


which are also categorized as data-driven approaches [36],

are of high interest as they learn the prior knowledge

instead of requiring expert-handcrafting. Recently, re-

searchers showed that learning-based approaches can out-

perform classical iterative optical flow approaches [36].

Practically, modern machine learning approaches rely

heavily on the computing power of GPUs, which may rep-

resent a limitation based on the GPU memory size. To ap-

ply machine learning based optical flow methods to DVC

analysis, the exponential increase of memory requirement

brought by the increment of data dimensionality from 2D

images to 3D volumes is one of the major challenges, es-

pecially for high resolution volumetric data such as the to-

mography data by SRµCT imaging.

In this paper, we apply machine learning-based optical

flow methods to the DVC analysis of in situ SRµCT data

of loading of bone-implant specimen. We extend one of

the state-of-the-art optical flow networks, the Recurrent All-

Pairs Field Transforms (RAFT) [31], from 2D image pairs

to 3D volume pairs as a Volumetric RAFT (VolRAFT) ap-

proach, which estimates the 3D displacement vectors be-

tween the reference volume and the deformed volume. In

detail, our contribution entails:

• The proposal of a supervised machine learning ap-

proach for digital volume correlation, VolRAFT, that

estimates the 3D displacement fields between the ref-

erence volume and the deformed volume.

• An extension of the optical flow neural net-

work approach, Recurrent All-Pairs Field Transforms

(RAFT) [31], from 2D images to 3D volumes, which

includes the volumetric input and output tensors, net-

work layers and the 6D correlation matrix.

• The generation of synthetic displacement fields and

their application to the measured tomographic volume

by volume warping, and usage of the deformed volume

to serve as the training, validation and testing datasets.

• A comparison to cutting-edge iterative methods, for

bone-implant loading scenarios based on SRµCT im-

age data, which reveals that the proposed VolRAFT

approach can achieve a better performance.

2. Related work

Digital Volume Correlation (DVC) DVC is a com-

monly used method for materials analysis to study the de-

formation and strain for materials experiments. Hussein et

al. [18] formulated DVC as a maximum likelihood estima-

tion and solved it by the Gauss-Newton method, which is

a gradient-based iterative method. Bar-Kochba et al. [2]

proposed Fast Iterative Digital Volume Correlation Method

(FIDVC) to estimate the dense displacement field in lo-

cal windows. Dos Santos Rolo [11] expressed the DVC

analysis as a global 3D variational optical flow problem

and then solved it by the Brox’s variational optical flow

method [6]. Hermann and Werner [15] and Nogatz et

al. [23] also extended the Brox’s optical flow method to

compute the correlation vector of 3D CT images. Re-

cently, Bruns et al. [7] proposed and implemented an itera-

tive DVC method based on the optical flow method in [11]

for the study of implant materials that was similarly ap-

plied successfully to other materials [24–26, 32]. Other

common methods also included the commercial software

DaVis (LaVision GmbH, Göttingen, Germany), the service

BoneDVC (Insigneo Institute, Sheffield, UK), CCPi iDVC

app (Collaborative Computational Project in Tomographic

Imaging, UK [10, 22]) and TomoWarp2 [34]. For further

details, since the pioneering review by Bay in [3], Buljac et

al. [8] provided a review from the perspective of solid me-

chanics, while Dall’Ara and Tozzi[9] conducted a survey on

the application of DVC methods in biological tissues.

Using machine learning for DVC is a relatively new di-

rection in domain research fields, although it has shown

improvements in efficiency by reducing the computational

complexity [9]. Shen et al. [27] trained several common

deep CNN architectures, such as AlexNet and ResNet, in

supervised and transfer learning manners for DVC analy-

sis of in situ SRµCT experimental data of bone images.

Duan and Huang [13] proposed a deep learning based ap-

proach, DVC-Net, to train convolutional neural networks

(CNNs) directly predicting the displacement vectors from

the volumetric intensities for simulated data and volumetric

images captured by a laser scanning confocal microscope.

Wang et al. [35] proposed a deep learning based approach,

StrainNet-3D, for real-time DVC based on optical flow

CNN using simulated data. However, most of these CNNs

basically only enlarged commonly used network architec-

tures with hyperparameter fine-tuning. It could be more

beneficial to explore state-of-the-art networks designed for

optical flow with a proven improvement beyond CNNs.

Machine Learning based Optical Flow Machine learn-

ing based optical flow method is a well-studied problem

in computer vision and pattern recognition area, where re-

searchers provided comprehensive reviews in [14, 33, 36].

In this section, we focus on popular neural network ap-

proaches based on supervised training methods. Modern

optical flow networks started to emerge from FlowNet [12]

and its later extension FlowNet2 [19], which consisted of a

fully convolutional neural network (actually a U-Net) and a

combination of multiple U-Nets. On top of FlowNet, PWC-

Net [30] was proposed with respect to its feature Pyramid,

Warping and Cost volume, while the authors showed that

it was more efficient and faster than FlowNet2. After

PWC-Net, Teed and Deng proposed RAFT [31], which

was later considered as one of the most influential network

based approach [29], as RAFT demonstrated an outstand-

ing performance in terms of robustness and memory ef-
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ficiency. Most of the well-known optical flow in recent

years were generally developed based on RAFT, namely

BRAFT [20], CRAFT [29], FlowFormer [17] and Flow-

Former++ [28], etc. Even if researchers introduced trans-

formers to the RAFT architecture [17, 28], the original

RAFT approach based on convolutional layers is still con-

sidered one of the most renowned optical flow methods be-

cause of its simplicity and efficiency.

Recurrent All-Pairs Field Transforms (RAFT) As our

approach extends the approach of RAFT [31], we discuss it

in more detail. The RAFT approach simplifies optical flow

estimation into a three-step process: (1) a pair of feature en-

coders transform each pixel of the images into a pair of la-

tent feature space vectors. (2) a correlation layer computes

the similarity between all feature pairs, constructing a 4D

correlation volume. A pyramid of 4D correlation volumes

is constructed by applying average pooling to this 4D cor-

relation volume. This correlation pyramid further extracts

a sequence of feature maps in lower dimensions. (3) the

recurrent update operator predicts values from the pyramid

of correlation feature maps and iteratively refines the flow

field from an initial zero state.

According to the authors in [31], RAFT is inspired by

classic optimization techniques, but with a critical differ-

ence: both the feature extraction and the correlation estima-

tion are learned from the data, allowing RAFT to adapt to

complex and varied motion patterns more effectively than

traditional, handcrafted methods. Therefore, RAFT seems

ideal for the extension towards volumetric image data, as

we outline in the following.

To the best of our knowledge, the proposed approach is

the first work to apply cutting-edge machine-learning-based

optical flow approach for DVC analysis for bone-implant

specimen using high resolution SRµCT imaging data.

3. The proposed VolRAFT method

Given a pair of volumes reconstructed by CT reconstruc-

tion methods, we denote the reference volumetric intensity

as v0(x) and the deformed volumetric intensity as v1(x) at

each spatial position x. DVC is formulated as estimating a

dense displacement field f , such that the displacement field

maps each voxel in v0 to its corresponding coordinates in

v1, resulting in v1(x) = v0 (x+ f(x)).
Fig. 1 illustrates the proposed approach, which consists

of three major parts: feature extraction by encoders, a 6D

correlation matrix, and the 3D recurrent update operators.

Encoders To extract features from the input volume

pairs, two feature encoders and one context encoder are

built by convolutional layers (illustrated as blue blocks

in Fig. 1). Here, we denote the feature encoders for the

reference volume as gθ(v0) ∈ R
W×H×D×C and for the de-

formed volume gθ(v1) ∈ R
W×H×D×C , where W,H,D,C

are dimensions of width, height, depth and channels in the

feature space respectively, and θ denotes the network pa-

rameters. Note that the context and the feature encoders gθ
are almost identical in their architectures, only except that

the feature encoders utilize instance normalization while the

context encoder does not use any normalization layer.

6D correlation matrix To compute the visual similarity,

we construct a correlation matrix (yellow blocks in Fig. 1)

by the dot product operation between the extracted feature

vectors and the feature encoders. Given the feature vectors

gθ(v0) and the feature vector gθ(v1), we formulate the 6D

correlation matrix M as:

M (gθ(v0), gθ(v1)) ∈ R
W×H×D×W×H×D

where Mijklmn =
∑

h

gθ(v0)ijkh · gθ(v1)lmnh
(1)

We further construct a correlation pyramid ML by aver-

age pooling the last three dimensions of M by the stride

of 2L, where L denotes the level of pyramid. This multi-

scale pyramid ML ∈ R
W×H×D×W/2L×H/2L×D/2L allows

the network to estimate the large and small displacement

and to recover the large displacement of small-sized struc-

tures [31].

After the correlation matrix, correlation lookup operators

(orange blocks in Fig. 1) generate feature maps by index-

ing from the correlation pyramid. Similar to RAFT [31],

these correlation lookup operators use the local neighbor-

hood, which are grids around the projected position on the

deformed volume, to index the correlation volumes for each

pyramid level. These grids are interpolated by trilinear sam-

pling and are then concatenated to form a feature map.

3D recurrent update operators Similar to RAFT, the

3D recurrent update operators (grey blocks in Fig. 1) pre-

dict a sequence of displacement fields {f1, ..., fN} for each

iteration, starting from a hidden initialized state f0 = 0. At

the k-th iteration, this update operator estimates an update

of the displacement ∆f such that fk+1 = fk +∆f .
The correlation features from the lookup operator are

further extracted by two convolutional layers. Another two

convolutional layers are applied to extract the displacement

features from the current displacement field fk. In addition

to the direct extracted features from the context encoder,

these three features - correlation, displacement, and context

- are concatenated and served as the input feature map xt

for the recurrent update operator.

The recurrent update operator is based on a Gated Re-

current Unit (GRU), where its core component is a gated

activation unit with 3D convolutional layers:

zk = sigmoid (Conv3×3×3 ([hk−1, xk]; θ))

rk = sigmoid (Conv3×3×3 ([hk−1, xk]; θ))

qk = tanh (Conv3×3×3 ([rk · hk−1, xk] ; θ))

hk = (1− zk) · hk−1 + zk · qk

(2)
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where [·, ·] denotes the concatenating operation and hk is

the hidden state predicted by GRU at the k-th iteration.

The output feature hk from the GRU block passes

through two convolutional layers to predict the displace-

ment update at a lower dimension. Finally, we use trilin-

ear interpolation to upsample the predicted displacement

update ∆f to the desired dimension W ×H ×D.

Supervised loss with a foreground mask When consid-

ering DVC from (SR)µCT, generally the interested material

subjected to deformation is placed within a controlled en-

vironment and sample holder. These may be visible within

the reconstructed image data. Therefore, the DVC analysis

should be limited to the sample region itself, for example

by creating a foreground segmentation mask [7]. Hence,

regarding the loss function, we apply a binary volumet-

ric mask vm ∈ {0, 1}W×H×D, which separates the back-

ground and foreground voxels (e.g. in bone-implant sam-

ples, the foreground structures include both the screw and

the implant), respectively. We train the network using su-

pervised learning approach with the mini-batch b to mini-

mize the ℓ1-distance between the predicted and the ground

truth for all of the predicted displacements {f1, ..., fN}:

min
θ

∑

b

N
∑

k=1

γN−k · vm ·
∥

∥fb
gt − fb

k(θ)
∥

∥

1
(3)

where γ denotes the exponentially increasing weights and

fgt is the ground truth displacement.

Patch-based training and inference During the adapta-

tion of RAFT from 2D image pairs to 3D volumetric pairs,

we discovered that it is very difficult to have sufficient GPU

memory to store and train the full volumes, the ground-truth

displacement fields, and the network parameters in a single

GPU device. Theoretically, it is possible to split all ten-

sors into multiple GPU devices for computation. However,

in common practise of material science research, the size

of the high-resolution imaging data such as the volumes of

synchrotron radation tomography can easily scale up in the

third-order of size, e.g. the SRµCT volumes in this paper are

1280×1280×960 voxels. Therefore, we split the reference

volume v0, the deformed volume v1, the volume mask vm,

the ground truth fgt and the predicted displacement fields f
into patches with the size factor of 1/16 (i.e. the full vol-

ume with a size of 1280 × 1280 × 960 is split into patches

with a size of 80×80×60). Moreover, we use the half-size

overlapping stride (40× 40× 30) and only include patches

that contain foreground voxels in its volume mask. We train

VolRAFT based on these patch pairs.

As the network is trained using patch pairs, it predicts the

displacement field in the dimension of patch size (i.e. 80×
80 × 60 in our case). Hence, we utilize a 4-steps patched-

base method for the inference:

• Roll the sampling window by the stride size of 1/7
(e.g. 11× 11× 8 in our case) for each direction.

• Generate a 3D Gaussian distribution matrix in the di-

mension of the patch size as the weights of prediction.

• Multiply and accumulate the Gaussian weights to the

predicted displacement, and repeat step 1.

• Normalize the overall displacement field by dividing

the weighted sum of fields by the sum of weights.

We have also tried approaches such as median/averaging fil-

tering and Hamming windows blending, while empirically

this method obtains the best inference result.

4. Implementation and experiments

In this section, we provide more details about the im-

plementation, experimental setup, and evaluation methods.

VolRAFT is implemented on PyTorch (version 2.1.0) us-

ing NVIDIA Tesla V100 with 32GB GPU memory. The

source code and trained network are available on GitHub

https://github.com/hereon-mbs/VolRAFT.

Volume normalization In computer vision area, re-

searchers usually assume the data are normalized vectors

in a range of [0, 1] for 8-byte RGB images (e.g. as RAFT

approach assumed). However, in (32-bit) images recon-

structed from µCT imaging, this assumption is often in-

valid as the data contains physical information, e.g. the

range of SRµCT data related to the measured attenuation

of X-ray radiation. Therefore, at the beginning of Vol-

RAFT model, we normalize the reference volume v0 and

the deformed volume v1 before applying the encoders. We

find the minimum value vmin = min(v0 · vm, v1 · vm)
and the maximum value vmax = max(v0 · vm, v1 · vm)
across both volumes at foreground positions. By comput-

ing v̄{0,1} = (v{0,1} − vmin)/(vmax − vmin), the normalized

volumes v̄0, v̄1 are then passed to the network encoders.

Hyperparameters To demonstrate that our method is a

native extension from RAFT without further hyperparame-

ter optimization, we essentially reuse hyperparameters from

the RAFT approach [31] using the small model RAFT-S, in

which the authors showed a significantly lower number of

network parameters. In Tab. 1, we compare the main hyper-

parameters and the number of learnable parameters between

the RAFT-S model and VolRAFT. As the hyperparameters

of the original RAFT model were optimized for each 2D

optical flow dataset individually by the authors [31], the set-

tings reported in the RAFT paper can be biased for a par-

ticular use case. Therefore, to have a fair and generalized

setting, we take the default setting of hyperparameters from

the published source code of RAFT for our use case.

Measured volumes The image volumes used in this

study were obtained by SRµCT imaging at the P05 imag-

ing beamline operated by the Helmholtz-Zentrum Hereon

at PETRA III at Deutsches Elektronen-Synchrotron (DESY,

Hamburg, Germany). 1200 projections measuring 5120 ×
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Hyperparameter RAFT-S VolRAFT

Size of image/volume-patches 512× 384 80× 80× 60

Size of flow/displacement-patches 2× 512× 384 3× 80× 80× 60

Optimizer AdamW [21] AdamW [21]
Learning rate 2e-5 2e-5
Number of epochs 100000 10000
Maximum range of displacement 400 24
(Mini-)Batch size b Eq. (3) 6 18
Recurrent iterations N Eq. (3) 12 12
Weights of loss γ Eq. (3) 0.8 0.8
Levels of correlation matrix L 4 4
Gradient-norm clipped [−1, 1] [−1, 1]

Number of learnable parameters 1M 2.95M

Table 1. Hyperparameters and the number of learnable parameters

between the RAFT-S model and VolRAFT. The default hyperpa-

rameters from the source code of RAFT are taken as reference.

Changes are highlighted.

3840 pixels were acquired using fly scans with an exposure

time of 34 ms per projection. The projection images were

processed through the typical CT reconstruction pipeline,

i.e. flat-field and dark-field correction, binning, ring re-

moval, and tomographic reconstruction, resulting in vol-

umes of 1280× 1280× 960 at 5.1µm voxel resolution. 3D

registration was performed to maximize the correlation be-

tween the corresponding reference and deformed volumes,

and the 3D foreground layers were segmented to define the

region of interest on the reference volume.

The measured volumes consisted of rat bone samples

containing a screw made of one of four different types

of implant materials: magnesium-10wt.%gadolinium (Mg-

10Gd), magnesium-5wt.%gadolinium (Mg-5Gd), titanium

(Ti) and polyetheretherketone (PEEK). Each implant mate-

rial was tested after 4, 8, and 12 weeks of healing. During

push-out tests, samples were subjected to forces from 5N

up to 240N. For more details on the measurement setup and

image processing, the readers can refer to [7]. In total, we

utilize 39 measured volumes which are used as reference

volumes for the generation of synthetic datasets.

Synthetic displacement fields In this paper, we gener-

ate 5 different classes of synthetic displacement fields for

training and testing (see Fig. 2):

• Star: star field was proposed [4] to access the mea-

surement errors of digital image correlation [4, 5] and

DVC [13]. The displacement field is based on syn-

thetic fields undergoing sinusoidal displacements with

various amplitudes and spatial frequencies [4].

• Curve: To model single direction deformation, a

curved displacement field is generated by 1D curves

with an exponential non-linearity term (i.e. f(x) =
mxα + c,where 1 ≤ α ≤ 2) for all three directions.

• Random: To address the local inhomogeneity of dis-

placement field, a random field with Gaussian distri-

bution is generated.

• Sphere: To simulate various flow dynamics scenarios

such as divergence and curl, the sphere displacement

20 10 0 10 20 6 4 2 0 1.4 1.6 1.8 20 10 0 10 10 0 10 20

Star Curve Random Sphere Overall

Figure 2. Synthetic displacement fields are generated according to

5 classes: Star, Curve, Random, Sphere and Overall. Slices of dis-

placement field fw are shown as examples here. As the synthetic

displacement fields are augmented by the randomly permuted or-

der of axes, these slices of field can appear in any one of the di-

mensions (fw, fh, fd) during the generation of synthetic dataset.

field generates a 3D vector field within a spherical do-

main based on radial and tangential components.

• Overall: this is a mixture of displacement field over all

(Star, Curve, Random and Sphere) displacement fields.

Data augmentation We select 23 different field settings

(5 for each single-type class and 3 for the overall field),

with each setting being randomly augmented across 39 vol-

umes. These settings, as shown in Fig. 2, undergo random

augmentations including rotation by 3D angles, permuta-

tion of the axes order, addition of noise to the volume pairs

after warping, and generation of random flow parameters

(e.g., amplitudes, spatial frequencies, non-linearity, circu-

lating phase, etc.). In total, we generate 897 unique fields

for deforming volume pairs, which serve as synthetic fields

for training, validation, and testing.

Synthetic and measurement datasets We create the de-

formed volumes v1 by warping the synthetic fields to the

measured volumes as the reference volume v0 using the

PyTorch function grid sample in the trilinear interpo-

lation mode. Hence, by computation for each reference vol-

ume and synthetic fields, we compute 897 (23×39) volume

pairs as the total number of datasets.

To ensure the generalization of the model training, we

separate these datasets as follows: 828 for training sets,

while 20% of the set are randomly split for validation; 69

for testing. We excluded 3 samples (Mg-5Gd 4w 103L,

Ti 4w 5R, PEEK 4w 5L) and their corresponding 23 syn-

thetic fields for each sample (i.e. training and testing sets are

mutually exclusive in samples), so that the generalization of

VolRAFT approach can be evaluated.

To verify the generalization of the proposed VolRAFT

approach, we also examine the volume pairs, which were

experimentally measured for both reference and deformed

volume, as the realistic measurement dataset. In this paper,

we select the PEEK 4w 5L sample using its first and second

scan, as well as the Ti 4w 5R sample using its first and last

scan as reference and deformed volumes, respectively.
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Evaluation metrics In this paper, we investigate the

DVC analysis in a more computer-vision-oriented perspec-

tive. Instead of measuring the physical displacement (e.g.

the distance between the reference and deformed struc-

tures in µm), we evaluate the result based on the average

End-Point-Error (EPE), which is defined as the Euclidean

distance [1, 14] between the displacement vector f =
{fw, fh, fd} and its reference vector f ref =

{

f ref
w , f ref

h , f ref
d

}

:

EPE =
√

(fw − f ref
w )2 + (fh − f ref

h )2 + (fd − f ref
d )2 (4)

This is also because of the difficulty to obtain the ground

truth measurement of the physical displacement when ex-

amining continuously deforming materials in a high pre-

cision modality, e.g. the bone-implant materials using

SRµCT imaging.

Methods for comparison In this paper, we compare

the VolRAFT approach to the iterative method proposed

by Bruns et al. [7], which is one of the publicly avail-

able state-of-arts methods for high resolution SRµCT imag-

ing data. We apply the open-source code of this MBS-

3D-Optflow method based on its default settings as the

vanilla version, abbreviated MBS-VAN. To have a fair com-

parison with VolRAFT, we empirically optimize Bruns’s

method based on one of the testing data sets (i.e. the

Mg-5Gd 4w 103L sample with the star displacement

field) as the optimal version, abbreviated as MBS-OPT.

5. Evaluation

The computation of optical flow in texture-less regions is

generally difficult [1]. In this section we thus only evaluate

the bone structure but not the texture-less screw structure.

We also crop out the sample holder region as it does not

contain information of interest for the experiment. We eval-

uate the 3D displacement fields using the synthetic and the

realistic measurement dataset.

Tab. 2 shows the average EPE of all 15 syn-

thetic testing datasets (i.e. PEEK 4w 5L, Ti 4w 5Rand

Mg-5Gd 4w 103L samples for all 5 displacement fields)

using the default vanilla setting (MBS-VAN) and the opti-

mal setting (MBS-OPT) of Bruns’s method [7]. As the nu-

merical results show, VolRAFT achieves significantly better

performance in the Star displacement field than MBS-VAN

and MBS-OPT, while it performs in par in Curve, Random,

Sphere and Overall fields. For the Ti 4w 5R dataset, Vol-

RAFT appears to yield better results also for the Sphere and

Overall displacement fields. Star and Sphere fields are both

vector fields that model the blending and the spherical flow

dynamics, and the Overall field is a mixture of all classes of

linear and rotational fields. Thus, VolRAFT approach gen-

erally performs better in displacement fields with strong and

significant divergence and curl.

Fig. 3 compares the ground truth displacement fields

Sample Disp. class MBS-VAN MBS-OPT VolRAFT

PEEK 4w 5L Star 20.686 24.406 4.968
PEEK 4w 5L Curve 0.680 0.714 1.276
PEEK 4w 5L Random 0.187 0.250 0.456
PEEK 4w 5L Sphere 1.045 1.178 0.880
PEEK 4w 5L Overall 1.195 1.406 0.882

∗Mg-5Gd 4w 103L ∗Star 20.526 20.136 5.748
Mg-5Gd 4w 103L Curve 0.356 0.413 0.440
Mg-5Gd 4w 103L Random 0.140 0.152 0.339
Mg-5Gd 4w 103L Sphere 1.569 2.081 0.855
Mg-5Gd 4w 103L Overall 1.149 1.280 0.944

Ti 4w 5R Star 21.262 19.805 4.426
Ti 4w 5R Curve 0.923 0.997 1.270
Ti 4w 5R Random 0.313 0.229 0.307
Ti 4w 5R Sphere 3.103 2.236 1.078
Ti 4w 5R Overall 1.928 0.946 0.706

∗ MBS-OPT is empirically optimized by this dataset.

Table 2. Evaluation of VolRAFT to Bruns method [7] using the

default vanilla (MBS-VAN) and the optimal setting (MBS-OPT),

based on average End-Point-Error (EPE). The best is highlighted.

and the fields estimated by MBS-VAN, MBS-OPT and Vol-

RAFT using the synthetic datasets Mg-5Gd 4w 103L and

the Star field. The screw volume, which was not evaluated,

is shown in black in the image. Results show that the dis-

placement predicted by VolRAFT generally resembles the

displacement as shown within the ground truth. By con-

trast, the classical iterative method would require further

fine-tuning of the smoothness term and prior knowledge to

handle continuous fields such as this Star field. After empir-

ical optimization for Bruns’s method by the objective EPE

value and its qualitative accuracy, MBS-OPT only shows

slight improvement to its vanilla setting MBS-VAN.

However, VolRAFT can obtain block-based artifacts

near the edge of homogeneous region (see the fh field, Fig. 3

middle-row last-column). This is due to the fact that Vol-

RAFT utilizes patch-based inference methods, which can

lead to a severe jump of values near the edge of patches.

We have employed Gaussian weights to blend and sup-

press these artifacts (as shown in Sec. 3), but the nature of

this patch-based inference cannot be completely eliminated.

One common practise is to include regularization terms

such as total variation utilized by Bruns’s method. How-

ever, the use of regularization terms introduces the need for

manual tuning thereof by the user to the application of the

deep learning model. As the aim of this work is to present

a methodology for DVC without user input, we exclude the

regularization from the scope in this paper.

To examine the quality in a realistic measurement envi-

ronment, we test VolRAFT by inference to the experimen-

tal measured volume pairs based on the model parameters

trained by synthetic datasets. Fig. 4 shows the displacement

fields obtained by MBS-VAN, MBS-OPT and VolRAFT us-

ing real measured volumes of PEEK 4w 5L sample at its

first and second scan as the reference and deformed vol-

ume, respectively. Similarly, Fig. 5 shows the displacement

fields based on MBS-VAN, MBS-OPT and VolRAFT of a
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