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A search for pair production of vector-like leptons coupling to first- and second-generation
Standard Model leptons is presented. The search is based on a dataset of proton—proton
collisions at v/s = 13 TeV recorded with the ATLAS detector during Run 2 of the Large Hadron
Collider, corresponding to an integrated luminosity of 140 fb~!. Events are categorised
depending on the flavour and multiplicity of leptons (electrons or muons), as well as on
the scores of a deep neural network targeting particular signal topologies according to the
decay modes of the vector-like leptons. In each of the signal regions, the scalar sum of the
transverse momentum of the leptons and the missing transverse momentum is analysed. The
main background processes are estimated using dedicated control regions in a simultaneous fit
with the signal regions to data. No significant excess above the Standard Model background
expectation is observed and limits are set at 95% confidence level on the production cross-
sections of vector-like electrons and muons as a function of the vector-like lepton mass,
separately for SU(2) doublet and singlet scenarios. The resulting mass lower limits are
1220 GeV (1270 GeV) and 320 GeV (400 GeV) for vector-like electrons (muons) in the
doublet and singlet scenarios, respectively.
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1 Introduction

The Standard Model (SM) of particle physics is the most successful and tested theory of the known
fundamental particles and their interactions. The last missing piece of the SM puzzle, the Higgs boson, was
discovered in 2012 by the ATLAS and CMS Collaborations [1, 2] at the Large Hadron Collider (LHC) [3].
Despite its many achievements, the SM remains an incomplete theory, as it does not provide answers for
open questions such as the structure of masses and mixings of elementary fermions (also known as the
‘flavour puzzle’), the hierarchy and fine-tuning problems, the observed baryon asymmetry in the universe,
and the nature of dark matter and dark energy. Many beyond-the-SM (BSM) theories, typically introducing
new particles and interactions, or a new space-time structure, have been proposed to address these and
other shortcomings of the SM.

Vector-like fermions are hypothetical particles whose left- and right-handed chiral components have the
same transformation properties under the weak-isospin SU(2) gauge group [4-8]. Consequently, they have
Dirac masses, without a Yukawa coupling proportional to their mass, becoming less constrained by Higgs
boson measurements [9]. Vector-like fermions arise in many BSM scenarios, such as Composite Higgs
models [10, 11], models with extra spatial dimensions [12, 13], supersymmetric models [14, 15], and grand
unified theories [16—18]. In particular, vector-like fermions can provide an explanation to the flavour puzzle
via their mixings with SM fermions [19, 20], or even provide a dark matter candidate [21-24]. Naturalness
arguments [25] require that quadratic divergences that arise from the radiative corrections to the Higgs
boson mass are cancelled out by some new mechanism to avoid fine-tuning, and vector-like quarks play
such role, e.g in Composite Higgs models. On the other hand, the observed tensions between the measured



and predicted values of the muon [26, 27] and electron [28-30] anomalous magnetic moments or the
so-called ‘Cabibbo angle anomaly’ [31-33] can be explained by BSM models including vector-like leptons
(VLL) [34-38]. VLLs mixing with first-, second-, or third-generation SM leptons (£ = e, u, 7) are referred
to as vector-like electrons, muons, or T-leptons, respectively.

At the LHC, VLLs are predominantly produced in pairs via the electroweak interaction, and consequently
have a considerably lower production cross-section than vector-like quarks, for which a broad search
programme has been developed [39, 40]. In contrast, only few LHC searches for VLLs exist, which
are summarised below. The production and decay modes for VLLs depend on the assumed SU(2)
representation [41, 42]. In the doublet scenario, two mass-degenerate VLLs at tree level, one electrically
charged (L*) and one electrically neutral (N9), form an SU(2) doublet (L, N°). They can be produced in
association via the exchange of a virtual W boson in the s-channel, pp — W* — L*N°,! or in pairs via
a virtual Z-boson or photon exchange, pp — Z*/y* — L*L™ and pp — Z* — N°N°. In the doublet
scenario, the charged VLL decay modes are L — ¢Z and {H, where H is the SM Higgs boson, with
branching ratios that depend on the VLL mass mj and asymptotically reach 50% each for my > mpg,
in accordance with the Goldstone boson equivalence theorem [43]; at lower masses, the branching ratio
to {H decreases as it becomes kinematically disfavoured. In contrast, the neutral VLL decay mode is
N° — ¢W with 100% branching ratio. In the singlet scenario, only the charged VLL is present and is
also produced in pairs, pp — Z*/y* — L*L™; its decay modes are L — vW, £{Z and {H, with branching
ratios asymptotically reaching 50%, 25%, and 25%, respectively.

Searches by the L3 Collaboration at the LEP Collider excluded vector-like electrons, muons and 7-leptons
with masses less than ~100 GeV at the 95% confidence level (CL) [44]; the limits are similar for both
the doublet and singlet scenarios. At the LHC, using a data sample of proton—proton (pp) collisions at a
centre-of-mass energy of v/s = 8 TeV corresponding to an integrated luminosity of 20.3 fb~!, the ATLAS
Collaboration excluded vector-like electrons (muons) in the mass range 129—-176 GeV (114-168 GeV),
except for the interval 144—-163 GeV (153—-160 GeV), in the singlet scenario [45]. Both the ATLAS and
CMS Collaborations searched for vector-like 7-leptons using the full LHC Run 2 dataset at /s = 13 TeV,
corresponding to about 140 fb~!. Assuming the doublet scenario, the ATLAS search excluded vector-like
7-leptons in the mass range of 130-900 GeV [46]. The CMS search considered both the doublet and
singlet scenarios, excluding vector-like 7-leptons in the mass ranges of 100—1045 GeV and 125-150 GeV,
respectively [47].

This paper presents a search for doublet or singlet VLLs coupling to first- and second-generation SM
leptons. Final states with two opposite-sign, three and four leptons are considered in the signal regions,
where the leptons can originate from the VLL decays or the sub-sequent decays of the Z, H, or W bosons.
Figure 1 illustrates the signal processes targeted in this analysis. The search is based on a dataset of pp
collisions at v/s = 13 TeV recorded with the ATLAS detector during Run 2 of the LHC, corresponding
to an integrated luminosity of 140 fb~!. A mass range between 150 GeV and 1600 GeV is considered
for vector-like electrons (VLL,) and vector-like muons (VLL,,). A categorisation based on a deep neural
network (DNN) is performed to enhance the purity of the various signal types and to discriminate signal
against the SM background. Control regions (CRs), orthogonal to the signal regions (SRs), are defined to
constrain the normalisation of the main backgrounds: ¢z, Z + jets, tfW, tfZ, VV and non-prompt lepton
backgrounds. A maximum-likelihood fit is performed across event categories to search for the signal and
constrain several leading background processes simultaneously.

! The charge-conjugate process, pp — W* — L™ NV, is also implied.
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Figure 1: Feynman diagrams illustrating the pair production and decay of vector-like leptons: (a-c) refer to the doublet
scenario, and (d) to the singlet scenario.

2 ATLAS detector

The ATLAS detector [48] at the LHC covers nearly the entire solid angle around the collision point.> It
consists of an inner tracking detector surrounded by a thin superconducting solenoid, electromagnetic
and hadronic calorimeters, and a muon spectrometer incorporating three large superconducting air-core
toroidal magnets.

The inner-detector system (ID) is immersed in a 2 T axial magnetic field and provides charged-particle
tracking in the range |n7| < 2.5. The high-granularity silicon pixel detector covers the vertex region and
typically provides four measurements per track, the first hit generally being in the insertable B-layer (IBL)
installed before Run 2 [49]. It is followed by the SemiConductor Tracker (SCT), which usually provides
eight measurements per track. These silicon detectors are complemented by the transition radiation tracker
(TRT), which enables radially extended track reconstruction up to || = 2.0. The TRT also provides
electron identification information based on the fraction of hits (typically 30 in total) above a higher
energy-deposit threshold corresponding to transition radiation.

The calorimeter system covers the pseudorapidity range || < 4.9. Within the region || < 3.2,
electromagnetic calorimetry is provided by barrel and endcap high-granularity lead/liquid-argon (LAr)
calorimeters, with an additional thin LAr presampler covering || < 1.8 to correct for energy loss in material
upstream of the calorimeters. Hadronic calorimetry is provided by the steel/scintillator-tile calorimeter,
segmented into three barrel structures within || < 1.7, and two copper/LAr hadronic endcap calorimeters.
The solid angle coverage is completed with forward copper/LAr and tungsten/LAr calorimeter modules
optimised for electromagnetic and hadronic energy measurements respectively.

2 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector
and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upwards.

Polar coordinates (r, ¢) are used in the transverse plane, ¢ being the azimuthal angle around the z-axis. The pseudorapidity is

defined in terms of the polar angle 6 as 7 = —Intan(#/2) and is equal to the rapidity y = % In (gi’:

) in the relativistic limit.
z

Angular distance is measured in units of AR = v/(Ay)2 + (A¢)2.



The muon spectrometer (MS) comprises separate trigger and high-precision tracking chambers measuring
the deflection of muons in a magnetic field generated by the superconducting air-core toroidal magnets.
The field integral of the toroids ranges between 2.0 and 6.0 T m across most of the detector. Three layers
of precision chambers, each consisting of layers of monitored drift tubes, cover the region || < 2.7,
complemented by cathode-strip chambers in the forward region, where the background is highest. The
muon trigger system covers the range || < 2.4 with resistive-plate chambers in the barrel, and thin-gap
chambers in the endcap regions.

The luminosity is measured mainly by the LUCID-2 [50] detector that records Cherenkov light produced
in the quartz windows of photomultipliers located close to the beampipe.

Events are selected by the first-level trigger system implemented in custom hardware, followed by selections
made by algorithms implemented in software in the high-level trigger [S1]. The first-level trigger accepts
events from the 40 MHz bunch crossings at a rate below 100 kHz, which the high-level trigger further
reduces in order to record complete events to disk at about 1 kHz.

A software suite [52] is used in data simulation, in the reconstruction and analysis of real and simulated
data, in detector operations, and in the trigger and data acquisition systems of the experiment.

3 Data and simulated event samples

This analysis uses data from pp collisions at v/s = 13 TeV collected by the ATLAS experiment from 2015
to 2018. After the application of data-quality requirements [53] to ensure that all parts of the detector are
operational during data-taking, the data sample corresponds to an integrated luminosity of 140 fb~!. The
number of additional p p interactions per bunch crossing (pile-up) in this sample ranges from about 8 to 70,
with an average of 34. The trigger requirements are discussed in Section 5.

Monte Carlo (MC) simulation samples are produced for the different signal and background processes.
Table 1 gives a detailed summary of all signal and SM background samples used in this analysis. All
samples showered with PyTHia use the A14 set of tuned parameters [54] (referred to as ‘tune’), whereas
those showered with HErwiG use the H7-UE tune [55]. In all samples simulated with SHERPA [56], the
matrix elements (MEs) are calculated with the Comix [57] and OpeNLoops [58—-60] libraries. They are
matched with the SHERPA parton shower (PS) [61] using the MEPS@NLO prescription [62—65] with
the set of tuned parameters developed by the SHERPA authors. Pile-up is modelled using events from
minimum-bias interactions generated with PyTHia 8.186 [66] with the A3 tune [67], and overlaid onto
the simulated hard-scatter events according to the luminosity profile of the recorded data. All samples
include leading-logarithm photon emission, either modelled by the PS generator or by Puotos [68]. The
mass of the top quark and SM Higgs boson are set to 172.5 GeV and 125 GeV, respectively. The generated
events are processed through either a full simulation of the ATLAS detector geometry and response using
GeanT4 [69], or a faster simulation where the full GEANT4 simulation of the calorimeter response is
replaced by a detailed parameterisation of the shower shapes (ATLAS Fast Simulation) [70]. Both types of
simulated events are processed through the same reconstruction software used for the pp collision data.
Corrections are applied to the simulated events so that the particle candidates’ selection efficiencies, energy
scales and energy resolutions match those determined from data control samples. The simulated samples
are normalised to their theoretical cross-sections, most of which are computed to the highest order available
in perturbation theory.



Signal samples for VLL, and VLL,, from SU(2) singlet (VLLS, VLLlsl) and doublet (VLLE , VLLB ) models
are simulated using MADGrRAPHS_AMC@NLO 2.9.5 [71] at next-to-leading-order (NLO) in QCD with the
NNPDF3.0nLo PDF set [72] and PyTHiA 8.245 [73], and processed through the ATLAS Fast Simulation.
The NLO cross-section obtained from MaDpGRrAPH is used for the normalisation of the signals.

The production of ¢f events is modelled using the PowHeG Box v2 [74-80] generator at NLO with the
NNPDF3.0nLo PDF set. The events are interfaced to PyTHia 8.230 to model the PS, hadronisation, and
underlying event, using the NNPDF2.3L0 set of PDFs. The decays of bottom and charm hadrons are
performed by EvTGeN 1.6.0 [81]. The ¢ process is modelled with the Agamp parameter 3 setto 1.5m, [82].
The tf sample is normalised to the cross-section prediction at next-to-next-to-leading-order (NNLO) in
QCD including the resummation of next-to-next-to-leading logarithmic (NNLL) soft-gluon terms calculated
using Top++ 2.0 [83—-89]. This cross-section is o (1f)NNLo+NNLL = 832 = 51 pb.

The Z/y* — €€ process (with £ = e, u, 7) is simulated with SHERPA 2.2.11 [56] using the NNPDF3.0nNNLO
PDF set [72]. For strong production of Z/y* + jets, where a QCD coupling facilitates the production of the
additional jets, processes with up to two coloured partons are modelled at NLO in the strong coupling,
while processes with up to five additional partons are modelled at leading-order (LO) accuracy. The Z+jets
sample is normalised to the theoretical cross-section calculated at NLO accuracy in QCD [90].

The samples used to model the ##W and the t7(Z/y* — {*{~) backgrounds are simulated using
SHERPA 2.2.10 [91] and Suerpa 2.2.11, where the MEs are calculated for up to one and zero addi-
tional partons at NLO in QCD, respectively, and up to two partons at LO in QCD. These samples are
simulated using the NNPDF3.0nnLo PDF set. The invariant mass of the lepton pair (mg+¢-) in the
ti(Z]y* — €*¢7) sample is set to be greater than 1 GeV. Both the factorisation and renormalisation scales
are set to y, = p1y = mr /2 in the W sample, where mr is defined as the scalar sum of the transverse

masses /m2 + p% of the particles generated from the ME calculation. In addition to this ##W prediction
at NLO in QCD, higher-order corrections related to electroweak (EW) contributions are also included.
First, event-by-event correction factors are applied that provide virtual NLO EW corrections of the order
a’a? derived using the formalism described in Ref. [92] along with LO corrections of order a. Second,
real emission contributions from the sub-leading EW corrections at order @3 [93] are simulated with
SHERPA 2.2.10 produced at LO in QCD and included as a separate sample.

Diboson (VV) background processes are simulated with SHErpa 2.2.2 [91] and include W*Z, ZZ, and
W*W~ processes. The ME is calculated with NLO accuracy in QCD for up to one additional parton and at
LO accuracy for up to three additional partons. The NNPDF3.0nnLo set of PDFs is used. The simulation
includes oft-shell effects and Higgs boson contributions, where appropriate. Samples for the loop-induced
processes gg — V'V are simulated using LO-accurate MEs for up to one additional parton emission.

Samples for t#H, and single top production are simulated using the NLO generator PowneG Box v2 and
interfaced with PyTHia 8 for the PS and fragmentation. These samples used the NNPDF3.0nL.o PDF set.
The decays of bottom and charm hadrons are performed by EvTGen 1.6.0. The production of a top quark
in association with a W boson (tW) is modelled using the five-flavour scheme. The diagram removal
scheme [94] is used to remove interference and overlap with ¢7 production. Single-top s- and z-channel
production is modelled using the five- and four-flavour schemes, respectively.

A dedicated ¢7 sample including rare t — Why*(— (*(~) radiative decays, tf — W*bW~bh{*(~, is
simulated using a ME calculated at LO in QCD and requiring m¢+,- > 1 GeV. In this sample the

3 The hgamp parameter is a resummation damping factor and one of the parameters that controls the matching of Pownea MEs to
the PS, thus effectively regulating the high-pr radiation against which the hard-process system recoils.



photon can be radiated from the top quark, the W boson, or the b-quark. Both the t7(Z/y* — ¢*¢~) and
tf — W*rbW~b(* ¢~ samples are combined and together form the ‘t7(Z/y*)’ sample. The contribution
from internal photon conversions (y* — £*{~, referred to as ‘IntC’) with m¢+,- < 1 GeV is modelled by
QED multi-photon radiation via the PS in an inclusive ¢7 sample. Dedicated Z+jets samples containing
electrons from material photon conversion (y — e*e™, referred to as ‘MatC’) or internal photon conversion
are generated with Pownec Box and interfaced with PyThia 8 for the PS and fragmentation. These samples
are used to model the data in control regions enriched in material and internal conversion electrons, as
explained in Section 5.

The remaining rare background contributions listed in Table 1 are normalised using their LO theoretical
cross-sections, except for the 717, tZ, single top, W +jets and V H processes, for which a NLO cross-section
is used.

4 Event reconstruction and object identification

Candidate events are required to have at least one pp interaction vertex. Interaction vertices are reconstructed
from at least two tracks with transverse momentum pt larger than 500 MeV that are consistent with
originating from the beam collision region in the x—y plane. If more than one primary vertex is found in
the event, the candidate with the highest scalar sum of the squared transverse momenta of the associated
tracks is selected as the hard-scatter primary vertex [97].

Electron candidates are reconstructed from energy clusters in the electromagnetic calorimeter matched
to a track in the ID [98]. They are required to satisfy pt > 10 GeV and |nciuster| < 2.47, excluding the
transition region between the endcap and barrel calorimeters (1.37 < |ciuster| < 1.52). ‘Loose’” and ‘Tight’
electron identification working points are used, based on a likelihood discriminant employing calorimeter,
tracking and combined information that provide separation between electrons and jets.

The reconstruction of muon candidates is based on tracking information from the MS and the ID, as well as
energy deposits in the calorimeter system [99]. Muons are required to satisfy pr > 10 GeV and |5| < 2.5.
‘Loose’ and ‘Medium’ muon identification working points are used.

Electron (muon) candidates are matched to the primary vertex by requiring that the significance of their
transverse impact parameter, dy,* satisfies |do|/o (dg) < 5 (3), where o (dy) is the measured uncertainty
in dy, and by requiring that their longitudinal impact parameter, zo,’ satisfies |zo sin 6] < 0.5 mm.

Lepton candidates are also required to be isolated in the tracker and in the calorimeter to further suppress
leptons from heavy-flavour (HF) hadron decays, misidentified jets, or photon conversions (collectively
referred to as ‘non-prompt leptons’). The track-based lepton isolation criterion is based on the quantity
Ir =, p‘Trk, where the scalar sum includes all tracks (excluding the lepton candidate itself) within a cone of
size AR < Ry around the direction of the lepton. The value of Ry is the smaller of r;, and 10 GeV/ p‘T),
where i, 18 set to 0.2 (0.3) for electron (muon) candidates and p% is the lepton’s pr. All lepton candidates
must satisfy Ig/ pf} < 0.15. They are also required to satisfy a calorimeter-based isolation criterion:

the sum of the transverse energy within a cone of size AR = 0.2 around the lepton, after subtracting

4 The transverse impact parameter, dy, is defined in the x—y plane as the distance of closest approach of the track to the beamline.
5 The longitudinal impact parameter, zo, is defined as the distance in z between the primary vertex and the point on the track used
to evaluate d.



Table 1: Simulated signal and background event samples, with the corresponding ME generator, ME order (which is
the order in the strong coupling constant of the perturbative calculation), PS generator, the generator PDF sets and the
underlying set of tuned parameters of the PS generator used. The samples used to estimate the systematic uncertainties
are indicated in parentheses and grey. V refers to production of an electroweak boson (W or Z/y*). The ‘ttW (EW)’
sample also includes next-to-leading-order electroweak corrections. MG5_aMC refers to MADGrRAPHS_aMC@NLO
2.2,2.3, or 2.6; PyTtHia 8 refers to version 8.2; MEPs @NLo is the method used in SHERPA to match the ME to the PS.

Process Generator ME order PS PDF Tune

VLL signal MG5_aMC NLO PyTHIA 8 NNPDF3.0nLO Al4

tr Pownec-BOX NLO PyTtHIA 8 NNPDF3.0nLO Al4
(Pownec-BOX) (NLO) (HErwi1G7.1.3) (NNPDF3.0nLO) (H7-UE-MMHT)

Z — SHERPA 2.2.11 MEPs@NLO SHERPA NNPDF3.0nLO SHERPA default

Z — ("~ (y - e*e”) Pownec-BOX NLO PyTHIA 8 CTEQG6LI~Lo [95] Al4

Z — " (y* —> e*e”) Pownec-BOX NLO PyTHiA 8 CTEQ6LINLO Al4

ttw SHERPA 2.2.10 MEPs@NrLo SHERPA NNPDF3.0nNLO SHERPA default
(MG5_aMC) (NLO) (PyTHIA 8) (NNPDF3.0nLO) (A14)

ttWw (EW) Suerra 2.2.10 LO SHERPA NNPDF3.0NNLO  SHERPA default
(MG5_aMCOC) (LO) (PyTHIA 8) (NNPDF3.0nLO) (A14)

tH(Z]y* — €) SHerPA 2.2.11 MEePs@NLo SHERPA NNPDF3.0nNLO  SHERPA default
(MG5_aMC) (NLO) (PyTHiA 8) (NNPDF3.0nLO) (A14)

vv,vvv SHERPA 2.2.2 MEPs@NrLo SHERPA NNPDF3.0nNLO SHERPA default

tftH Pownec-BOX NLO PyTtHIA 8 NNPDF3.0nLO Al4

(PownEG-BOX) (NLO)

(HErw1G7.0.4) (NNPDF3.0nLO)

(H7-UE-MMHT)

(MG5_aMCOC) (NLO) (PyTHIA 8) (NNPDF3.0NLO) (A14)
titt MG5_aMC NLO PyTHIA 8 NNPDF3.1nLo [96] Al14
(SHERPA 2.2.10) (MEPs @NL0O) (SHERPA) (NNPDF3.0nNLO)  (SHERPA default)
tt— WbW bl MG5_aMC LO PyTHi1A 8 NNPDF3.0Lo Al4
t(Z]y") MG5_aMC NLO PyTHIA 8 NNPDF2.3L0 Al4
tW(Z/vy*) MG5_aMC NLO PyTHIA 8 NNPDF2.3L0 Al4
Single top Powneg-Box NLO PyTHIA 8 NNPDF3.0nLO Al4
(t-, Wt-, s-channel)
W+jets SHERPA 2.2.1 MEPs@NLo SHERPA NNPDF3.0nLO SHERPA default
VH Pownec-BOX NLO PyTtHIA 8 NNPDF3.0nLO Al4
tit MG5_aMC LO PyTHIA 8 NNPDF2.3L0 Al4
ttW*r*Ww- MG5_aMC LO PyTHIA 8 NNPDF2.3L0 Al4
ttZ7 MG5_aMC LO PyTHiA 8 NNPDF2.3L0 Al4
ttHH MG5_aMC LO PyTHIA 8 NNPDF2.3L0 Al4
tiWwH MG5_aMC LO PyTHiA 8 NNPDF2.3L0 Al4

contributions from pile-up and the energy deposit of the lepton itself, is required to be less than 20% (30%)
of the electron’s (muon’s) p%.

These selection criteria largely suppress the contribution from non-prompt leptons. However, several
channels considered in this search have additional suppression requirements targeting the main types of non-
prompt leptons. Non-prompt leptons from hadron decays that contain bottom- or charm-quarks (referred to
as ‘HF non-prompt leptons’) are further rejected using a boosted decision tree (BDT) discriminant (referred
to as the non-prompt-lepton BDT [100]), based on isolation and lifetime information about a track-jet that
matches the selected electron or muon (referred to as a ‘light lepton’). Three working points (WPs) based
on the non-prompt-lepton BDT are used: Tight, VeryTight, and Tight—not-VeryTight. The Tight WP allows



Table 2: Description of the loose inclusive (L), loose with tighter identification (L), medium inclusive (M), medium
exclusive (M), and tight (T') lepton definitions. The electron e* is required to fulfil, in addition to the corresponding
lepton definition requirements, those corresponding to an internal or material conversion candidate.

Electron Muon
Lepton definition L [Lx[ M | M, | T L [Lx][ M | M, | T
Identification Loose Tight Loose Medium
|d()| / 0d, <5 <3
|z0 sin @] [mm] <0.5
Isolation Yes Yes
Non-prompt lepton WP - Tight | Tight-not- | VeryTight - Tight | Tight-not- | VeryTight
VeryTight VeryTight
Charge-misassignment veto - Yes -
Conversion candidate veto - Yes (except e*) -

prompt muons (barrel/endcap electrons) satisfying the calorimeter- and track-based isolation criteria to
be selected with an efficiency that is about 60% (60%/70%) for pt ~ 20 GeV and reaches a plateau of
95% (95%/90%) for pt ~ 40 (40/65) GeV. The prompt-lepton efficiency of the VeryTight WP for muons
(barrel/endcap electrons) that satisfy the calorimeter- and track-based isolation criteria is approximately
55% (55%/60%) for pt ~ 20 GeV and reaches a plateau of 90% (85%/83%) for pt ~ 40 (40/65) GeV.
The corresponding rejection factor® for muons (electrons) from the decay of h-hadrons ranges from 33 to
50 (20 to 50) for the Tight WP, and from 50 to 100 (33 to 66) for the VeryTight WP, depending on pt and
n, after resolving ambiguities between overlapping reconstructed objects. The Tight—not-VeryTight WP
allows the selection of non-prompt leptons and is part of the event selection for control regions enriched in
HF non-prompt-lepton background, as described in Section 6.

To suppress electrons with an incorrect charge assignment, a BDT discriminant based on calorimeter
and tracking quantities [98] is used. An efficiency of approximately 96% in the barrel region and 81%
in the endcaps is obtained, with rejection factors of 19 in the barrel region and 40 in the endcaps. The
electron candidates are separated into three classes: ‘material conversion’, ‘internal conversion’, and
‘non-conversion’. Most electrons arising from material conversions, i.e. from photon conversions in the
detector material, are rejected by the standard electron identification selection, but additional requirements
are imposed to remove residual material-conversion candidates. These candidates have a reconstructed
displaced vertex with radius » > 20 mm that includes the track associated with the electron.” The invariant
mass of the associated track and the closest (in A7) opposite-charge track reconstructed in the silicon
detector, calculated at the conversion vertex, is required to be lower than 100 MeV. Internal conversion
candidates, which correspond to the internal photon conversions (y* — ¢*¢7), must fail to satisfy the
requirements for material conversions, and the di-track invariant mass, calculated here at the primary
vertex, is also required to be lower than 100 MeV.

The various requirements applied to the different lepton categories used are summarised in Table 2. After
the initial categorisation based on ‘loose’ leptons (corresponding to L), the best lepton working point to
further optimise the event selection is chosen depending on the main background processes and available
number of data events in each category. The various choices for the signal and control regions are described
in Section 5.

6 The rejection factor is defined as the reciprocal of the efficiency.
7 The beampipe and insertable B-layer inner radii are 23.5 mm and 33 mm, respectively.



The constituents for jet reconstruction are identified by combining measurements from both the ID and
the calorimeter using a particle flow (PFlow) algorithm [101]. Jet candidates are reconstructed from
these PFlow objects using the anti-kt algorithm [102, 103] with a radius parameter of R = 0.4. They are
corrected to particle level by the application of jet energy scale (JES) and resolution (JER) calibrations,
derived from 13 TeV data and simulation [104]. Only jet candidates with pt > 25 GeV and within |g| < 2.5
are selected. To reduce the effect of pile-up, each jet with pt < 60 GeV and || < 2.4 is required to have
an origin compatible with the primary vertex, as defined by the jet vertex tagger JVT) [105] criteria. A
set of quality criteria is also applied to reject events containing at least one jet arising from non-collision
sources or detector noise [106].

Jets containing b-hadrons are identified (b-tagged) via an algorithm [107] that uses a deep-learning
neural network based on the distinctive features of b-hadron decays, primarily the impact parameters of
tracks and the displaced vertices reconstructed in the ID. Additional input to this network is provided
by discriminating variables constructed by a recurrent neutral network, which exploits the spatial and
kinematic correlations between tracks originating from the same b-hadron. A multivariate b-tagging
discriminant value is calculated for each jet. In this search, a jet is considered b-tagged if it passes the
working point corresponding to 85%, 77%, 70%, or 60% average expected efficiency to tag a b-quark
jet, with a light-jet® rejection factor of about 40 to 2500, and a charm-jet (c-jet) rejection factor of about
3 to 40, as determined for jets with pt > 20 GeV and |n| < 2.5 in simulated ¢7 events. The b-tagging
distribution obtained by ordering the resulting five exclusive bins from the four working points from higher
to lower b-jet efficiency is referred to as ‘pseudo-continuous’ b-tagging score, and it is used as input to the
multivariate analysis discriminant described in Section 5. The notation 8%, b77%_ p79% and 0% is used
to denote a b-tagged jet (b-jet) that satisfies the corresponding working point. Correction factors derived
from dedicated calibration samples enriched in b-jets, c-tagged jets, or light-tagged jets, are applied to the
simulated event samples [108—110].

To uniquely identify objects, a sequential ‘overlap removal’ procedure is performed. Electrons and muons
that satisfy the L criteria are considered in this procedure, as well as jets that satisfy the JVT requirement.

If two electrons are separated by AR < 0.1, only the one with the higher pt is kept. If an electron
and a muon overlap within AR < 0.1, the muon is removed if it is reconstructed only from an ID track
and calorimeter energy deposits consistent with a minimum-ionising particle (i.e. if it is ‘calo-tagged’),
otherwise the electron is removed. If an electron and a selected jet are found within AR < 0.2, the jet is
removed. For each electron in the event a pr-dependent variable-size cone of maximum size AR = 0.4 is
defined. If a selected jet, surviving all previous overlap criteria, is found in this cone, the lepton is rejected.
The same procedure is also applied between jets and muons, with the exception that, if a muon and a jet
overlap with AR < 0.2, the jet is removed, unless the number of tracks in the jet is more than two.

The missing transverse momentum ﬁ?iss (with magnitude EITniSS) is defined as the negative vector sum of
the pt of all selected and calibrated objects in the event that fulfilled the overlap removal procedure, and an
additional term to account for the momenta of soft particles that are not associated with any of the selected
objects [111]. This soft term is calculated from inner-detector tracks matched to the primary vertex, which
makes it more resilient to contamination from pile-up interactions.

8 ‘Light jet’ refers to a jet originating from the hadronisation of a light quark (u, d, s) or a gluon.
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5 Search strategy

Events are firstly required to satisfy a minimal preselection and then are categorised into orthogonal SRs
based on different criteria such as number of leptons and a multi-class DNN classifier. This categorisation
provides a set of regions that are sensitive to all the signal production and decay modes considered
in this search. Orthogonal CRs are defined to constrain the normalisation of the main backgrounds.
Dedicated kinematic selections are applied to the CRs to improve the purity of the targeted backgrounds. A
maximume-likelihood fit is performed across the electron (muon) SRs to test for a possible VLL, (VLL,,)
signal, together with the CRs to constrain in situ the leading backgrounds simultaneously.

Candidate events are selected by a combination of single-lepton and dilepton triggers, requiring the
electrons or muons to satisfy identification criteria similar to those used in the offline reconstruction
and isolation requirements [112, 113]. Single-electron triggers require a minimum pr threshold of 24
(26) GeV in the 2015 (2016, 2017 and 2018) data-taking period(s), while single-muon triggers have a
lowest pt threshold of 20 (26) GeV in 2015 (2016-2018). The dielectron triggers require two electrons
with minimum pr thresholds ranging from 12 GeV in 2015 to 24 GeV in 2017-2018, whereas the dimuon
triggers use asymmetric pt thresholds for leading (subleading) muons: 18 (8) GeV in 2015 and 22 (8) GeV
in 2016-2018. Finally, an electron+muon trigger requires events to have an electron candidate with a
17 GeV threshold and a muon candidate with a 14 GeV threshold for all periods.

In the offline selection at least two leptons in the event are required to be matched, within AR < 0.15, to
the corresponding leptons reconstructed by the trigger and to have a pt exceeding the trigger pr threshold
by at least 1 GeV.

Three orthogonal event categories are defined according to the number of L leptons in the event: opposite-
charge dilepton (2€0S), three-lepton (3¢), and four-lepton (4¢) categories. The four-lepton category is
inclusive and contains events with higher lepton multiplicity, while the other two are exclusive.

VLL signals from both doublet and singlet models can be classified into distinct topologies in the 2£0S
and 3¢ channels. Signals from the VLL doublet model are characterised mostly by low ErTniSS, while those
from the singlet model can have larger ET"** due to a neutrino from the VLL in the final state. To minimise
the migration of signal events in each decay mode across categories while maximising rejection against the
SM background, the analysis uses a multi-class DNN, trained separately in the 2£0S and 3¢ channels to
classify events into the background or one of the signal categories.

The training of the DNN is done using the Keras library [114] with TENsorFLow as a backend [115] and
Adam optimiser [116]. The networks consist of five input features, two dense fully connected layers of 22
(30) nodes with rectified linear units as activation functions, interleaved with a drop-out layer with 20%
rate, and six (four) output nodes with a soft-max activation function for the categorisation of 2¢0S (3¢)
events. The network is trained with a batch size of 2000 and up to 100 epochs, using all the available signal
mass points. To avoid discarding signal events in the evaluation, a two-fold cross-validation is used with
the events divided by even/odd event number.

The five input features are the number of jets, the sum of the pseudo-continuous b-tagging scores of all jets,
the number of hadronic W/Z bosons, the number of hadronic H bosons, and the event E%ﬁss, as shown in
Table 3. The hadronic H boson candidates are reconstructed by requiring one (for boosted scenarios) or
two b3% jets to have an invariant mass within 90—140 GeV, compatible with the Higgs boson mass. The
hadronic W/Z boson candidates are similarly identified by requiring one or two jets to have an invariant
mass within 60-110 GeV, compatible with the W or Z boson mass. These variables are independent of
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Table 3: Input variables to the DNN trainings in the 2£0S and 3¢ channels.

Variable

Number of jets (Njets)

Sum of pseudo-continuous b-tagging scores of jets
Number of hadronic W/Z bosons

Number of hadronic H bosons

Missing transverse energy (E’T“iss)

lepton flavour and independent of the mass of the VLL, ensuring the same training can be used for both
VLL, and VLL,, for all mass points. Good modelling of the input variables is observed in the ¢7 and
Z + jets correction regions as defined in Section 6.

The output categories correspond to the signal topologies, with an additional category in each channel
corresponding to the ‘SM-like’ events, defined to capture events that fall into none of the other signal
categories. Each event is categorised according to the highest class probability.

In the 2¢0S channel, three low—ErTniss and two high—E%1iSS signal topologies are defined, sensitive to both
VLL models:

e ((HH: low-E¥liSS topology targeting two hadronic Higgs boson candidates. Characterised by a high
number of b-tagged jets.

e ((HV: low—E%]rliSS topology targeting a hadronic Higgs boson candidate and a hadronic W/Z boson
candidate. Characterised by a high number of light- and heavy-flavour jets.

e {{VV: low—E¥1iSS topology targeting two hadronic W/Z boson candidates. Characterised by a high
number of light-flavour jets.

e {vHW: high—E‘Tniss topology targeting a hadronic Higgs boson candidate and a leptonic W boson
candidate. Characterised by heavy-flavour jets.

s (YWZ: high—E¥liss topology targeting a hadronic Z boson candidate and a leptonic W boson candidate.
Characterised by light-flavour jets.

Similarly in the 3¢ channel, two 10W—E¥1iss and one high—E%rliSS signal topologies are defined:

* {(HH + HW: low—E%liSS topology targeting a hadronic Higgs boson candidate and a leptonic W
boson candidate (prompt or from the other Higgs boson decay). Characterised by a high number of
b-tagged jets.

e {{HV +VV: low-E‘TniSS topology targeting a Higgs boson H — WW candidate, with one of the W
bosons decaying into a lepton and a neutrino, and a hadronic W/Z boson candidate. Characterised
by a high number of light-flavour jets.

e {vyHV: high—ErTniss topology targeting a Higgs boson H — WW candidate, with both W bosons
decaying into a lepton and a neutrino, and a hadronic W/Z boson candidate. Characterised by a low
number of jets.
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Table 4: Event selection summary in the signal regions. Leptons are ordered by decreasing p in the 2¢0OS and 4¢
regions. In the 3¢ regions the lepton with opposite-sign charge is taken first, followed by the two same-sign leptons in
decreasing pt order. In 2e2u (2u2e) events the sum of the pt of the two electrons (muons) is larger than the sum of
the pt of the two muons (electrons). The splitting of regions are based on DNN classifications in the 2¢0OS and 3¢
regions, where ‘H’ (‘V’) stands for the Higgs boson (W and Z bosons).

Signal regions ‘ 208 ‘ 3¢ ‘ 4¢
Lepton flavour e: (ee) e: (2elu+3e) e: (2e2u +3ely +4e)
e () w Qule +3u) w: (2u2e +3ule +4u)
Lepton definition (L, Lx) (L, M, M) (L, Lx, Lx, L*)
Minimum lepton pt [GeV] (20, 20) (10, 20, 20) (10, 10, 10, 10)
m5SF [GeV] > 15 -
[mS=SF —mz| [GeV] > 10 > 10 > 10 for at least 1 OSSF pair
Niets >2 >1 > 0 (10SSF)
> 1 (20SSF)
Other AR(¢,0) > 1 Total lepton charge = +1 Total lepton charge = 0
Region split (CCHH, ¢CHV, ¢LVV, (vHV, (vVV) X (e, ) | ((C(HH+HV, {(HV + VV, {(vHV) X (e, ) (10SSF, 20SSF) X (e, 1)
Region naming 20(e)¢CHH, 26(u) CCHH 3¢(e)¢CHH + HW, 3¢(u)CCHH + HW | 4£(e)10SSF, 40(1)10SSF
26(e)ttHV, 2¢(u)tHV 36(e)ttHV + VV, 3¢(u)¢HV + VV | 4£(e)20SSF, 4£(1)20SSF
26(e)ttVV, 26(u)tevv 3¢(e)tvHV, 36(u)tvHV
20(e)evHW, 2£(p) (vHW
20(e)tvWZ, 20(u)vWZ

The advantage of this classification is that the analysis is sensitive to not only the VLL doublet and singlet
models, but also to any similar non-VLL topology that fulfils one of the above descriptions. In the training
all background processes are included, normalised to their respective cross-sections and including the
corrections described in Section 6, as well as the VLL, or VLL, signal samples in the doublet and singlet
scenarios for all masses, sub-divided using truth information into the aforementioned signal templates.

The ‘SM-like’ categories in 2¢OS and 3¢ are expected to be low in signal yield but capture a significant
contribution of the SM background. These categories are not included in the final fit to the data, rejecting a
large fraction of the SM background contamination.

The 4¢ channel is subdivided into four signal categories based on the presence of one or two opposite-sign
same-flavour (OS-SF) lepton pairs, and the multiplicity of electrons or muons. Table 4 shows a summary
of the signal region categories.

Multiple CRs are defined to fit the normalisation of the leading backgrounds. These regions are orthogonal
to the signal regions and among each other based on different requirements on the lepton working points,
dilepton invariant mass, and jet and b-jet multiplicities. First, a region enriched in ¢W is defined by
selecting two same-sign leptons with the tight definition and at least two b%% jets. A region enriched
in W*Z and 7Z is defined by selecting events with three leptons (a same-sign pair of M leptons and an
opposite-sign L lepton), from which one OS-SF lepton pair is required to be compatible with a Z boson,
|m?+sl,isF —mz| < 10 GeV. A dedicated region dominated by ZZ is defined by requiring four L= leptons
where both OS-SF pairs fulfil |m?§f‘_SF —mz| < 10 GeV. Two CRs enriched in photon conversions from
Z — uuy*(— ee) are defined, according to the identification of the electron as a material conversion or
internal conversion candidate. Finally, four CRs enriched in HF non-prompt leptons are defined, requiring
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Table 5: Event selection summary in the CRs. The notation e¢* is used to denote material conversion or internal
conversion candidates, as described in Section 4. Leptons are ordered by decreasing pr in the 2£SS and 4¢ regions. In
the 3¢ regions the lepton with opposite-sign charge is taken first, followed by the two same-sign leptons in decreasing
pr order. In the HF non-prompt lepton region naming, 2£tt(e)’ (‘2£tt(w)’) is the CR enriched in non-prompt electrons
(muons) from semileptonic b-decays originating mostly from ¢7 and with the lepton flavours for the leading and
subleading leptons corresponding to ‘ee, ue’ (‘uu, ep’). The additional (T, M) and (T, L) subscripts refer to the
lepton definitions required for the leading and subleading leptons in each region.

Control regions ‘ ttw ‘ W=*Z and ti1Z ‘ zZZ ‘ Conversions ‘ HF non-prompt

Niets >2 >0 >2

N jets > 2 p00% _ 0 p60% 1 p60%

Lepton requirement 2£SS 3¢ 2e2u, 4e, 4u pue* 2(SS

Lepton definition (T,T) (L#,M,M) | (L=, Lx, L*, L) (Lx,M, M) (T, M), (T, Lx)

Minimum lepton pr [GeV] | (20,20) | (10,20,20) | (10,10, 10, 10) (10, 20, 20) (20, 20)

mSSF [GeV] > 15 -

[mS=SF — mz| [GeV] - <10 > 10 -

[mece —mz| [GeV] - <10 -

Region split - internal / material | subleading e/u X (T, Mex), (T, L%))

Region naming 20ttW 3¢VV+tZ 4677 3¢IntC 2£0t4(€) (7, Mey) » 20t8(€) (7, 14
3¢MatC 20tt(1) (7, M) » 2000(1) (7, L4

exactly one b%% jet to be orthogonal to the t7/W CR. Events with two same-sign leptons are categorised
according to the criteria (T, M) and (T, Lx) for the leading and subleading leptons in pr, and further
split according to the fake-lepton-candidate flavour, which is assumed to be the subleading lepton. These
two CRs allow to derive constraints on the background from HF non-prompt leptons for the 3¢ channel and
for the 2¢0S and 4¢ channels, respectively.

The full description of the kinematic selections applied to each CR is given in Table 5. As described in
Section 6, background corrections are derived in orthogonal regions and applied to the corresponding
simulated processes before the simultaneous fit to data.

Figure 2 illustrates the categorisation and definition of the SRs and CRs that are fitted simultaneously.
A total of 19 analysis regions are defined for each VLL search (electron or muon), with 10 SRs (5 for
2¢0S, 3 for 3¢, and 2 for 4¢) and 9 CRs. In each region, a given kinematic variable is fitted to improve
the sensitivity to the targeted signal process (in the case of the SRs) or to improve the modelling of a
particular background process (in the case of the CRs). The sum of the pt of the leptons plus the event
E‘T]fliSS (H? Py E%liss) is fitted in the signal regions and is connected to the VLL mass; the b-jet multiplicity
(Np—jets) is fitted in the diboson and ¢#7Z CR and provides discrimination between these two background
processes; the total event yield is fitted in the other CRs.

6 Background estimation

Section 6.1 describes the irreducible backgrounds, where prompt leptons are produced from W/Z boson
decays, leptonic 7-lepton decays, or internal conversions. Section 6.2 introduces the reducible backgrounds,
containing prompt leptons with misassigned charge or at least one non-prompt lepton in the event.
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Control Signal Correction
Regions Regions Regions

40272 CR
2SFOS; Njgts > 0
0Zor 1
32IntC/MatC CRs 38VV+nZ CR 32 SRs 3ewz
i 3 DNN classes
Niets 2> 0; Nojers = 0 Niets 2 17 N jers = 0 >10SSE: Ny > 1 Niets 2 17 Nojers = 0
MatC or IntC
2PHFe/p CRs 281W CR 2£0S SRs 281 202
158 pair 1SS pair 5 DNN classes 1 0SOF; Njets > 2 T OSSF; Njers = 2
NJEIS Z 2/' Nb—JEIS =1 NJEIS Z 2/' Nb—JEIS Z 2 1 OSSF/ NJEIS Z 2

Figure 2: Illustrative sketch of the definition of the SRs and CRs. The 2¢HF,;,, CRs include the 2£tt(e)(r a1, ).
26tt(e) (T, 1.4y, 2Ctt(u) (T M., )> and 2€tt(u) (7, 1.+ Tegions. The 2008, 3¢ and 4£ SRs include the various regions shown
in Table 4. The control regions correspond to those described in Table 5 and the correction regions are presented in
Table 6.

All background processes are estimated by using the simulation samples described in Section 3. Before the
simultaneous fit to data, the event kinematics of the simulated t7, Z + jets and VV backgrounds require
dedicated corrections derived from data control samples (described in Table 6) to better describe the
data. During the simultaneous fit to data discussed in Section 8, the yields of (W, tiZ, W*Z, ZZ and
non-prompt-lepton backgrounds, are adjusted via normalisation factors.

6.1 Irreducible backgrounds

Background contributions with prompt leptons originate from a wide range of physics processes with
the relative importance of individual processes varying by channel. The main irreducible backgrounds
originate from 7, Z + jets, tiW, t{(Z/y*), W*Z and ZZ production, and have final states and kinematic
properties similar to the VLL signal. Smaller contributions originate from the following rare processes:
ttH, titt, tZ, tW, tWZ, ttWW, VVV, and tit production.
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Table 6: Event selection summary in the regions used for deriving data-driven corrections and for cross-checks of the
tt, Z + jets and W*Z background processes. Leptons are ordered by decreasing pr in the 2£0S regions. In the 3¢
region the lepton with opposite-sign charge is taken first, followed by the two same-sign leptons in decreasing pr
order.

Correction regions tt Z +jets W*Z
Lepton flavour 260S eu | 2L0S ee, uu 3¢
Lepton definition (L, Lx*) (L=, L%) (L%, T,T)
Minimum lepton pt [GeV] (20, 20) (10, 20, 20)
me+¢- [GeV] > 15 (0S) | > 15 (OSSF) -
|mere- — mz| [GeV] > 10 (0OS) < 10 (OSSF)

Niets >2 >1
Np—jets _ 0 p77%

6.1.1 tf background

The t7 process is one of the main prompt backgrounds in the 2¢OS signal regions. Three distinct corrections
are applied: first a theory-based correction to correct the distributions of the pr and of the invariant mass of
the t7 system (m(#f)) at parton level, then data-driven corrections to improve the modelling of the number
of extra HF jets and the jet multiplicity in different corners of the E‘TniSS phase space.

Previous studies [117] have shown that the latest theoretical predictions at NNLO QCD and NLO EW
for the top quark pr are significantly softer than the spectrum from the nominal PowHEG+PyTH1A8 and
alternate Monte Carlo samples considered in this analysis, and significantly different in do-(¢f) /dm(tf).
An iterative, recursive reweighting procedure is used to correct the parton level distributions of pr(1),
pr(f), m(tf) and pr(tf) in each of the t7 MC samples. Figure 3 shows the sum of the pr of the jets (Hfrets)
distributions before and after the corrections are applied.

Even though significant improvement in the agreement of MC to data is observed after the reweighting in
many kinematic variables related to the top/anti-top pt, the agreement in jet multiplicity and multiplicity
of b-tagged jets remains suboptimal. Additional data-driven corrections are derived for these distributions
in the #f ey correction region (see Table 6) in an iterative procedure. First, corrections to the fractions
of tf + light flavour jets (¢ + LF), 17 + b-tagged jets (¢7 + b) and tf + c-tagged jets (¢f + ¢) are estimated
with dedicated normalisation factors, by fitting the sum of pseudo-continuous b-tagging scores to data.
The resulting values are 1.02 + 0.01 for 7 + LF, 1.30 = 0.04 for ¢t + b and 1.70 = 0.07 for tf + c.
Second, a bin-to-bin rescaling to data is performed for the jet multiplicity in four E‘TniSS bins: 0-100 GeV,
100-200 GeV, 200-300 GeV, and >300 GeV. The derived correction is less than 1% for 2 or 3 jets and up
to 10% for 6 jets in the regions with E‘TIliss < 300 GeV. For higher jet multiplicities and higher E‘Tniss, the
correction can be up to 48%. After correcting for the number of jets, a fit to the sum of pseudo-continuous
b-tagging scores is repeated to check that the best-fit values of ¢z + LF, ¢7 + b and ¢ + ¢ are not affected.

The distributions of the fitting variable, H? Py E%‘i“, in the different 2/0S DNN classes (see Table 4) in
the ¢7 correction region (see Table 6) are shown in Figure 4.
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Figure 3: Distributions of HJTe ® before the fit to data in the 77 correction region (a) before any corrections are applied
and (b) after the theory-based #7 corrections are implemented. The ratio of the data to the background prediction
(‘B.”) is shown in the lower panel. The ‘Others’ contribution is dominated by the W production. Only statistical
uncertainties are shown. The last bin in each distribution contains the overflow.

Four normalisation factors affecting the ¢f contributions in the corresponding 2£0S categories are free-
floated in the simultaneous fit to data using the CRs and the VLL, (VLL,,) SRs and measured to be for
the background-only hypothesis: A;7,,,p; = 0.98 + 0.07 (0.92 + 0.06), 4,7,y = 0.97 + 0.08 (0.91 + 0.06),
/itffvwﬂw = 1.01 + 0.07 (1.06 + 0.07) and A7, ,;, = 0.98 + 0.04 (1.00 + 0.04), where the uncertainty
includes both statistical and systematic contributions. The ¢f events satisfying the 3£ and 4¢£ selections
contain at least one non-prompt lepton. The normalisation of these events is treated separately and discussed
in Section 6.2.1.

6.1.2 Z + jets background

Two types of data-driven corrections are derived for Z + jets in the corresponding correction region from
Table 6: first, the jet multiplicity is corrected to data, followed by a correction to the angular separation
between the leptons coming from the Z boson (ARgy).

The number of jets distribution exhibits good MC agreement with data at low jet multiplicities but requires
a correction of up to 25% at high jet multiplicities. A data-driven correction is then derived per bin in the
jet multiplicity distribution.

Next, the ARy, distribution is examined in different bins of jet multiplicity. The ARy, < 1 region shows
poorly modelled MC background for all jet multiplicities, most likely originating from a suboptimal
modelling of the boosted Z/y*+jets process, and therefore events in this region are vetoed from the 2£0S
SRs. For the remaining bins, a bin-by-bin correction is derived as a function of jet multiplicity, with
corrections as large as 13%(25%) at low (high) ARe.

Two normalisation factors are assigned to the Z + jets contributions in the 2¢0OS categories with the
largest contamination from this background process (2£(e)fEVV, 2£(u)LEVV, 2£(e)lvWZ, 2L (u)lvWZ)
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Figure 4: Distributions of the fitting variable, H;f’ Py ErTniSS, before the fit to data in the different DNN classes within
the ¢z 2¢0S correction region ((a) (£HH, (b) (€HV, (¢) ££VV, (d) tvHV, (e) €vVV) after all tf corrections are
applied. The background contributions after the likelihood fit to data (‘post-fit’) for the background-only hypothesis
are shown as filled histograms. The ratio of the data to the background prediction (‘B.”) is shown in the lower panel,
separately for post-fit background (black points) and pre-fit background (dashed blue line). The ‘Others’ contribution
is dominated by the tW production. The blue hashed band shows both statistical and systematic uncertainties.

and measured to be for the background-only hypothesis using the CRs and the VLL, (VLL,) SRs:
Az +jetsppey = 0.90 £ 0.14 (0.81 + 0.11) and Az-jess, oy = 0.77 £ 0.19 (0.70 + 0.14), where the uncertainty
includes both statistical and systematic contributions.

6.1.3 ttW background

Despite the use of state-of-the-art simulations, accurate modelling of additional QCD and QED radiation
in tfW production remains challenging. Disagreement between the data and the pre-fit prediction from
the simulation is observed in the W CR. Therefore, an overall normalisation factor is assigned to the
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Figure 5: Comparison between data and the background prediction for the distribution of the b-jet multiplicity in the
30VV+ttZ CR after the VV jet multiplicity correction. The background contributions after the likelihood fit to data
(‘post-fit’) for the background-only hypothesis are shown as filled histograms. The ratio of the data to the background
prediction (‘B.”) is shown in the lower panel, separately for post-fit background (black points) and pre-fit background
(dashed blue line). The ‘Others’ contribution is dominated by the ¢Z production. The size of the combined statistical
and systematic uncertainty in the background prediction is indicated by the blue hatched band. The last bin contains
the overflow.

ttW background, and is determined during the likelihood fit. The measured normalisation factor for the
background-only hypothesis using the CRs and the VLL, (VLL,,) SRs is Aiiw = 1.33£0.22 (1.31 £0.22),
where the uncertainty includes both statistical and systematic contributions. This measured normalisation
factor is compatible with the one determined by the ##W production cross-section measurement [118].

6.1.4 VV and t£(Z/y*) backgrounds

A data-driven correction to the VV jet multiplicity spectrum is derived from the W*Z correction region
described in Table 6. This region is enriched in W*Z + LF jets; however the jet multiplicity mismodelling
is assumed to be independent from the flavour of the additional jets in the event.

The 3¢VV+ttZ and 4¢Z7 CRs are used in the likelihood fit to improve the prediction of the background
contribution from the W*Z + LF jets, W*Z + HF jets, ZZ, and t#(Z/y*) processes. The number of
b-jets provides good discrimination in the 3¢VV+ttZ CR between the W*Z and t7(Z /y*) processes and
is the variable used in this region in the fit. The event yields are fitted in the 4£ZZ CR. The measured
normalisation factors for the background-only hypothesis using the CRs and the VLL, (VLL,) SRs
are: Adyeyz,1p = 0.99 + 0.06 (0.97 + 0.06), Adw=z . gp = 0.96 = 0.29 (0.83 + 0.26), A7z = 1.03 + 0.03
(1.03 £0.03), and A7z = 1.25 + 0.17 (1.20 + 0.16), where the uncertainty includes both statistical and
systematic contributions.

Figure 5 shows the b-jet multiplicity distribution in the 3(VV+ttZ CR after the likelihood fit to data.
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6.1.5 Other irreducible backgrounds

The rate of the background from internal conversions with m(e*e™) < 1 GeV is estimated by using the
two dedicated CRs, 3¢IntC and 3¢/MatC, with a purity of 86% and 14%, respectively. The total yield
in each category is used in the likelihood fit to determine the normalisation factor, which is measured
for the background-only hypothesis using the CRs and the VLL, (VLL,) SRs to be ANMC = 1.04 +0.13
(1.04 + 0.14), where the main contribution to the uncertainty comes from the statistics.

6.2 Reducible backgrounds
6.2.1 Non-prompt leptons

Non-prompt leptons originate from material conversions, LF and HF hadron decays, or the improper
reconstruction of other particles, and their relative composition depends on the lepton quality requirements
and event categories. These backgrounds are generally small in all SRs and CRs and thus are estimated
from simulation, with the normalisation determined by the likelihood fit. The main contribution to the
non-prompt-lepton background is from ¢7 production, with much smaller contributions from V+jets and
single-top-quark processes. The non-prompt leptons in the simulated samples are labelled according to
whether they originate from HF or LF hadron decays, or from a material conversion candidate. The HF
category includes leptons from both bottom and charm decays.

Several of the event categories introduced in Section 5 are designed to be enriched in specific processes
and are used to derive normalisation factors to improve their modelling by the simulation. The 3¢MatC CR
is enriched in material conversions with a purity of 85% and only the total event yield is used.

Given the different lepton quality requirements used in the 2£0S and 4¢ SRs compared with the 3¢
SR, as well as in the CRs, four 2¢ CRs enriched in contributions from HF non-prompt leptons in ¢f
events are defined requiring a leading 7T lepton, with two of them using the M. lepton definition for the
subleading lepton and the other two using the looser lepton definition L*. Normalisation factors for five
non-prompt-lepton background contributions are estimated from the likelihood fit. The normalisation factor
for HF non-prompt leptons is estimated separately for electrons and muons, and for joint (M, M, T') lepton

el (7S ’ ¢ ’ 3 had had had had
definitions (denoted by ‘tight’) and for Lx* (denoted by ‘loose’), i.e. /le,tight, A pose? /l'u’tigm, and /lu,loose'

An additional normalisation factor is determined for the material conversions background, AM3C, The
measured normalisation factors for the background-only hypothesis using the CRs and the VLL, (VLL,,)
SRs are: A" =0.88 £0.27 (0.88 £0.28), A" = 0.90 +0.03 (0.90 + 0.04), A" =0.99 +0.11

e tight e,loose . tight

(1.00£0.11), A"d = 1.00+0.03 (0.99+0.03), iﬁdatc =1.16+0.08 (1.16+0.08), where the uncertainties

u,loose
include systematic effects but are dominated by the statistical uncertainty.

Backgrounds with leptons with the charge incorrectly assigned affect primarily the same-sign 2¢ W and
HF non-prompt lepton control regions and predominantly arise from ¢f production, where one electron
undergoes a hard bremsstrahlung and an asymmetric conversion (e* — e*y* — e*e*e™) or a mismeasured
track curvature. This background process has negligible contributions in this analysis and is estimated
from MC simulation. The muon charge misassignment rate is also negligible in the pt range relevant to
this analysis.
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7 Systematic uncertainties

Several sources of systematic uncertainty may affect the signal and background yields in each signal and
control region and are described in the following subsections. Given the low background yields and good
signal-to-background separation provided by the final discriminating variable used in the signal-enriched
event categories, the search sensitivity is limited by the number of data events rather than by the systematic
uncertainties in the background estimate.

7.1 Experimental uncertainties

Experimental systematic uncertainties related to the trigger efficiency, lepton reconstruction, identification
and isolation, jet calibration, b-tagging calibration, and Ef"* measurement are considered in the search.

The uncertainty in the measurement of the combined 2015-2018 integrated luminosity is 0.83% [119],
obtained using the LUCID-2 detector [50] for the primary measurements, complemented by the ones using
the inner detector and calorimeters.

Uncertainties associated with the lepton selection arise from the trigger, reconstruction, identification and
isolation efficiencies, and the lepton momentum scale and resolution [98, 99, 120, 121]. Uncertainties in
the calibration of the non-prompt lepton BDT are estimated through a Z — £¢ tag-and-probe method and
cover uncertainties related to the Z(— ¢£)+jets MC modelling, the template cut/shape, the m¢yp window,
the tag-and-probe lepton selections, the multijet background, the non-prompt lepton background, the
luminosity, the cross-sections of the considered processes, and the limited number of events in simulation
and data.

Uncertainties associated with the jet selection arise from the JES, the JVT requirement and the JER [104,
105]. The JES and its uncertainties are derived by combining information from test-beam data, collision
data and simulation [104]. The JES (JER) have 30 (13) components included in the fit. The uncertainties
in the JES, JER and JVT increase at lower jet pr.

The efficiency of the flavour-tagging algorithm is measured for each jet flavour using control samples in
data and in simulation. From these measurements, correction factors are derived to correct the tagging
rates in the simulation [108—110]. Experimental uncertainties in these correction factors are taken as
uncorrelated between b-jets, c-jets, and light-flavour jets. An additional uncertainty is assigned to account
for the extrapolation of the b-tagging efficiency measurement from the pt region used to determine the
correction factors to regions with higher transverse momentum.

The treatment of the uncertainties associated with reconstructed objects is common to all analysis channels
and applies to all signal and background samples and thus these are considered as fully correlated among
different analysis regions and samples.

7.2 Theoretical uncertainties
The modelling uncertainties in the main irreducible backgrounds are assessed through comparisons with

alternative MC samples, as listed in Table 1. Additional uncertainties are evaluated from renormalisation
and factorisation scale variations by a factor of 0.5 and 2, relative to the nominal scales, for the 7,
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Z +jets, ttW, ttZ, and diboson samples. An additional 20% uncertainty is assigned to the W electroweak
contribution [122].

For the ¢ process, four additional uncertainties are considered related to the reweighting method itself,
derived by comparing the nominal reweighted SM #7 sample to a sample obtained through the alternative
reweighting obtained by varying the renormalisation and the factorisation scales separately by a factor
of 0.5 and 2, applied on the (anti-)top quark pt or on the m(¢f) distribution independently. Related to
the reweighting of the 7 + LF, #f + b and 7 + ¢ contributions, uncertainties of 3% and 4% are assigned
to events originating from ¢7 + > 1b and #f + > lc, respectively. The statistical uncertainty related to
reweighting the jet multiplicity distribution is expected to be very small due to the large statistics of ¢
in the VR and is not considered. All alternative 17 MC samples are reweighted to the same higher-order
predictions as the nominal POWHEG v2 +PyTHiA 8.230 MC sample. In addition to the comparison to the
alternative MC sample shown in Table 1, the nominal predictions are also compared with those obtained
from an alternative sample generated as the nominal sample but setting the pl%ard parameter in PyTHiA
to 1 instead of O [123]. This parameter regulates the definition of the vetoed region of the showering to
avoid holes or overlaps in the phase space filled by PowHEG and PyTHIA. An uncertainty related to the
choice of the hgamp parameter is estimated by comparing the predictions of the nominal sample to those
obtained with an alternative sample with the /13amp parameter increased by a factor of 1.5 compared with
its nominal value. Variations in the initial state radiation (ISR) are estimated by varying the factorisation
and renormalisation scales independently up and down by a factor of two. Similarly, the uncertainty related
to final-state radiation (FSR) is assessed by varying the renormalisation scale for final-state parton-shower
emissions up and down by a factor of two. Finally, the uncertainty associated with the A14 tune is derived
by varying the A14 tune (Var3c), which affects the renormalisation scale variations in the ISR PS. No
theory reweighting is applied to this systematic.

For the Z + jets process, the uncertainty related to the upper cut-off of perturbative calculations for PS
evolution is known as the re-summation scale (QSF). This uncertainty is evaluated at truth level by varying
the nominal value of 2 GeV by a factor of 4 up and 1/4 down. Fiducial cuts are applied at truth level to
define a phase space close to that used at reconstruction level in the signal regions where Z + jets is a
dominant background. Additionally, the uncertainty related to the choice of the CKKW merging scale, i.e.
the scale for calculating the overlap between jets from the ME and the PS, is derived similarly; the nominal
value of 20 GeV is varied down to 15 GeV and up to 30 GeV and differences relative to the nominal
distribution are evaluated at truth level.

The statistical uncertainty in the fitted parameters for the V'V jet-multiplicity correction is propagated as an
uncertainty in the diboson background. Finally, additional normalisation uncertainties are included for all
processes whose normalisation is not obtained from the fit. In particular, for the ¢7t7, ttH, and ¢t Z processes,
cross-section uncertainties of 20% [93], 11% [124], and 5% [125] are assigned, respectively, while for
tit, tWZ, ttWW, and triboson backgrounds a 50% cross-section uncertainty is assigned as a conservative
estimate, since they are small backgrounds and have low impact on the search.

Uncertainties in the modelling of the signal samples are evaluated through independent variations of the
factorisation and renormalisation scales by a factor of two. Additional uncertainties due to PDF effects are
estimated through an ensemble of eigenvariations of the NNPDF set, and by taking the differences relative
to alternative PDF sets [126].
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7.3 Reducible background uncertainties

The normalisation of HF non-prompt leptons for processes where the non-prompt lepton is M or T is
obtained from regions including one sub-leading M¢x lepton. An uncertainty of 20% in the extrapolation
from M., to M and T leptons is applied from the comparison of the relative efficiency between nominal
and alternative 17 MC samples. Validation regions with looser lepton requirements and further enriched in
non-prompt leptons are defined. A good agreement between data and background prediction is observed in
all kinematic variables except for the number of b-jets. Based on this disagreement, an Ny, _jes-dependent
uncertainty is added to the HF non-prompt background, ranging from 6%—40% for 1-3 additional b-jets in
the non-prompt muon regions, and 10%-80% in the non-prompt electron regions.

The modelling of internal and material conversions is tested in dedicated validation regions with two tight
same-sign leptons, requiring one of them to be a conversion candidate. Additional uncertainties of 10%
and 50% are assigned to the material and internal conversion backgrounds, respectively, evaluated from the
data to background agreement in the validation regions.

A systematic uncertainty of 20% is assigned to the background from electrons with a misidentified charge.

8 Results

A maximume-likelihood fit is performed on all bins in the 19 signal and control regions considered in this
search to simultaneously determine the signal and background yields that are most consistent with the data.
The HITe Py E%ﬁss is used as the discriminating variable in the signal regions, while the Nj,_jeis and the total
event yield are fitted in control regions. Two separate fits are performed for the VLL, and VLL,, signal
hypotheses, and for each of the two fits the 10 SRs for electrons or the 10 SRs for muons introduced in
Table 4 are simultaneously fitted with the 9 CRs to data.

The likelihood function L(,u,j, 5) is constructed as a product of Poisson probability terms over all
bins considered in the search, and depends on: the signal-strength parameter, y, a multiplicative factor
applied to the predicted yield for the VLL signal; A, the normalisation factors for several backgrounds;
6, a set of nuisance parameters (NPs), encoding systematic uncertainties in the signal and background
expectations [127]. Systematic uncertainties can impact the estimated signal and background rates, the
migration of events between categories, and the shape of the fitted distributions. Both u and A are treated
as free parameters in the likelihood fit. The NPs g allow variations of the expectations for signal and
background according to the systematic uncertainties, subject to Gaussian or Poisson constraints in the
likelihood fit. Their fitted values represent the deviations from the nominal expectations that globally
provide the best fit to the data. Statistical uncertainties in each bin due to the limited size of the simulated
samples are taken into account by dedicated parameters using the Beeston—Barlow ‘lite’ technique [128].

The test statlstlc u is defined as the profile likelihood ratio: g, = —21n(£(,u,/lﬂ, 9“)/£(,u,/l#, G,u)),
Where A, /l 4> and 9 are the values of the parameters that maximise the likelihood function, and /l and

Hﬂ are the values of the parameters that maximise the likelihood function for a given value of u. The
test statistic g, is evaluated with the RooFit package [129]. A related statistic is used to determine the
probability that the observed data are incompatible with the background-only hypothesis (i.e. the discovery
test) by setting u = 0 in the profile likelihood ratio (gg). The p-value (referred to as pg) representing the
probability of the data being compatible with the background-only hypothesis is estimated by integrating

23



the distribution of gg from background-only pseudo-experiments, approximated using the asymptotic
formulae given in Ref. [130], above the observed value of gg. Some model dependence exists in the
estimation of the pg, as a given signal scenario must be assumed in the calculation of the denominator
of qo, even if the overall signal normalisation is allowed to float and is fitted to data. The observed py is
checked for each explored signal scenario. Upper limits on the signal production cross-section for each of
the signal scenarios considered are derived by using g, in the CLs method [131, 132]. For a given signal
scenario, values of the production cross-section (parameterised by u) yielding CLg < 0.05, where CLy is
computed using the asymptotic approximation [130], are excluded at > 95% CL.

A comparison of the predicted numbers of background events, obtained from the combined likelihood fit in
the background-only hypothesis, and the observed data is shown in Figures 6(a) and 6(b) for the 10 VLL,
and 10 VLL,, SRs, respectively, and in Figure 6(c) for the 9 CRs. The corresponding post-fit yields for the
VLL, and VLL,, SRs are reported in Tables 7 and 8.

Comparisons between data and the background prediction for the H;,e Py E%liss distributions used in the
different SRs are shown in Figures 7 and 8 for the VLL, and VLL,, searches, respectively. The binning used
for the H,lre Py E%niss distributions in the different SRs represents a compromise between preserving enough
discrimination in the fit between the background and the signal and keeping the MC statistical uncertainty
in the background prediction per bin below 30%. As shown in Section 6, the fitted normalisation factors
for each background are compatible between the VLL, and VLL,, searches.

No significant deviations from the SM expectations are observed in any of the SRs considered. The smallest
p-value for each of the signal benchmarks considered is 0.34 (0.40) for VLLS 800 GeV (VLLeD 1.3 TeV)
and 0.14 (0.18) for VLLi 150 GeV (VLLB 150 GeV), which corresponds to a local significance of 0.420
(0.2507) and 1.070 (0.910), respectively. Limits at 95% CL on the cross-section of a VLL, or a VLL,,
signal as a function of the mass of the VLL are set. Figures 9(a), 9(b), 9(c) and 9(d) show the limits on
the cross-section for the models: VLLS, VLLP, VLLf’l, and VLLB. The VLLS is observed (expected) to
be excluded at 95% CL for masses up to 320 (300) GeV while the VLLE is observed (expected) to be
excluded at 95% CL for masses up to 1220 (1230) GeV. The VLLfl is observed (expected) to be excluded
at 95% CL for masses up to 400 (330) GeV while the VLLB is observed (expected) to be excluded at 95%
CL for masses up to 1270 (1250) GeV. The search is dominated by statistical uncertainties: the expected
limits obtained when including only statistical uncertainties represent approximately 90% of the total limits
throughout the probed mass range. Within the systematic uncertainties, the leading ones for the search of a
VLLY or VLLB with a 600 GeV mass are the Z + jets QSF and signal PDF and scale variation uncertainties.
The 2£0S channel is the most sensitive signal region at high VLL masses, whereas the 3¢ (4¢) channel sets
stronger expected exclusion limits at lower VLL masses in the VLL doublet (singlet) scenario.
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Figure 6: Comparison between data and the background prediction for the event yields in the (a) 10 VLL, SRs, (b)
10 VLL,, SRs, and (c) 9 CRs, after a background-only fit to data (‘post-fit’) in the (a) VLL, SRs and CRs and (b, c)
VLL,, SRs and CRs. The background contributions in the CRs after the likelihood fit to data in the VLL, SRs and
CRs are comparable to those in (c). Distributions for the VLLE and VLLE signal points for a VLL mass of 600 GeV
are overlaid for comparison in (a) and (b), respectively. The lower panels show the ratio of data to the background
estimate (‘B.”), separately for post-fit background (black points) and pre-fit background (dashed blue line). The size
of the combined statistical and systematic uncertainty in the background prediction is indicated by the blue hatched
band.
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Table 7: Summary of observed and predicted yields in the ten VLL, signal region categories. The background
prediction is shown after the combined likelihood fit to data under the background-only hypothesis across all control
region and signal region categories. The expected signal yields for VLLS and VLLD for a VLL mass of 200 GeV and
600 GeV, respectively, that are obtained by using their theoretical cross-sections are also shown with their pre-fit
uncertainties, assuming pu=1. The uncertainties correspond to the combined statistical and systematic uncertainties
in the predicted yields. The ‘Others’ contribution is dominated by tW, VVV, and tWZ in the 2¢, 3¢, and 4¢ SRs,
respectively. Dashes refer to components that are negligible or not applicable.

Channel 2¢((e)¢CHH 2((e)ttHV 20(e)ttNV 2((e)(tvHW 2L(e)tvWZ
\'A% 53.5+84 98 +18 1124+ 72 148+ 11 2336 + 54
ti(Z]y*) 165+93 182+92 54 +£26 59+42 3021
ttH 106 + 15 56.5+8.4 124+2.1 149+1.9 5.49+0.85
1w 119+ 16 14017 39.6+6.3 57.5+59 29.8+4.3
tt 27630 + 680 25530+ 720 8970 +510 19460 + 340 13360 + 380
Z+jets 2160 + 640 3410+ 720 27070 + 560 101 +34 7260 + 360
HFe 156.6 £6.0 377+ 14 356+ 14 77.7+3.0 269+ 10
HFu - - - - -
Others 770 + 170 890+ 170 654 + 69 1110+320 1620 + 180
Total 31160+ 180 30670+ 190 38280210 21020 + 150 24900 + 160
Data 31162 30677 38279 21022 24890

VLLE 200 GeV 63.8+2.9 88.8+5.0 137.2+7.7 349+1.7 119.5+2.8
VLLD 600 Gev 67.2+3.2 132.1+6.9 244 +12 424+1.9 100.7+4.3
Channel 3l(e)(tHH+HW | 3((e)(tHV + VV 3¢(e)(vHV 4£(e)10SSF 4£(e)20SSF
\'AY% 10.7+1.1 106.8 £3.3 452+25 2.10+0.19 174.8 £6.9
ti(Z]y*) 26.8+3.2 74+15 1.28+0.19 5.47+£0.60 27.7+2.8
ttH 13.8+1.9 2.70+0.49 0.58 £0.10 1.75+0.24 2.95+0.42
tHw 329+3.1 4.99+0.71 3.10+0.37 - -

tf - - - - -
Z+jets - - - - -
HFe 54+1.7 2.87+0.90 1.18£0.37 3.89+0.29 3.11+0.13
HFu 2.33+0.27 2.25+0.26 0.73+0.10 1.33+0.10 2.64+0.10
Others 17.6£4.9 89+1.9 6.7+14 1.94+£0.35 10.3+£2.3
Total 109.2+5.3 135.4+4.2 58.5+3.1 16.4+1.1 221.2+7.3
Data 122 114 58 16 213

VLLE 200 GeV 3.35+0.27 10.51 £0.57 3.66+0.21 1.94+0.16 35.0+£1.0
VLLD 600 Gev 27814 477+2.4 31.7+1.6 6.35+0.34 23.7+£1.2




Table 8: Summary of observed and predicted yields in the ten VLL,, signal region categories. The background
prediction is shown after the combined likelihood fit to data under the background-only hypothesis across all control
region and signal region categories. The expected signal yields for VLL,Sl and VLLB for a VLL mass of 200 GeV
and 600 GeV, respectively, that are obtained by using their theoretical cross-sections are also shown with their pre-fit
uncertainties, assuming p=1. The uncertainties correspond to the combined statistical and systematic uncertainties
in the predicted yields. The ‘Others’ contribution is dominated by tW, VVV, and tWZ in the 2¢, 3¢, and 4¢ SRs,
respectively. Dashes refer to components that are negligible or not applicable.

Channel 2¢(u)¢CHH 20(u)CHV 20(u)tevVv 26(w)vHW 20(u)tvWZ
\'A% 69+ 10 124 +22 1580+ 110 23017 3940+ 120
H(Z]y") 250+ 160 250 + 140 75+43 7760 3929
ttH 159 +21 86+ 12 18.5+3.1 19.9+25 74+1.1
tw 178 £25 215+28 58+11 77.0+8.1 40.2+6.4
tf 43840+ 920 41000 + 1000 15740 + 740 32350 + 540 22530+510
Z+jets 4340+910 8000 + 1000 57000 + 800 282 + 88 18910 + 480
HFe - - - - -

HFu 377+ 11 765+23 725 +21 181.4+54 637+19
Others 970 + 230 1180 + 250 800+ 110 1390 + 460 2160 + 260
Total 50175 + 240 50970 + 260 75990 + 330 34610 + 190 48260 +230
Data 50178 50968 75976 34605 48276

VLLS 200 GeV 95.6+4.7 135.1£6.9 199+ 12 51.1+1.9 178.3+4.7
VLL% 600 GeV 83.9+3.8 167.9+8.1 305+ 14 66.5+2.9 150.8 £6.2
Channel 3¢(u)¢tHH + HW | 3¢(u)t¢HV + VV 3¢(u)tvHV 4¢(u)10SSF 4¢(u)20SSF
\A" 23.0+1.9 235.0+6.8 97.9+4.2 3.75+0.27 326+ 11
ti(Z]vy*) 45.2+4.6 12.5+2.2 1.88£0.27 9.5+1.0 40.7+4.0
ttH 21.4+2.8 4.18+0.89 0.77+0.11 2.90+0.44 3.73+0.49
tw 50.5+4.7 74+13 4.22+0.69 - -

tt - - - - -
Z+jets - - - - -

HFe 2.76 +0.88 0.94 +£0.30 0.39+0.13 2.87+0.20 4.39+0.17
HFu 126+1.4 6.61 £0.75 1.97+0.23 5.24+0.27 3.98+0.12
Others 29.2+3.3 19.9+3.2 12.3+2.3 4.35+0.51 17.4+£3.8
Total 183.0+6.0 283.9+7.2 117.5+5.0 28+1.6 395+ 11
Data 177 297 123 25 420

VLLS 200 GeV 6.34+0.44 18.72+0.78 5.85+0.28 2.96+0.17 55.8+1.2
VLL§ 600 GeV 51.2+2.3 81.4+3.4 58.0+2.6 8.88+£0.40 329+14
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Figure 7: Comparison between data and the background estimate for the H;? Py EITrliSS distribution used in different

VLL, signal region categories: (a) 2£(e)ffHH, (b) 2£(e)ltHV, (¢) 2£(e)£EVV, (d) 26(e)tvHW, (e) 2£(e)vWZ, (f)
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VLLY signal point normalised to the total background yields are overlaid for comparison. The lower panels show the
ratio of data to the background estimate (‘B.”), separately for post-fit background (black points) and pre-fit background
(dashed blue line). The size of the combined statistical and systematic uncertainty in the signal-plus-background
prediction is indicated by the blue hatched band.
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Figure 8: Comparison between data and the background estimate for the H;? Py EITrliSS distribution used in different
VLL,, signal region categories: (a) 2£(u)¢¢HH, (b) 2£(u)CHV, (c) 2€(p)CEVV, (d) 2£(u)EvHW, () 26 (u)tvWZ,
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signal-plus-background prediction is indicated by the blue hatched band.
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9 Conclusions

A search for a doublet or singlet vector-like lepton coupling to the Standard Model first- and second-
generation leptons is presented. The search is based on a data sample of proton—proton collisions recorded
at /s = 13 TeV by the ATLAS detector during Run 2 of the LHC, corresponding to an integrated luminosity
of 140 fb~!. The search is performed in the multilepton (two, three, and four light leptons) final state. A
deep-neural-network-based categorisation is performed to enhance the purity of the various signal types
and to discriminate signal against the SM background. The dominant backgrounds originate from ¢,
Z +jets, ttW, ttZ, and VV, and are estimated from Monte-Carlo simulation and normalised to data in a
simultaneous fit of the signal and control regions. The data are found to be consistent with the Standard
Model predictions and exclusion limits are set on the mass of the vector-like electrons and muons, excluding
masses below 1220 GeV (1270 GeV) and 320 GeV (400 GeV) for vector-like electrons (muons) in the
doublet and singlet scenarios at 95% confidence level, respectively. These are the most stringent limits on
vector-like electrons and muons to date, improving the previous mass exclusion limits set with the Run 1
data for the singlet scenario by 140 GeV (230 GeV) for vector-like electrons (muons) and setting limits on
the doublet scenario for the first time.
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