppressed effectively, thanks to the high
resolution of inner pixel detector layers and their proximity to the beam pipe responsible for
the majority of this type of background. Track splitting and merging can impact pairs of tracks
in close spatial and momentum proximity, affecting two-particle correlations. We studied
the potential impact of these effects on the physics quantities of interest by comparing the
nominal results with those constructed by removing all charged-particle pairs with momentum
separation below a given threshold (minimal allowed separation of 0.1, 0.15, and 0.2 GeV were
considered) along with the cos(8) < 0.9999 requirement, which yielded negligible difference in
the final measurements. In PbPb collisions, additional selections are applied to reject the
misreconstructed tracks: the number of hits in the silicon tracker is required to be larger
than 11 and the X2 per degree of freedom per layer of the silicon detector must be less
than 0.18. Systematic uncertainty calculations related to the track selection variations are
discussed in the next section. The MC simulations of the CMS detector response are based on
GEANT4 [52]. The PbPDb collision centrality is defined as a fraction of the inelastic hadronic
cross section, with 0% corresponding to the full overlap of the two colliding nuclei. The event
centrality is determined offline and is based on the total transverse energy measured in the HF
calorimeters, using the methodology described in ref. [53]. The value of N, (charged-particle
multiplicity) is corrected for the tracking efficiency and misidentification rate in both systems.
For the N, calculation, a minimum pp threshold of 0.5 (0.4) GeV is applied for PbPb (pPb)
collisions. The centrality binning for PbPb and multiplicity binning for pPb collisions used
for this measurement are listed in table 1. Table 1 also presents values of the corrected
average charged-particle multiplicity (Ng,) within |n| < 2.4 for different centrality bins, and
multiplicities in PbPb and pPb collisions [46].

The differential correlation function is constructed using the standard CMS method [7,
8, 11-13, 42, 46]. In each event, every “trigger” particle within a specified pr interval is
matched with other “associated” particles within a corresponding pt interval. The trigger
and associated particles may be selected from the same or different pr intervals [54-56]. The



PbPb »Pb

Centrality (%) (Na) NQHline (Na,)
0-10 3770 £189 040 24 +1
1020 2540 +£127 40-80 73 £3
20-30 1678 +84 80-120 118 £5
30—40 1057 £53 120-150 165 £7
40-50 620 +31 150-165 196 +8
50-60 328 £16 165-185 214 +9
60-70 160 +8 185-200 236 £+9
70-80 65 +3 200-225 254 +10

225-250 285 +£11
250-270 314 £13
270-300 342 +14

Table 1. Corrected average Ny, ((Ng,)) values, calculated for different multiplicities in PbPb collisions
at \/syn = 5.02TeV and in pPb collisions at 8.16 TeV.

trigger particles are defined, for each track multiplicity class, as charged particles originating
from the primary vertex (PV) within a given pr ranges and |n| < 2.4. There can be more
than one trigger particle in the event, the total number of trigger particles is denoted as
Niyig- The signal distribution S(An, A¢) is constructed by using pairs of particles within
the same event per trigger particle [7],
1 dQNsame

S(An, A¢p) = — ——— 4.1
where N*™° is the number of pairs in (An, A¢) bin where An and A¢ are the relative
angular variables between the particles of the pairs. The so-called mixed event distribution
M (An, A¢) is constructed using the mixed event technique [45] by pairing the trigger particles
in each event with the associated particles from 10 different random events within the same
2 cm wide zy, range and from the same track multiplicity class, as shown in table 1:

where N™ is the number of mixed event pairs in a given (An, A¢) bin. The correlation
function is constructed using the normalized signal and mixed event distributions:

S(An,A¢)

Cy(An, A¢) = M(O, O)M,

(4.3)
where M (0, 0) represents the mixed-event associated yield for both particles of the pair going in
approximately the same direction (with a bin width of 0.3 in An and 7/6 in A¢). The M (0, 0)
bin has the highest pair-acceptance, as for a given particle passing the analysis selection
criteria, the conditional probability for the second particle to be accepted as well is highest in



the closest spatial proximity to the first one. Therefore, the ratio M (0,0)/M (An, A¢) is the
pair-acceptance correction factor used to derive the corrected per-trigger-particle associated
yield distribution [57]. The signal and mixed-event distributions are first calculated for each
event, and then averaged over all the events within the same track multiplicity class, for
each pp bin. The correlation function is denoted by Cy(An, A¢) in terms of the relative
An and A¢ variables. Using the positively and negatively charged particles, we construct
four different charge combinations, which can be written as Cy(+, —), Ca(+, +), Co(—,+),
Cy(—,—). The functions Cy(+,+) and Cy(—, —) are called SS correlations, and the other
two are called OS correlations. The SS correlations are affected by the Hanbury-Brown-Twiss
effect [58, 59], by Coulomb repulsion, and by a contribution from minijet production [60]. The
OS correlations contain a minijet component [60], an attractive Coulomb contribution [58],
and correlations due to the decay of resonances. The OS and SS correlations exhibit long-
range rapidity correlations, called”’ridge-like” correlations. The balance function combines
same-sign subtractions to isolate the opposing charge statistically [15, 17, 56]. The balance
function B(An,A¢) is defined as

B(An, A¢) = %[CQH, =)+ Co(=4) = Co(+,+) = Co(—=, )] (4.4)

5 Systematic uncertainties

Systematic uncertainties are calculated by varying the event and track selections for both
PbPb and pPb collisions events. The balance function is calculated for three ranges of z-vertex
of PV: |v,| < 3cm, —15 < v, < —3cm; and 3 < v, < 15cm. Similarly, the track quality
requirements are varied, by changing |d,|/o, and |d,,|/0,, from 2 to 5, o}, /pr from 0.05-0.10,
and the X2 per layer from 0.15-0.18. Moreover, the centrality calibration is varied to estimate
the related systematic uncertainties in the width of the balance function for PbPb collisions.
Finally, the impact of pileup in pPb collisions is estimated by varying the pileup selection of
events in the analysis by changing the required separation between reconstructed vertices and
their numbers of associated tracks. The systematic uncertainties for each source are estimated
from the difference between the nominal and varied results. The maximum variation is taken
as the final systematic uncertainty for each source, and the total systematic uncertainty
is evaluated by adding all the sources in quadrature. In PbPb simulations a discrepancy
between A¢ balance functions obtained for particle level information and from reconstructed
particle tracks was observed. This discrepancy is related to a reduced track finding efficiency
for close-by low-pr (<2 GeV) tracks in central PbPb collisions. A residual correction is a
ratio of generated with reconstructed tracks, was obtained from MC simulations, where three
models (HYDJET, HIJING and AMPT) provided consistent correction functions for the range
0.3 < |An| < 1.0. The difference between corrected and uncorrected data was used as an
conservative estimate of the corresponding systematic uncertainty. The maximum uncertainty
was found to be 13.5% in the (|A¢|) comparison of the balance function discussed in table 3.

Table 2 lists the maximum absolute systematic uncertainties calculated for both collision
systems in terms of (|An|) and (|A¢|). The systematic uncertainties in the amplitudes, widths,
and integrals of the balance functions, due to the track and vertex selections, are estimated



PbPb »Pb
(lAanl)  (Agl)  (|Anl) (|Ad])

Uncertainty source

Vertex selection 0.005  0.009 0.016 0.012

Centrality calibration 0.005 0.005 — —
Pileup selection — — 0.002 0.001
Track quality requirements 0.004  0.012 0.017  0.004
Tracking efficiency 0.001  0.005 0.001  0.003
MC closure test 0.002 0.062 0.001  0.001

Table 2. Summary of systematic uncertainties calculated in (|An|) and (|A¢|) for PbPb collisions at
VSN = 5.02TeV and pPb collisions at 8.16 TeV.

Uncertainty source PbPb (%) pPb (%)
(1An)) (Agl)  (|An]) ([Ag])

Vertex selection 0.8 1.3 3.2 0.7
Centrality calibration 0.8 0.8 — —
Pileup selection — — 0.4 0.1
Track quality requirements 0.7 3.5 2.7 2.8
Tracking efficiency 1.2 1.0 1.0 3.0
MC closure test 0.5 13.5 1.0 2.0

Table 3. Summary of percentage systematic uncertainties calculated in {|An|) and {|A¢|) for PbPb
collisions at /syy = 5.02TeV and pPb collisions at 8.16 TeV.

by varying these selections. For this analysis, we applied a minimum pr requirement (0.4 GeV
for pPb and 0.5 GeV for PbPb collisions) because of the inefficiency in the low-pt tracking.

This measurement is also extended to higher values of pp (2 < pragso < 3 < Prrig <
4GeV, 3 < Prasso < 8 < Prrig < 15GeV). The py of the trigger particle is denoted by pp. g,
whereas that of the associated particle is denoted by pr ,s0- The systematic uncertainty
values from each source, in all multiplicity classes and pp < 2GeV, are summarized in
table 3 for the two systems. The maximum systematic uncertainties in the width of the
(|An|) and (JA¢|) are measured to be 6.0% for PbPb collisions and 3.0% for pPb collisions
for intermediate values of transverse momentum, 2 < pr o < 3 < Prgig < 4GeV. The
maximum systematic uncertainties in (|An|) and (JA¢|) are found to be 4% in PbPb collisions;
for pPb collisions, 4% and 6% are found for the lower (2 < pp a550 < 3 < P trig < 4 GeV) and
the higher (3 < prass0 < 8 < Prrig < 15 GeV) values of pp, respectively. In addition, the
systematic uncertainties are calculated for the integral of the balance function. The highest
variation for PbPb collisions is 3%, whereas the maximum difference for pPb collisions is 5%.

6 Results

The balance functions for nonidentified charged particles are presented as a function of An
and A¢ in different multiplicity classes and p ranges for both collision systems in figure 1.
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Figure 1. The balance function is shown in terms of An and A¢ in PbPb collisions at /sy = 5.02 TeV
(upper panels) and for pPb collisions at 8.16 TeV (lower panels). From left to right, the results are shown
for the lowest to highest multiplicity classes in PbPb and pPb collisions. The trigger and associated
particles in PbPb (pPb) collisions satisfy the condition 0.5(0.4) < pr asso < PTtrig < 2.0 GeV.

The upper panels in figure 1 show the centrality dependence of the charge-balance
function in PbPb collisions. The magnitude of the balance function changes with multiplicity,
with higher values corresponding to collisions with higher multiplicity. A narrower balance
function distribution is observed in central PbPb collisions. This is consistent with particle
production at later times in the collision process for the larger system created in more central
collisions, leading to a smaller separation in An and A¢ [31].

The lower panels in figure 1 represent the multiplicity dependence of the balance function
in pPb collisions. The balance function is observed to also become narrower in An and A¢
with increasing multiplicity. A similar depletion structure around (An, A¢) = (0,0) is also
seen in mid-central to peripheral PbPb events, as shown in upper panels of figure 1 and
previously in ref. [61]. This type of structure is more pronounced in pPb collisions in the
smaller range of multiplicities. One possible mechanism that could create such a structure
in both collision systems is the charge-dependent short-range correlations, such as Coulomb
attraction or repulsion, or quantum statistical correlations [62].

Figure 2 shows 1D projections, derived for An (JA¢| < 7/2 range) and A¢ (0.3 < |An| <
1.0 range). The balance function distributions show a strong multiplicity dependence in An
and A¢ on the near-side |A¢| < 7/2, for both collision systems. As before, a narrower peak
is observed in high-multiplicity pPb collisions as compared to low-multiplicity ones.

Figure 3 presents the near-side projection of the balance functions in PbPb and pPb
collisions, and its comparisons with different MC model calculations. Neither AMPT nor
HIJING can fully explain the balance function projections in An and A¢ in PbPb collisions,
as they both underestimate the balance function’s magnitude, and anticipate far broader
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Figure 2. The projection of the balance function is presented in the upper panel for PbPb (lower
panel for pPb) collisions as a function of An (left column) and in A¢ (right column). The statistical
uncertainties of the data points are smaller than the marker size and rectangular boxes indicate the
systematic uncertainties.

distributions. However, the one-dimensional projection is quantitatively in agreement with
both the models in An, while AMPT slightly underestimates the pPb data in A¢ comparisons.

Figure 4 presents the away-side (—7/2 < A¢ < 37/2) projection of the charge balance
functions for pp < 2GeV in both pPb and PbPb collisions. The away-side of the balance
function demonstrates a distinct pattern, a larger magnitude of B(An) is observed in the low-
multiplicity events compared to their counterparts in high-multiplicity events. It is seen that
none of these models from AMPT, HIJING, and HYDJET are in quantitative agreement with the
data point and exhibit a correlation peak on the away-side of a significantly higher magnitude.

6.1 Balance function integral

The left and right plots in figure 5 present the integral of the balance functions in terms of N,
in PbPb and pPb collisions, respectively. By definition, the balance function is a conditional
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Figure 3. The comparison of the balance function with AMPT and HIJING event generators is
presented in the upper panel ((a) and (b)) for PbPb collisions and the lower panel ((c) and (d)) for
pPb collisions as a function of An (left column) and in A¢ (right column). For PbPb collisions, only
the highest multiplicity (Ng, < 3770) and for pPb collisions, only the lowest multiplicity (N, < 24)
are shown.

density. It is the likelihood that one event will occur under certain conditions while another
possibility has occurred. In the ideal case [15, 25], the integral of the balance function over
the full phase space (i.e., all possible values of 7, pr, and ¢) is unity by construction, which
means that the total charge in the collision is conserved. However, experimentally, because
of the finite detector acceptance, the integral does not capture all the balancing partners
due to the pt selection made. The integral values of the balance function in PbPb and
pPb collisions are determined to be 0.35-0.42 and 0.11-0.23, for py < 2.0 GeV, respectively.
The integrals of the balance functions in the two systems show a notable difference. This
may be due to the radial flow focusing pairs of both positive and negative particles into the
same pp range. In both these collisions, a minimal change in the integral with multiplicity
classes is observed. Recently, ALICE reported the integral for nonidentified charged hadrons
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Figure 4. The away-side projection of the balance function for the charged-particles with pp < 2 GeV
is shown for the PbPb upper panel ((a) and (b)) and pPb ((a) and (b)) collisions. The data results
are compared with the different event generators with the lowest multiplicity in both the systems.

with |n| < 0.8 and 0.2 < pp < 2.0 GeV [61]. Comparison with the model calculations from
HIJING, HYDJET, and AMPT are also shown in figure 5. The HIJING predictions show a weak
dependence of the balance function integrals on the event multiplicity for both PbPb and
pPb collision systems. The HYDJET calculations, available only for PbPb interactions, show
an increasing trend toward higher-multiplicity events, similar to that seen in the data but
significantly underestimating the magnitude of the measured integral values. Calculations
from the AMPT model predict a decreasing trend towards the high multiplicity for PbPb
collisions but little to no dependence on Ny, for pPb collisions. However, the multiplicity
range for the latter predictions is limited. We note that within the N, overlap range, the
AMPT calculations agree with the measured balance function integrals from pPb data within
the uncertainties. A mild dependence of the integral of the balance function with collision
centrality is observed, which could suggest the increase of multiplicity fluctuations for central
events compared to peripheral events [63]. The integral of the balance function over the full
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Figure 5. The integral of the balance functions (If,) in PbPb collisions at /syy = 5.02 TeV (left)
and in pPb collisions at /syy = 8.16 TeV (right). The balancing partners fall within the specified
pseudorapidity range (|n] < 2.4) and have transverse momenta within the range of 0.5 < pp < 2.0 GeV
(for PbPb) and 0.4 < pp < 2.0GeV (for pPb). The statistical uncertainties in the data points are
smaller than the marker size and rectangular boxes indicate the systematic uncertainties.

acceptance is related to the charge fluctuations [25]. Additionally, the integral of balance
functions is sensitive to the hydrochemistry of the collisions [26], which is necessary to infer
contributions to single-particle spectra from hadronic resonance decays based on models.

6.2 Balance function width

The balance function distribution width can be used to quantify how tightly the balancing
partners are correlated and can be characterized by the averages (|An|) and (|A¢|), with
(|Anl|) given in eq. (6.1),

_ 2 B(An;)|Ary|

(lAn[) = S B (6.1)

where >, B(An;) is the balance function value for each An; bin, with the sum running over all

bins i. The absolute average value of the balance function distribution is estimated in An and
A¢. The width of the balance function in An and A¢ decreases with increasing N, more
significantly in the smaller N, range. For this analysis, we have used the range |An| < 3 for
the (JAn|) calculations, and |A¢| < 1.5 for the (|A¢|) calculations because of the probability of
detecting both balancing charge-partners decreases with the increase of An and A¢ windows.
The balance function determined in a specific pseudorapidity window B, _ (An|ny..) can
be connected to the balance function over an infinite interval under the assumption of a
boost-invariant system (independent of rapidity) [64] according to the eq. (6.2),

By (Btlinas) = By (Bnfoc) (1- 1)), (6.2)

max
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Figure 6. The width of the balance function in (|A7n[) and the ratio of (|An[)/{|An|)y,, <¢5 and
([An[)/{|An|) N, <24 are shown as functions of N, for PbPb collisions in /syy = 5.02TeV (upper

c

panels) and pPb collisions in /syy = 8.16 TeV (lower panels), respectively. The statistical uncertainties
of the data points are smaller than the marker size and rectangular boxes indicate the systematic
uncertainties.

The factor (1 — T]A—”) represents the probability that a particle’s partner, separated by An,
will fall within the finite rapidity window [25].

6.2.1 Balance function in low transverse momentum and comparison with
models

The results are compared with predictions from the HYDJET (PbPb collisions only) [65],
AMPT, and HIJING MC event generators, by means of p-values [66] from a X2 test accounting
for statistical uncertainties only. The HYDJET is composed by a combination of the soft,
hydro-type state, and the hard multi-jets. In case of AMPT simulations, the string melting
option is employed, with the generator parameters tuned to the available LHC experimental
results. The HIJING model includes multiple minijet production, nuclear shadowing of parton
distribution functions, and mechanisms of jet interactions in dense matter.

Figure 6 presents the experimental results of width values with N, showing a strong
multiplicity dependence of the (JAn|) for both collision systems. In HYDJET, (|An|) does not
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show any significant dependence on N,. In this model, local charge conservation for more
peripheral events (smaller multiplicities) has more influence on the charge-balance function
than for large multiplicities. Comparing HIJING predictions with the PbPb and pPb data, no
clear multiplicity dependence is seen in the model calculations. HIJING does not explain the
experimental data properly as the p-value is smaller than 0.01. In addition, the magnitude
of the balance function widths is larger in HIJING than in the data because the collective
flow effect is not present in the HIJING model.

The data results are also compared with the AMPT model, which includes the quark
coalescence and the decay of resonances. When comparing the (|An|) in both collision
systems, AMPT predicts larger (|An|) than data (p-value of 0.01 in pPb), and overall shows
worse agreement than HIJING (p-value of 0.01 in pPb). We estimate the relative decrease
of the width, which is expressed by the ratio of (|An|) for each multiplicity class to the
lowest multiplicity value, i.e., (|An|)y,, <65 (for PbPb) and (|An|)y,

C

<24 (for pPb) in order
to compare the width in both collision systems within the same multiplicity range. However,
due to the limitations in the model calculations, we are constrained within a specific range
of multiplicity compared to the pPb data.

The right plots of figure 6 present the normalized width in Az, where the data results
are compared with different models and this indicates the model prediction does not show
significant multiplicity dependence. Our experimental findings, based on considering only
the statistical uncertainties from the limited sample size, suggest that the relative change
in pPb collisions appears to similar to that in PbPb collisions.

Figure 7 presents the experimental findings for (|A¢|) in PbPb and pPb collisions. A
significant change in the balance function width is observed with multiplicity. Similarly,
the data results are compared with the various MC predictions. The HYDJET and HIJING
generators are not able to reproduce the trend of data results in the case of PbPb collisions.
A significant multiplicity dependence is shown in (|A¢|) because of the radial flow effect in
AMPT, which acts over the balancing partners by preserving their initial-state correlations
in A¢, in both systems. This trend is also reflected in figures 7b and 7d, where the relative
decrease of the width in (JA¢|) has a strong contribution from collective final state effects. The
normalized value of (|A¢|) in pPb collisions has a similar ratio to PbPb data. The HIJING and
AMPT predictions (p-values of 0.01 and 0.02) are able to describe the decreasing trend of the
pPb data with Ny, for small values of N, where the correlations are dominated by resonance
decays. On the other hand, the two generators show little dependence on N, for larger values
of N, in pPb, whereas the data continues its decreasing trend, as demonstrated in figure 7d.

6.3 Transverse momentum dependence of balance functions

This measurement is extended to higher values of the pp (>2 GeV) to study if the narrowing
or the widening of the balance function is constrained to the bulk particle production at
low pt (pr < 2GeV) or is also connected to hard process. Figures 8 and 9 represent the 1D
projections of the balance function in An and A¢ for the trigger and associated particles in the
intermediate-pr (2 < P asso < 3 < Prrig < 4 GeV) and high-pp (3 < Prasso < 8 < Prrig <
15 GeV) ranges. The upper panels show the plots for PbPb collisions, and the lower panel is
for pPb collisions. It can be seen that they become narrower for increasing py, as compared
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Figure 7. The width of the balance function in (|A¢[) and the ratios of (|A¢|)/{|Ad|) N, <65

c

and (|[A¢[)/(|A¢|) N, <24 are shown as functions of N, for PbPb collisions in /syy = 5.02 TeV
(upper panels) and pPb collisions in \/syy = 8.16 TeV (lower panels), respectively. The statistical
uncertainties of the data points are smaller than the marker size and rectangular boxes indicate the
systematic uncertainties.

with low-pr results, and exhibit a smaller multiplicity dependence. The width of the balance
function in A9 is narrower in the high-pr range than in the low- and intermediate-pt ranges,
which is consistent with the findings in A¢. This implies that the effects of radial flow on
the balance function is weaker at higher pp, and the balance function at high pr is more
sensitive to other effects such as jet fragmentation and medium response [67, 68].

The width of the balance functions in (|An|) and (|A¢|), for the different values of pr, are
presented in figure 10 as a function of Ng,, for both PbPb and pPb collisions. The narrowing
of the balance function width in the low-p region is understood in a delayed hadronization
picture, where the particles are produced at later stages of the evolution of the long-lived
medium formed in these collisions. Also in comparison with higher p, the multiplicity
dependence in low-pt PbPb collisions is attributed to the centrality dependence of the radial
flow, which retains part of the initial correlations of the balancing partners. These results
suggest that the balance function is a useful tool to investigate the interplay between soft

~16 -



CMS PbPb 0.607 nb™" (5.02 TeV) CMS PbPb 0.607 nb™' (5.02 TeV)

0.06—————————————— 0.08— T
[ 20<p,  <80<p <40GeV @ | 20< P asso< 30 <Py <40 GeV (b) ]
| Il <2.4 e N.< 3770 | mi<24 i
0.04F -n/2< Ad<m/2 ] NCh< 1057 0-06’ 0.3<|An < 1.0 ® N, <3770
: Nch< - = | e siBni< = N,< 1057 :
— | ¥ h< ] g + E
5 | 8 | £ 004 ¥ N,<65 h
o} i 1 2 | |
0.02}- 1 @ ] EEE ]
I ] 0.021 .
i LN ] ! ]
Opifagees™®? | "e¥ageg.ijy L ... gep=Btogy
-4 -2 0 2 4 -1 0 1 2 3 4
An A [rad]
cmMs pPb 186 nb™ (8.16 TeV) cms pPb 186 nb™ (8.16 TeV)
0.04——F—————— 0.05
[ 20<p,, <30<p, <40Gev (C) [ 20<p,  <30<p  <40GeV (d) ]
0.03] Mi<24 o Ny<342 - 0.04F <24 .
3 1 i ® N,<342 1
| w2 <Ap<n2 " N,<165 | _ [ 0.3<|An|<1.0 1
| 4 - 0.03 u Nch< 165 ]
0ol * N2 8 r ¥ Ny<24
§0.02f- . E o ]
m . 1 Zoo2 .
I 2 | o0 i 1
0.01 . e i ]
Oﬁﬂan--ﬂ!o-la ‘ E.—o-‘--.on-ﬂ of 1
—4 -2 0 2 4 -1 0 1 2 3 4
An A [rad]

Figure 8. The projection of the balance function is presented for PbPb in ,/syy = 5.02 TeV (upper
panels) and pPb in \/syy = 8.16 TeV (lower panels) collisions as a function of An (left column) and
A¢ (right column), for 2.0 < pr 4550 < 3.0 < P grig < 4.0 GeV ranges. The 1D projection is derived
for An in near-side (JA¢| < 7/2) and A¢ (0.3 < |An| < 1.0) regions.

and hard processes in heavy-ion collisions at different pp ranges. Similarly, the multiplicity
dependence in low-pp pPb collisions could be explained by collectivity. Collectivity in small
collision systems is already suggested by the observation of long-range ridge correlations in
pPDb collisions [8, 69, 70]. The similarity of the balance functions in pPb and PbPb collisions
suggests a similar origin of particle correlations in these two colliding systems.

7 Beam energy dependence

In the upper panel of the figure 11, a comparison is presented of the balance function widths in
(|An|) and (|A¢|) as a function of centrality. The STAR and ALICE collaborations reported
their results at \/syny = 200 GeV in AuAu collisions and /syy = 2.76 TeV in PbPb collisions,
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Figure 9. The projection of the balance function is presented for PbPb in ,/syy = 5.02 TeV (upper
panels) and pPb in ,/syy = 8.16 TeV (lower panels) collisions as a function of A7 (left column) and
A¢ (right column), for 3.0 < Py ass0 < 8.0 < P tyig < 15.0 GeV ranges. The 1D projection is derived
for An in near-side (JA¢| < 7/2) and A¢ (0.3 < |An| < 1.0) regions.

respectively, with a transverse momentum interval of 0.2 < pp < 2.0GeV [31, 32]. The
balance function width calculated for STAR does not include any systematic uncertainties.
The data points from both the ALICE and STAR experiments are corrected for acceptance
and detector effects to make a proper comparisons with the CMS results. For all three
experiments, a significant centrality dependence is observed in (An) and (A¢). The balance
function width is found to be narrower at the LHC energies than at RHIC, which is consistent
with the idea that the system produced during the collisions has a larger radial flow due to
the increase of the center-of-mass energy [12, 71]. Additionally, the narrowing of the balance
functions suggests that a longer duration of the QGP at the LHC can reduce the separation
between charge pairs during their creation at hadronization. The lower panel of the figure 11
shows the relative decrease of the width in (An) and (A¢) from peripheral to central collisions.
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Figure 10. The width of the balance function in An (left column) and A¢ (right column) is
calculated for different pr interval in PbPb in \/syy = 5.02 TeV (upper panels) and pPb collisions in
VNN = 8.16 TeV (lower panels). The vertical lines indicate the statistical uncertainties of the data
points, and the rectangular boxes indicate the systematic uncertainties.

The relative change in the width in (An) is consistent in three different energies for
RHIC and LHC within the uncertainties. This finding could shed light on the claim that
the late-stage production of balancing partners was mainly responsible for narrowing the
width in An. On the other hand, a significant difference is seen with respect to the STAR
and ALICE results, when studying the relative width in A¢. This might be attributed to a
stronger effect from radial flow on A¢ at higher energies and the different kinematic selections.
Another factor to be considered at the LHC is a greater occurrence of more energetic jet-like
structures resulting in particles emitted preferentially in cones with smaller An and A¢ than
at RHIC. Therefore, further theoretical and experimental studies are necessary to reconcile
the late-stage creation of charges.
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Figure 11. The centrality dependence of the balance function width (upper panels) and relative
change in the width (lower panels) in An and A¢. The CMS results are compared to the STAR, results
at /syn = 200 GeV in AuAu collisions and ALICE at /syy = 2.76 TeV in PbPb collisions. The
STAR and ALICE measured their results in 0.2 < pp < 2.0 GeV ranges with a limited pseudorapidity
coverage (|n| < 1.0 for STAR and || < 0.8 for ALICE). The vertical lines indicate the statistical
uncertainties, and the rectangular boxes indicate the systematic uncertainties.

8 Summary

This paper presents a measurement of the charge-balance function for nonidentified charged
particles in proton-lead (pPb) and lead-lead (PbPb) collisions using the broad pseudorapidity
coverage of the CMS detector. For both systems, the dependence of the balance function
on relative pseudorapidity (An) and relative azimuthal angle A¢ of particle pairs is studied
for different multiplicity classes and transverse momentum (py) ranges. It is observed that
the width in both An and A¢ decreases with charged particle multiplicity (Ng,) in pPb and
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PbPb systems for pr < 2GeV. These results are consistent with the system possessing a
large radial flow, with particle creation at a later stage of the collision, or both. A mild
dependence of the integral of the charge balance functions with collision multiplicity is
observed in PbPb and pPb collisions. The multiplicity dependence is weaker for higher pr
as compared with the pp < 2GeV region, which implies that the balancing partners are
strongly correlated. The data are compared with HYDJET, HIJING, and AMPT generator
predictions, none of which capture completely the multiplicity dependence seen in the data.
The comparisons of PbPb results with those at lower energies from STAR and ALICE show
a similar dependence of the widths in An and A¢ as a function of centrality. However, a
significant difference is seen in the widths in A¢ as compared to both STAR and ALICE,
suggesting a potential interplay from radial flow, different kinematic selection, and jet-like
structures. By studying the charge-balance functions in both small and large systems, we
have explored the evolution of particle production mechanisms and the transition from a
small to a large system behavior. Further study of the balance function with identified
particles can provide valuable insights into the hadronization process of the quark-gluon
plasma (QGP) and a crucial benchmarks that constraints the theoretical models of hadron
production and its transport in heavy-ion collisions.
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