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Abstract: With Wilson quarks, on-shell O(a) improvement of the lattice QCD action is

achieved by including the Sheikholeslami-Wohlert term and two further operators of mass

dimension 5, which amount to a mass-dependent rescaling of the bare parameters. We here

focus on the rescaled bare coupling, g̃2
0 = g2

0(1 + bgamq), and the determination of bg(g2
0),

which is currently only known to 1-loop order of perturbation theory. We derive suitable

improvement conditions in the chiral limit and in a finite space-time volume and evaluate

these for different gluonic observables, both with and without the gradient flow. The choice

of β-values and the line of constant physics are motivated by the ALPHA collaboration’s

decoupling strategy to determine αs(mZ) [1]. However, the improvement conditions and

some insight into systematic effects may prove useful in other contexts, too.
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1 Introduction

On-shell O(a) improvement of lattice QCD with Wilson quarks near the chiral limit requires

a single new term in the action, the Sheikholeslami-Wohlert term with coefficient csw [2]. The

latter is a function of the bare coupling g2
0 and can be determined by imposing continuum

chiral symmetry at finite lattice spacing [3]. With Nf degenerate quarks of subtracted bare

mass mq = m0 − mcr, there are 2 further counterterms which can be implemented as a

rescaling of the bare parameters, i.e.

g̃2
0 = g2

0(1 + bg(g2
0)amq), m̃q = mq(1 + bm(g2

0)amq) . (1.1)

In practice, perturbative estimates of these b-coefficients are often sufficient, as amq is a

small parameter for the light quark flavours up, down and strange. For the most common
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gauge actions, i.e. Wilson’s plaquette or the tree-level O(a2) improved Lüscher-Weisz actions,

the one-loop result for bg reads [4],

bg(g2
0) = 0.01200 ×Nfg

2
0 + O(g4

0). (1.2)

For heavier quarks, amq is no longer small, and in the recent decoupling project of the

ALPHA collaboration, values of amq up to 0.3 − 0.4 are included in the analysis [1, 5].

In such situations a non-perturbative determination of the relevant b-coefficients becomes

very desirable as, otherwise, uncontrolled systematic errors may ensue. In particular, the

decoupling result for αs(mZ) [1] includes a sizeable systematic error due to an assumed 100

percent uncertainty on the truncated perturbative result for bg, eq. (1.2).

Various b-coefficients have been determined non-perturbatively over the past 25 years,

including bm and some of the coefficients required for the O(a) improvement of quark bilinear

composite operators (see [6–14] for an incomplete list of references). The coefficient bg is

a notable exception. While there exist some qualitative ideas in the literature as to how

bg could be determined by measurement (see e.g. [15]), no proof of concept regarding their

viability and practicality has been given. This is somewhat surprising given the central

rôle of bg for the consistency of O(a) improvement: it is required when the quark masses

are varied at fixed lattice spacing such as needed for chiral extrapolations or in studies of

decoupling [1, 5]. Furthermore, since constant lattice spacing amounts to keeping g̃2
0 constant,

the renormalization constants in mass-independent schemes depend on g̃2
0 rather than g2

0. In

fact, for composite operators this often leads to the determination of effective b-coefficients,

which include the bg-contribution from the renormalization constant by a Taylor expansion

to first order in amq [11], even if not mentioned explicitly [12].

In this paper we propose a class of improvement conditions to determine bg non-

perturbatively and then proceed to evaluate these for Nf = 3, non-perturbatively O(a)

improved lattice QCD [16] with the tree-level O(a2) improved Lüscher-Weisz gauge ac-

tion [17]. We perform consistency checks by looking at gradient flow observables as well as

Creutz ratios in a finite space time volume and for different lines of constant physics. We

also generated some data in the small coupling region in order to compare to perturbation

theory. Our parameter choices, in particular the range of lattice spacings, are motivated by

the decoupling project [1, 5] and do not overlap with the parameters of CLS [18, 19].

The paper is organized as follows. In section 2 we discuss improvement conditions for

bg. In particular we review the connection to the O(a) improvement term in the flavour

singlet scalar density, which clarifies and corrects the discussion in [20]. We then define

our set of observables (section 3) and present the chosen line of constant physics and the

corresponding simulation parameters (section 4). In section 5, we discuss some details of the

data analysis and various consistency checks before we present our results for bg (section 6)

and our conclusions (section 7). A few technical details have been delegated to appendices:

appendix A gives some details pertaining to the derivation of the key equations in section 2.

Appendix B contains some additional information on the simulations and corresponding

parameters, while the simulation results are tabulated in appendix C.
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2 Improvement conditions for bg

2.1 Chiral Ward identities and bg

While improvement coefficients such as csw or cA, multiplying the O(a) counterterms in the

action and to the axial current, respectively, can be determined by chiral Ward identities [3],

this is less obvious for the b-coefficients multiplying amq. One problem is that, away from

the chiral limit, the on-shell condition is potentially violated by unavoidable contact terms,

at least for chiral Ward identities beyond the simple PCAC relation. A systematic analysis

for the Nf = 3 lattice QCD action and all quark bilinear composite fields has been carried

out by Bhattacharya et al. in [20]. By studying the general case of mass non-degenerate

quarks, they show how violations of the on-shell condition can be by-passed and they list

all combinations of renormalization constants and improvement coefficients which are, at

least in principle, determined by chiral Ward identities. The coefficient bg is included in

this list, through its relation to the O(a) counterterm of the flavour singlet scalar density,

S0(x) = ψ(x)ψ(x). In the mass-degenerate limit, the corresponding renormalized and O(a)

improved operator takes the form [20, 21],

S0
R = ZS0 (1 + bS0amq)

(
S0 + cSa

−3 + dSa tr {FµνFµν}
)
. (2.1)

Using an argument based on Feynman-Hellmann type identities, Bhattacharya et al. derive

the identity1

bg = −2g2
0dS , (2.2)

and dS can, in prinicple, be determined by chiral Ward identities, together with cS and the

scale independent ratio ZP/ZS0 [21]. A difficulty is posed by the fact that the chiral limit is

only defined up to cutoff effects of O(a2), which render the subtraction of the cubic power

divergence ambiguous. More precisely, with cS ≡ cS(g2
0, amq), an expansion in powers of amq

yields a term ∝ amq/a
3 = mq/a

2. Given the intrinsic O(a2) ambiguity of mq, this results in

an ambiguity of O(1) in the subtraction term rendering the definition of the renormalized

scalar density impossible along these lines. It is therefore important to note that one may

combine Ward identities such that only connected correlation functions remain, in which all

power divergences cancel. A practical implementation using SF boundary conditions [22, 23]

can be obtained following the discussion in [21]. Whether these observations lead to a practical

method for a non-perturbative determination of bg remains to be seen. We emphasize that

this strategy relies entirely on the identity (2.2). We would therefore like to point out a

subtlety that was overlooked in [20]. Given that one relates an improved operator to the

improved action parameters, it is natural to expect that the O(a) counterterm in eq. (2.1)

cannot be discretized arbitrarily, but must be related to the derivative of the lattice action

density with respect to g2
0. For definiteness, the O(a) improved lattice action

S = Sg + a4
∑

x

ψ(x)

(
DW +m0 + csw

ia

4
σµνFµν(x)

)
ψ(x), (2.3)

1In the notation of [20], gS = −dS, due to their convention of hermitian, rather than anti-hermitian Fµν .

– 3 –



J
H
E
P
0
1
(
2
0
2
4
)
1
8
8

includes the lattice gauge action Sg = a4 ∑
x Lg(x) with Lg being the lattice version of the

(Euclidean) Yang-Mills Lagrangian density in the continuum,

LYM = − 1

2g2
0

tr {Fµν(x)Fµν(x)} . (2.4)

We find that, due to the g0-dependence of csw, a contribution from the fermionic part of the

action must be included, so that the correct lattice discretization of the counterterm is given by,

tr {FµνFµν} → −2g2
0

(
Lg − g2

0 × ia

4
c′

swψσµνFµνψ

)
, (2.5)

with c′
sw ≡ d

dg2
0

csw. For future reference we provide a detailed derivation in appendix A.

2.2 Restoration of chiral symmetry in a small volume

In this paper we pursue a different approach. It is based on the observation that, in the

absence of spontaneous chiral symmetry breaking, physical quark mass effects in gluonic

observables are quadratic or higher order in the quark mass. In contrast, the counterterm

proportional to bg is designed to cancel terms that are linear in the quark mass, allowing

us, in principle, to distinguish these effects. Let us first have a closer look at the physical

quark mass dependence. If we consider a finite space time manifold without boundaries, the

lattice QCD partition function with Ginsparg-Wilson type quarks [24–28] becomes a finite

dimensional, mathematically well-defined ordinary and Grassmann-integral, with exact chiral

and flavour symmetries. The absence of spontaneous symmetry breaking in a finite volume,

implies that the partition function is an analytic function of mq. For even Nf , a change of

the fermionic variables by a discrete chiral field transformation2

ψ → γ5ψ, ψ → −ψγ5 , (2.6)

then establishes that this function must be even, implying the absence of terms linear in mq

for any gluonic observable. With odd Nf > 2, this is no longer true; however, by adapting

the argument of appendix D in ref. [29] to the lattice regularization with Ginsparg-Wilson

quarks, the discrete chiral field transformation,

ψ → exp

(
i
π

Nf
γ5

)
ψ, ψ → ψ exp

(
i
π

Nf
γ5

)
, (2.7)

leads to a change of variables with unit Jacobian that leaves the massless action invariant.

Under the same transformation, a single insertion of the flavour singlet scalar density, S0,

into a gluonic correlation function is proportional to itself and must vanish, provided that

both the QCD action and the gluonic observable are parity even.3 Although this does not

exclude all odd powers in the quark mass, it means that contributions linear in the quark

mass are indeed absent.
2On the lattice with Ginsparg-Wilson quarks and Neuberger’s (γ5-hermitian) Dirac operator DN [26], the

first of the γ5 factors is replaced by γ̂5 ≡ γ5(1 − aDN ) [28]. Note that, for even Nf , the transformation is part

of the non-singlet chiral symmetry.
3We again use a continuum notation; on the lattice, besides using γ̂5 [28] for the transformation of ψ, the

scalar lattice density takes the form S0 = ψ(1 −
a
2
DN )ψ, such that it correctly transforms under the lattice

chiral symmetry (see e.g. section 2 in [30]).
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We will denote a generic renormalized gluonic observable by Og. Gradient flow observ-

ables [31, 32], such as the gauge action density at finite flow time [32], are natural candidates,

but the gradient flow is not a necessary requirement. We choose a finite Euclidean space

time volume L4 with boundary conditions that do not break all the chiral symmetries. A

hyper-torus geometry with some kind of periodic boundary conditions for all fields is an obvi-

ous possibility, however, other possible options include chirally rotated SF (χSF) boundary

conditions (with even Nf) [33, 34], or a mixture of SF [22, 23] and χSF boundary conditions

(with odd Nf) [35]. For simplicity we also assume that Og has no mass dimension, which can

always be achieved by multiplication with the appropriate power of L. In the continuum limit,

the observable thus becomes a function of two dimensionless variables, which we may choose

as z = ML and Λ
(3)

MS
L, with M and Λ

(3)

MS
≡ Λ being the Renormalization Group Invariant

(RGI) quark mass and Λ-parameter of the Nf = 3 theory, respectively. From the previous

discussion we then expect that the continuum limit of the lattice expectation value, 〈Og〉,
becomes a function of (z,ΛL), with an expansion in the RGI mass of the form

〈Og〉 = 〈Og〉z=0 +A(ΛL)z2 + O(z3) . (2.8)

When considering this observable on the lattice, the mass dependence will have a linear term

in z, unless bg is chosen correctly. Hence, a possible improvement condition for bg is given by

∂〈Og〉
∂z

∣∣∣∣
z=0,LΛ = const

= 0 . (2.9)

In order to derive an explicit equation for bg, we will proceed in two steps. First we keep the

lattice size L/a and spacing a fixed. Up to O(a2) effects this can be achieved by working

at fixed g̃2
0. The choice for a line of constant physics only matters later, when g̃2

0 and thus

the lattice spacing is changed. This will be discussed in section 4. Since z is proportional

to m̃q, we may change variables from (z,ΛL,L/a) to (am̃q, g̃
2
0, L/a) and the improvement

condition at a given lattice spacing then reads

∂〈Og〉
∂am̃q

∣∣∣∣∣
m̃q=0,g̃2

0

= 0 . (2.10)

We would now like to perform a final change of variables from improved to unimproved bare

parameters. In fact, it is technically convenient to do the reverse transformation and then

solve a 2 × 2 linear system. For the sake of readability we have relegated this discussion to

appendix A. The improvement condition then implies,

bg(g2
0) =

∂〈Og〉
∂amq

∣∣∣∣∣
g2

0 ,mq=0

×
[
g2

0

∂〈Og〉
∂g2

0

∣∣∣∣
mq=0

]−1

. (2.11)

This is the desired equation for bg in terms of the bare parameters, which are the ones

directly controlled in numerical simulations. Note that the condition is again formulated

in the chiral limit, mq = 0.

At this point we recall that, with Wilson quarks, the massless limit is not unambiguously

defined. What is required here is a definition up to an O(a2) ambiguity, which can be
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achieved by tuning the improvement coefficients csw in the action and cA in the improved

axial current used for the definition of the PCAC mass [3]. Note that any remnant O(a)

ambiguity of the chiral limit would make the quadratic physical mass effect vanish only up to

O(a) corrections, which, by virtue of the 1/a factor in the amq-derivative would contribute

at O(1), leading to a wrong result for the bg-estimate.

A number of choices must still be made. First, one needs to pick suitable gluonic

observables, Og. Second, one needs to find a practical way to implement the derivatives with

respect to the bare parameters and then one needs to follow a line of constant physics as

β = 6/g2
0 and thus the lattice spacing is changed.

3 Choice of observables

We choose a space-time volume with linear extent L in all directions and a hyper-torus topology.

We use periodic boundary conditions for the gauge fields, and antiperiodic boundary conditions

for the fermions in all 4 space-time directions. The absence of a boundary avoids potential

violations of chiral symmetry, while antiperiodic boundary conditions for the fermions allow

us to perform simulations around the chiral limit (cf. section 4.2 and appendix B). To finish

the description of our set-up it remains to specify our choices of gluonic observables, Og.

3.1 Gradient flow energy density

First, we consider the action density in terms of the gradient flow field tensor Gµν(t, x). In

a continuum language it is given by

σ(c) =
3∑

µ,ν=0

t2 〈tr {Gµν(t, x)Gµν(t, x)} δQ(t),0〉
〈δQ(t),0〉

∣∣∣∣∣
8t=c2L2

. (3.1)

In the numerical evaluation translation invariance w.r.t. x is of course used. The projection

to the sector of vanishing topological charge Q(t) is performed to avoid large autocorrelation

times as discussed in [36, 37]. While the motivation is algorithmic, it is part of the definition

of the observable. The gradient flow observable is finite: proven to all orders of perturbation

theory [38] and well established in numerical simulations. The remaining parameter c fixes

the ratio between the scale set by the flow time and the box length [39]. On the lattice we

discretize the gradient flow equations through the O(a2) improved Zeuthen flow definition,

while the action density of the flow fields is obtained from an O(a2) improved combination

of plaquette and clover discretizations (see [37, 40] for the details).

3.2 Creutz ratios

To check for O(a) ambiguities in bg we also use a second observable. It is very independent

from σ, namely it is defined without the gradient flow. We start from rectangular Wilson

loops W (R, T ) and form Creutz ratios [41]

χ(R, T ) = −∂̃R∂̃T log(W (R, T )) , (3.2)

where the lattice derivatives ∂̃yf(y) = [f(y+a) −f(y−a)]/(2a) are symmetric to avoid linear

terms in a. Note that, analogously to the energy density at positive flow time in eq. (3.1), also

– 6 –
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the Wilson loops W (R, T ) defining the Creutz ratios are projected to the topologically trivial

sector. These Creutz ratios are made dimensionless and restricted to the diagonal ones,

χ̂ =
[
R2 χ(R,R)

]

R=L/4
. (3.3)

We have fixed the ratio R/L to 1/4 since this is a practical number for lattices with

L/a = 12, 16, . . ., which we will use below. Also χ̂ is a finite pure gauge observable for

the following reasons. In continuous space-time, Wilson loops around smooth paths have

been shown to be finite up to an overall factor ZW (l) which depends (apart from coupling

and regularisation parameter) only on the length l of the path [42]. When the path contains

cusps, such as the rectangular Wilson loops, there is an additional renormalization factor

depending on the angles of the cusps. Both factors are removed by the derivatives in eq. (3.2).

In our implementation on the lattice, we apply one HYP2 smearing step with parameters

α1 = 1, α2 = 1 and α3 = 0.5 to the link variables which form the loop [43–47]. Since this

does not change the symmetry properties of the links, χ̂ remains finite and has the same

continuum limit as the observable with no smearing. Finally we need also the absence of

terms linear in a in the observable. Their absence for the static quark potential has been

explained in [48]. Analogously it holds for Creutz ratios defined with symmetric derivatives.

4 Line of constant physics (LCP) and simulations

4.1 LCP

The Symanzik expansion applies when the lattice spacing a is changed with all other scales

being fixed. Consequently also improvement conditions need to be enforced along a LCP.

Since vanishing quark masses are required for our improvement condition, it only remains to

fix L in physical units.4 To this end we choose g2
GF(L) = 3.949, where g2

GF(L) is the gradient

flow coupling defined in a finite volume with spatial extent L and SF boundary conditions

(cf. [1] for a precise definition). For resolutions L/a ∈ {12, 16, 20, 24} the required β-values are

found in table 13 of [1] with sufficient precision. They are in the range β ∈ [4.302, 4.7141]. For

larger L/a, it turned out that a precise computation of bg becomes prohibitively expensive.

We therefore deviate from the strict LCP and set L/a = 24 for β ≥ 4.9. At that point, the

lattice spacing in units of the Λ-parameter is very small and also the only additional scales

determining a-ambiguities,
√

8t as well as R, are large enough to make these ambiguities

sufficiently small. We show numerical tests in section 5. Furthermore, the extracted values for

bg approach the one-loop perturbative values smoothly. All-in-all it is sufficient to determine

bg for the parameters listed in table 1.

4The values, κc, of the hopping parameter where the quark mass vanishes are taken from a fit similar to

the one described in appendix A.1.4 of [37]. The data are the same, but instead of separate fits at each value

of L/a, we performed a global fit in which the lattice artifacts are parameterized by (a/L)3 times a power

series in g2
0 . We include the six lowest powers and such a fit describes the data well, is in good agreement

with the previous fit in the range of β and L/a values where we have data, and most importantly allows

for inter/extrapolations in L/a. We have checked that the uncertainties of κc are negligible in our analysis.

This statement refers to the statistical precision as well as to systematics coming from data interpolation and

extrapolation to large values of L/a at the larger β’s.
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L/a β κ = κc c1 c2 ĉ2

12 4.3020 0.135998 0.02391(26) 0.078(18) 0.000191(45)

16 4.4662 0.135607 0.02049(22) 0.108(15) 0.000141(20)

20 4.5997 0.135289 0.01899(79) 0.043(61) 0.000036(50)

24 4.7141 0.135024 0.01796(38) 0.261(33) 0.000144(18)

24 4.9000 0.134601 0.01331(56) 0.163(38) −
24 5.0671 0.134241 0.01166(48) 0.083(33) −
24 5.1719 0.134025 0.00932(43) 0.123(29) −
24 6.0000 0.132575 0.00428(30) 0.053(21) −
24 8.0000 0.130391 0.00134(12) 0.0214(85) −
24 16.000 0.127496 0.00009( 3) 0.0016(21) −

Table 1. Bare parameters for which bg has been computed as well as the fit coefficients c1, c2 for

σ(0.18) (cf. eq. (5.1)) and ĉ2 = (a/L)2Z−2
m c2, where Zm is the quark mass renormalization in the

SF-scheme at the renormalization scale µdec (see subsection 4.1 for the details).

4.2 Simulations

We simulate QCD with a Lüscher-Weisz gauge action [17] and three flavours of O(a) improved

Wilson quarks [2, 16]. To implement the strategy described above, simulations of QCD at zero

quark mass or even at slightly negative masses are necessary. A finite volume with suitably

chosen boundary conditions is indispensable to prevent negative or very small eigenvalues of

the Wilson Dirac operator. With Schrödinger Functional boundary conditions, massless simu-

lations of our action on our LCP were unproblematic [37]. Here, in order to avoid chiral sym-

metry breaking by the boundaries, we work on a hyper-torus. Choosing anti-periodic boundary

conditions for the fermionic fields in all four directions induces a sufficiently large spectral gap.

The simulation setup is similar to previous simulations with Nf = 3 degenerate quarks.

We use an even-odd preconditioned variant of the HMC algorithm [49] in which the three

quarks are separated into a doublet and a third quark. The quark determinant for the doublet

is factorized [50] into three factors det[D̂†D̂] = det[D̂†D̂ + µ2
2] × det[(D̂†D̂ + µ2

1)(D̂†D̂ +

µ2
2)−1] × det[(D̂†D̂)(D̂†D̂ + µ2

1)−1] and pseudo fermion fields are introduced for each factor.

Here D̂ denotes the even-odd preconditioned clover Wilson operator. For the third quark it

is required that all eigenvalues of D̂ have real parts that are larger than some ra > 0. The

operator in the determinant det[D̂] = det[
√
D̂†D̂] can then be approximated by a rational

function of D̂†D̂ [51, 52]. The inexactness of this approximation is accounted for by including

a stochastically determined reweighting factor in the observables. The molecular dynamics

equations derived from the various contributions to the action are solved using multi level

integration schemes with two levels [53]. The gauge action is integrated with the finest

resolution while forces from different pseudo-fermion actions are evaluated less frequently. We

use a modified version of openQCD-1.6 [54] for our simulations and refer to its documentation

for further details. Simulation parameters as well as tests concerning the spectral gap and

the ergodicity of the simulations are collected in appendix B.
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Figure 1. Quadratic fit of σ(0.18) vs. amq for L/a = 24, β = 4.7141 (left), and nine-point fit with

ng = 5 of σ(0.18) vs. g2
0 for L/a = 24 and 4.6 ≤ β ≤ 6.6 (cf. table 5) (right).

5 Data analysis

5.1 Estimates for the derivatives entering eq. (2.11)

In principle the derivatives can be obtained from insertions of ∂pS, where p denotes the

bare quark mass and the bare coupling. However, such measurements have large statistical

errors. Instead, for a given L/a, we simulate at neighboring values in g2
0 and mq, fit the

data as a function of mq at fixed g2
0 and vice versa, and then obtain the derivative as the

derivative of the fit functions. In detail we fit

〈Og〉|L/a,g2
0

=
nm−1∑

k=0

ck (amq)k , 〈Og〉|L/a,mq=0 =

ng∑

k=1

dk g
2k
0 , (5.1)

to the data in tables 5 and 6 and mostly take the results with nm = ng = 3 to three data points.

Let us discuss this choice as well as the exceptions from it. For the determination of the

quark mass derivative the fitted data are generically at amq ≈ 0,±0.025. We need to check

that this is small enough to obtain the first derivative ∂amq〈Og〉 ≈ c1, namely that we are

not affected by higher order terms in amq beyond nm = 3. Indeed, note that the variable

amq in eq. (5.1) is natural for the linear term in amq that we are seeking. However, already

the quadratic term in the mass exists in the continuum limit. It is then naturally written

in the form ĉ2(Lm)2 = c2(amq)2 with some renormalized quark mass m and a coefficient

ĉ2(a/L) which has a finite limit ĉ2(0). Therefore, as we increase L/a, the coefficient c2

increases in magnitude roughly at the rate (L/a)2 (up to logarithmic renormalization effects).

At β = 4.7141 we simulated five quark mass points with amq ≈ 0,±0.015,±0.025. The

corresponding data for σ(0.18) are shown in figure 1. One sees significant curvature, but also

that a purely quadratic fit works well. In table 1 we list both c2 and ĉ2 = (a/L)2Z−2
m c2 for the

strict LCP.5 Apart from the small statistics L/a = 20 results, the expected behavior is clearly

seen. It implies that the largest contamination of our data by higher order effects in amq

5We define the quark mass renormalization in the SF-scheme, Zm = ZSF
m = Z ZA/ZP, at the renormalization

scale µdec, exactly as in [1], and also use the numerical values for ZA, ZP found in that reference.
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L/a β g2
0∂σ/∂g

2
0 bg

ng = 5 ng = 3 ng = 5 ng = 3

24 4.7141 0.16474(46) 0.16531(58) 0.1090(23) 0.1086(24)

24 4.9000 0.13907(20) 0.1379(11) 0.0957(40) 0.0965(42)

24 5.0671 0.12132(23) 0.12195(63) 0.0961(40) 0.0957(40)

24 5.1719 0.11211(20) 0.11246(53) 0.0831(39) 0.0828(39)

24 6.0000 0.06835(16) 0.068680(86) 0.0627(43) 0.0624(43)

Table 2. Comparison of bg and corresponding g2
0 derivatives of σ(0.18) from 3-point ng = 3 and

9-point ng = 5 fits, for L/a = 24 and different values of β (cf. table 5).

is present for L/a = 24. Therefore we checked explicitly for β = 4.7141, L/a = 24, that we

obtain the same derivative by fitting the available five points with nm = 3 and also by taking

just the symmetric derivative, ∂̃amqf = [f(amq)−f(−amq)]/(2amq) with either amq = 0.015

or amq = 0.025. The resulting estimates for the derivative agree well within errors:

∂̃amqσ
∣∣
amq=0.025

= 0.01786(54) , ∂̃amqσ
∣∣
amq=0.015

= 0.01806(55) , (5.2)

∂amqσ
∣∣fit

5pts
= 0.01796(38) . (5.3)

Altogether we conclude that systematic errors due to this step are negligible and use the

five-point fit at β = 4.7141 and the three-point fit otherwise.

The g2
0 derivatives are obtained from the fits with ng = 3 to the data at the three closest

values of g2
0 of the data compiled in table 5. For the case of L/a = 24, we compared these

with the estimates from ng = 5, fitting all nine available values of g2
0 in the range specified

by 4.6 ≤ β ≤ 6.6 (cf. table 5). The comparison, listed in table 2 for σ(0.18), shows that the

estimates for the g2
0 derivative agree within uncertainties and the changes in the resulting bg

are negligible compared to the overall errors, which are dominated by the ones of the quark

mass derivative. The nine-point fit with ng = 5 is illustrated in figure 1.

The data for χ̂ are analyzed in the same way. Results for bg from both observables are

listed in table 3. As checks on the dependence on c, R/L, and L/a-values deviating from the

lines of constant physics, there are additional data not reported in the tables.

5.2 Relaxation of LCP condition for β ≥ 4.9

For our application to decoupling [1], we also need bare couplings below g2
0 = 6/4.7. Strictly

following the LCP then requires prohibitively large L/a, in particular as we seek the connection

to perturbation theory below g2
0 = 1. We therefore keep L/a = 24 fixed for all β ≥ 4.7. In

principle this means that there is an ambiguity of order a/L = 1/24 which does not vanish as

we increase β and therefore decrease a. We follow a skewed trajectory where L decreases.

The magnitude of the ambiguity can be tested by computing how bg varies as one

changes L. At fixed a, we therefore added computations with L/a = 16, 32. In figure 2,

we show bg from σ, for L/a = 16, 24, 32 and β = 4.9. Within a small margin, a universal

behavior, independent of L/a, is seen when bg is considered at fixed
√

8t/a. Therefore it is
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is the chiral Ward identity technique, applied to the O(a) improved flavour singlet scalar

density, eq. (2.1), cf. [21]. The connection to bg relies on the identity, eq. (2.2), which was first

derived by Bhattacharya et al. in [20]. In section 2, we have pointed out an oversight in this

original derivation. The identity can however be rescued, provided one uses the particular

discretization of the O(a) counterterm to the scalar density, eq. (2.5), which includes a

contribution from the Sheikholeslami-Wohlert term.
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A Derivation of eqs. (2.2) and (2.11)

In this appendix we first derive the relation eq. (2.2) using renormalized mass insertions into

the expectation value of a gradient flow observable. The gradient flow makes this derivation

transparent, as the on-shell condition for O(a) improvement is never violated. Equation (2.11),

which is key to our bg-determination, is then easily established as a corollary.

A.1 Derivation of eq. (2.2)

At finite lattice spacing a we consider some gluonic gradient flow observable, 〈Og(t)〉, which

is renormalized and O(a) improved once expressed in terms of the renormalized and O(a)

improved lattice QCD parameters [38]. Introducing the latter through

mR = Zm(g̃2
0, aµ)m̃q, g2

R = Zg(g̃2
0, aµ)g̃2

0, (A.1)

we can define the insertion of the renormalized and O(a) improved flavour singlet scalar

density, SR, by taking the mass-derivative of the gradient flow observable,

a4
∑

x

〈Og(t)S0
R(x)〉con ≡ a4

∑

x

{
〈Og(t)S0

R(x)〉 − 〈Og(t)〉〈S0
R(x)〉

}
= − ∂〈Og(t)〉

∂mR

∣∣∣∣
g2

R

. (A.2)

At fixed lattice spacing (i.e. fixed g̃2
0) we have,

a4
∑

x

〈Og(t)S0
R(x)〉con = −Z−1

m (g̃2
0, aµ)

∂〈Og(t)〉
∂m̃q

, (A.3)
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with the improved bare mass insertion given by,

−∂〈Og(t)〉
∂m̃q

=

〈
Og(t)

∂S

∂m̃q

〉

con

≡
〈
Og(t)

∂S

∂m̃q

〉
−

〈
Og(t)

〉 〈
∂S

∂m̃q

〉
. (A.4)

Note that the insertion of the scalar density into the gradient flow observable does not

give rise to contact terms, despite the Euclidean space-time summation in eq. (A.2). This

means that no O(a) counterterms are needed in eq. (A.2) beyond those of the scalar density,

eq. (2.1). Furthermore, the cubic divergence cancels in the connected correlation function,

so that we can ignore the counterterm ∝ cS.

We now use the chain rule to relate the derivative of the action with respect to O(a)

improved bare parameters (depending on bg and bm) to the derivatives with respect to the

bare parameters. One may think of this as a change of variables,

(g2
0, amq) → (g̃2

0, am̃q) , (A.5)

where the latter are functions of the unimproved bare parameters. As is customary in the

physics literature, we do not use different function names. Straightforward application of

the chain rule gives,

∂S

∂mq

∣∣∣∣∣
g2

0

=
∂S

∂m̃q

∣∣∣∣∣
g̃2

0

∂m̃q

∂mq

∣∣∣∣∣
g2

0

+
∂S

∂g̃2
0

∣∣∣∣
m̃q

∂g̃2
0

∂mq

∣∣∣∣∣
g2

0

, (A.6)

∂S

∂g2
0

∣∣∣∣
mq

=
∂S

∂m̃q

∣∣∣∣∣
g̃2

0

∂m̃q

∂g2
0

∣∣∣∣
mq

+
∂S

∂g̃2
0

∣∣∣∣
m̃q

∂g̃2
0

∂g2
0

∣∣∣∣∣
mq

. (A.7)

We thus obtain a 2 × 2 system of equations,


M11 M12

M21 M22





X1

X2


 =


A1

A2


 , (A.8)

in the unknowns X1 = ∂S/∂m̃q and X2 = ∂S/g̃2
0. Working out the derivatives with respect

to the unimproved bare parameters we further have,

M11 =
∂m̃q

∂mq

∣∣∣∣∣
g2

0

= 1 + 2bmamq , (A.9)

M21 =
∂m̃q

∂g2
0

∣∣∣∣
mq

= am2
qb

′
m , (A.10)

M12 =
∂g̃2

0

∂mq

∣∣∣∣∣
g2

0

= ag2
0bg , (A.11)

M22 =
∂g̃2

0

∂g2
0

∣∣∣∣∣
mq

= 1 + (bg + g2
0b

′
g)amq , (A.12)
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where we use the prime notation for derivatives w.r.t. g2
0, e.g. b′

g ≡ dbg/dg
2
0. The derivatives

of the lattice action are given by,

A1 =
∂S

∂mq

∣∣∣∣∣
g2

0

= a4
∑

x

ψ(x)ψ(x) , (A.13)

A2 =
∂S

∂g2
0

∣∣∣∣
mq

= a4
∑

x

ψ(x)
ia

4
c′

swσµνFµνψ(x) − Sg

g2
0

. (A.14)

Inverting the matrix M ,

M−1 =
1

detM


 M22 −M12

−M21 M11


 , (A.15)

solving for X1, and inserting the explicit expressions for the matrix elements, we obtain,

∂S

∂m̃q

∣∣∣∣∣
g̃2

0

=

(1 + (bg + g2
0b

′
g)amq)

∂S

∂mq

∣∣∣∣∣
g2

0

− ag2
0bg

∂S

∂g2
0

∣∣∣∣
mq(

1 + (bg + g2
0b

′
g)amq

)
(1 + 2bmamq) − a2m2

qg
2
0bgb′

m

. (A.16)

Expanding this expression to first order in amq and neglecting O(a2) terms we then get,

∂S

∂m̃q

∣∣∣∣∣
g̃2

0

= (1 − 2bmamq)


 ∂S

∂mq

∣∣∣∣∣
g2

0

− ag2
0bg

∂S

∂g2
0

∣∣∣∣
mq


 . (A.17)

Upon insertion into the connected correlation function, eq. (A.4), and comparing with

eqs. (2.1), (A.3) we thus see that we can identify,

dS = − bg

2g2
0

, bS0 = −2bm , ZS0 = Z−1
m , (A.18)

provided that the dS-counterterm is realized on the lattice in the particular form of eq. (2.5).

We conclude that it is this lattice discretized form of the O(a) counterterm that one must

use in order to exploit the identity bg = −2g2
0dS.

A.2 Derivation of eq. (2.11)

We now have a closer look at eq. (A.17) in the chiral limit, mq = 0. According to the

discussion in section 2, we impose the additional requirement that terms linear in the quark

mass are absent. We thus obtain, in terms of derivatives of expectation values,

∂〈Og(t)〉
∂mq

∣∣∣∣∣
g2

0 ,mq=0

− ag2
0bg

∂〈Og(t)〉
∂g2

0

∣∣∣∣
mq=0

= 0 . (A.19)

Solving for bg yields eq. (2.11) for gradient flow observables. In order to generalize this

result to any O(a) improved gluonic observable, Og, we recall that the gradient flow simply

removed the complication from contact terms in the insertion of the O(a) improved scalar

density, thereby allowing us to relate bg to dS. However, to derive eq. (2.11), we only need

to know that derivatives of O(a) improved expectation values with respect to the improved

bare parameters are again O(a) improved. Hence the very same steps as carried out above

establish eq. (2.11) for arbitrary O(a) improved gluonic observables.
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L/a = 24

 = 4.7141

L/a = 16

 = 4.4662

0 0.05 0.1 0.15 0.2 0.25 0.3

 min

Figure 5. The lowest eigenvalue of |γ5D̂| on several thermalized configurations at two different lattice

spacings. The upper part corresponds to the finer lattice spacing (L/a = 24, β = 4.7141), while the

lower one to the coarser one (L/a = 16, β = 4.4662). Both are at approximately zero quark mass. The

vertical red lines correspond to the lower interval boundaries of the rational approximations that were

used in the simulations.

B Simulations

In the following we use the notation and conventions of [54] and the openQCD documentation.

The simulation setup is very similar for all runs. The trajectory length is always 2 MDUs.

Fermionic forces are integrated with a 4th order Omelyan-Mryglod-Folk (OMF4) [58] integrator

with 8 integration steps per trajectory. The gauge force is evaluated five times more frequently,

as every interval between fermionic force evaluations is integrated with 1 OMF4 step.

The factorization of the determinant of the doublet into three determinants, as described

in section 4.2, has in all cases the masses aµ1 = 0.1 and aµ2 = 1.5. The degrees and ranges

of the rational approximations for the third quark’s determinant vary and can be found in

table 4. This table also shows the acceptance rates. For solving linear systems, either a

standard conjugate gradient solver, or a variant that solves systems with different mass shifts

simultaneously, is used and stopped when a relative residuum norm below 10−12 is reached.

More elaborate solvers are not necessary, because the small volume together with our

choice of boundary conditions results in quite well conditioned Dirac operators. We monitor

the largest and the smallest eigenvalues of |γ5D̂| in order to decide on the ranges for the

rational approximation, and in no case these were dangerously close to zero. Two examples

are shown in figure 5.

Data analysis is performed using ADerrors.jl [59, 60] for the gradient flow energy density

and pyerrors [61] for the Wilson loops, keeping track of the correct errors and auto-correlations

via the Γ-method [62, 63].

At last a remark on the ergodicity of the HMC algorithm. There are two potential

difficulties with our setup. First, it is known [63] that with decreasing lattice spacing the

correct sampling of topological sectors becomes increasingly difficult. This does not affect

our calculation because at the volume corresponding to our LCP the sectors with non-zero

charge are suppressed so strongly, that they play virtually no rôle. The second is a difficulty

related to the center symmetry. In pure gauge theory, in the large volume limit, the center

symmetry is spontaneously broken at high enough temperature. In our small volume the

symmetry is restored, but the trace of a Polyakov line exhibits a tri-modal distribution and

many algorithms, including the HMC, tend to get stuck in one of the sectors. Although there
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is no center symmetry to break in the case of full QCD, similar algorithmic issues have been

observed. We investigated the distribution of Polyakov lines and observed that at the volume

corresponding to our LCP the distribution is unimodal, and in the perturbative region (e.g.

L/a = 12, β = 16) there is enough movement between the “sectors” to ensure ergodicity.

C Tables of simulation results

In tables 5 and 6 we list the results of our simulations, which are used to obtain the derivatives

of σ(c = 0.18) and χ̂ with respect to the quark mass and bare coupling.
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L/a β κ degree ra rb acceptance

12 4.1199 0.136421625496234 8 0.1 6.0 98.8%

12 4.302 0.1350792062069652 8 0.1 6.0 98.9%

12 4.302 0.135997729474131 8 0.1 6.0 99.0%

12 4.302 0.1369288299729244 8 0.1 6.0 99.0%

12 4.4662 0.135602310355609 8 0.1 6.0 98.9%

16 4.302 0.136002904601631 9 0.1 6.0 98.2%

16 4.4662 0.1346938733548286 9 0.1 6.0 98.2%

16 4.4662 0.135607145941904 9 0.1 6.0 98.1%

16 4.4662 0.1365328877033368 9 0.1 6.0 98.0%

16 4.6 0.135286532423878 9 0.1 6.0 98.4%

20 4.4662 0.1356082 10 0.06 6.0 97.1%

20 4.5997 0.1343798945939137 10 0.06 6.0 96.7%

20 4.5997 0.1352889 10 0.06 6.0 98.0%

20 4.5997 0.1362102869948106 10 0.06 6.0 97.7%

20 4.7141 0.1350206 10 0.06 6.0 97.1%

24 4.6 0.135290 10 0.06 6.0 95.8%

24 4.7141 0.1341184114470437 10 0.06 6.0 95.9%

24 4.7141 0.1344791340035503 10 0.06 6.0 96.0%

24 4.7141 0.1350238708 10 0.06 6.0 95.7%

24 4.7141 0.1355730386938167 10 0.06 6.0 95.6%

24 4.7141 0.1359416391158157 10 0.06 6.0 95.5%

24 4.83 0.134758 10 0.06 6.0 96.5%

24 4.9 0.133700810592398 10 0.06 6.0 96.0%

24 4.9 0.134600621200435 10 0.06 6.0 95.9%

24 4.9 0.1355126253782558 10 0.06 6.0 95.9%

24 5.0671 0.1333461402387992 10 0.06 6.0 96.4%

24 5.0671 0.134241167314929 10 0.06 6.0 96.1%

24 5.0671 0.1351482905289904 10 0.06 6.0 96.1%

24 5.1719 0.1331332571760407 10 0.06 6.0 96.6%

24 5.1719 0.134025419206206 10 0.06 6.0 96.3%

24 5.1719 0.1349296191446659 10 0.06 6.0 95.9%

24 5.2767 0.133817232093422 10 0.06 6.0 96.1%

24 6.0 0.131701815057449 10 0.06 6.0 96.4%

24 6.0 0.132574832360087 10 0.06 6.0 95.8%

24 6.0 0.1334595009080744 10 0.06 6.0 95.7%

24 6.6 0.131762512060963 10 0.06 6.0 95.8%

24 7.3 0.131001797051939 10 0.06 6.0 94.6%

24 8.0 0.1295464517539626 10 0.06 6.0 94.7%

24 8.0 0.130391036560308 10 0.06 6.0 94.9%

24 8.0 0.1312467062640528 10 0.06 6.0 94.6%

24 8.8 0.129827754035436 10 0.06 6.0 94.0%

24 13.5849 0.127974784827748 10 0.06 6.0 89.0%

24 16.0 0.1266880690255924 10 0.06 6.0 83.6%

24 16.0 0.127495678088902 10 0.06 6.0 83.1%

24 16.0 0.1283136498788704 10 0.06 6.0 83.0%

24 19.4595 0.12702996843205 10 0.06 6.0 75.3%

Table 4. The degrees and ranges of the rational approximations used in the simulations. The last

column is the rounded average acceptance rate.

– 19 –



J
H
E
P
0
1
(
2
0
2
4
)
1
8
8

L/a β κ Nrep Nms σ(0.18) χ̂

12 4.1199 0.136422 6 23880 0.076801(11) 0.53993(20)

12 4.3020 0.135998 6 23760 0.0683942(93) 0.48549(17)

12 4.4662 0.135602 6 23880 0.0622623(79) 0.44520(14)

16 4.3020 0.136003 6 24120 0.069545(12) 0.53586(25)

16 4.4662 0.135607 6 42840 0.0628847(77) 0.48830(17)

16 4.6000 0.135287 6 24120 0.0583230(85) 0.45526(20)

20 4.4662 0.135608 6 2292 0.066489(43) 0.53472(95)

20 4.5997 0.135289 6 3360 0.061430(32) 0.49651(79)

20 4.7141 0.135021 6 2244 0.057588(39) 0.46590(80)

24 4.6000 0.135290 10 9600 0.065001(22) 0.53076(54)

24 4.7141 0.135024 10 13800 0.060736(18) 0.49761(42)

24 4.8300 0.134758 10 9600 0.056919(18) 0.46874(49)

24 4.9000 0.134601 10 8200 0.054882(20) 0.45275(52)

24 5.0671 0.134241 10 8200 0.050530(17) 0.41831(46)

24 5.1719 0.134025 10 8440 0.048125(15) 0.39982(39)

24 5.2767 0.133817 10 8800 0.045962(14) 0.38294(39)

24 6.0000 0.132575 10 6600 0.035124(11) 0.29651(29)

24 6.6000 0.131763 10 6600 0.0294367(84) 0.25085(25)

24 7.3000 0.131002 10 9600 0.0247770(52) 0.21282(17)

24 8.0000 0.130391 10 9600 0.0214180(44) 0.18482(13)

24 8.8000 0.129828 10 9600 0.0185570(35) 0.16133(11)

24 13.5849 0.127975 10 7800 0.0103696(21) 0.091990(61)

24 16.000 0.127496 10 16800 0.0084930(11) 0.075731(35)

24 19.4595 0.127030 10 7140 0.0067437(13) 0.060316(43)

Table 5. Results for σ(0.18) and χ̂ used to obtain their g2
0-derivative. All measurements are carried

out at vanishing quark mass and originate from Nrep independent simulations with a total of Nms

measurements.
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L/a β κ Nrep Nms σ(0.18) χ̂

12 4.3020 0.135079 6 23880 0.0690411(94) 0.49040(17)

12 4.3020 0.136929 6 23880 0.0678453(92) 0.48210(17)

16 4.4662 0.134694 6 42840 0.0634640(78) 0.49311(17)

16 4.4662 0.136533 6 42840 0.0624397(76) 0.48552(17)

20 4.5997 0.134380 6 4092 0.061932(29) 0.50028(69)

20 4.5997 0.136210 6 4008 0.060983(27) 0.49194(66)

24 4.7141 0.134118 10 13200 0.061326(19) 0.50417(45)

24 4.7141 0.134479 10 33000 0.061027(12) 0.50067(29)

24 4.7141 0.135573 10 33000 0.060485(12) 0.49659(29)

24 4.7141 0.135942 10 13200 0.060433(20) 0.49701(49)

24 4.9000 0.133701 10 8260 0.055317(21) 0.45685(53)

24 4.9000 0.135513 10 7760 0.054652(19) 0.45191(46)

24 5.0671 0.133346 10 8720 0.050873(17) 0.42154(45)

24 5.0671 0.135148 10 8600 0.050290(17) 0.41663(45)

24 5.1719 0.133133 10 8580 0.048435(16) 0.40215(40)

24 5.1719 0.134930 10 8620 0.047969(15) 0.39823(36)

24 6.0000 0.131702 10 6600 0.035265(11) 0.29760(30)

24 6.0000 0.133460 10 6600 0.035050(10) 0.29624(28)

24 8.0000 0.129546 10 9520 0.0214650(42) 0.18502(13)

24 8.0000 0.131247 10 9600 0.0213978(43) 0.18565(13)

24 16.000 0.126688 10 16800 0.0084963(11) 0.075731(35)

24 16.000 0.128314 10 16800 0.0084918(11) 0.075659(35)

Table 6. Simulation parameters for the mq-fits. Results for σ(0.18) and χ̂ used to obtain their mq-

derivative. All measurements are carried out at amq ≈ ±0.025; for β = 4.7141 also at amq ≈ ±0.015.

We carried out Nrep independent simulations for a total of Nms measurements. The measurements

with amq ≈ 0 are listed in table 5.
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