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1 Introduction

The QCD axion is a well-motivated extension to Standard Model of particle physics. In

addition to being the most robust known solution to the strong CP problem [1–3], for

values of the axion decay constant fa allowed by experiments it inevitably comprises a

component of cold dark matter and it might make up the entirety of the observed dark

matter abundance [4–6]. Among the two broad classes of axion cosmological histories, the

post-inflationary scenario [7–12] has the distinguishing feature of being predictive and it

also leads to interesting phenomenology. Such predictions (the status of which we review in

the next section) and phenomenology could have important implications for the extensive

experimental and observational program aiming to discover the QCD axion (see e.g. [13] and

references therein) and therefore merit careful investigation.

Notably, QCD axion dark matter in the post-inflationary scenario is thought to au-

tomatically lead to dark matter substructure, i.e. gravitationally bound clumps of dark
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Figure 1. The axion energy density ρ, relative to its spatially averaged value ρ̄, soon after matter-

radiation equality in a numerical simulation. The initial conditions correspond to those expected for

fa ≃ 2 × 1010 GeV, with the peak of the density power spectrum kδ such that kδ/kJ |
MRE

= 2.4 where

kJ is the quantum Jeans scale (results are similar for fa between 1010 GeV and 1011 GeV albeit with

axion stars forming slightly later or earlier respectively). At the time shown, when the scale factor

a/aMRE = 10, approximately 15% of the dark matter is in axion stars with densities greater than

104ρ̄ (red objects). The zoomed-in view in the right panel shows the densest soliton in the simulation,

which is in the process of merging with another one. Characteristic interference patterns from the

wave-like nature of the dark matter can be seen.

matter [14–17]. This substructure first forms in the early universe around the time of matter-

radiation equality due to the collapse of isocurvature fluctuations. The resulting clumps

of axions are expected to have densities comparable to the average dark matter density at

the time of formation, roughly eV4, which is substantially larger than the present-day dark

matter density in the vicinity of the Sun. Such substructure has been studied extensively

both by analytical approaches and, most commonly, numerically [18–25].

We will argue that the substructure takes a dramatically different form than previously

thought, in particular that a large fraction of the clumps are actually axion stars. These are

solitons, gravitationally bound objects with size comparable to the de Broglie wavelength

of their constituents, see e.g. refs. [26, 27] for reviews. Axion stars have previously been

believed to mostly form by relaxation via gravitational or self-interactions inside the dark

matter clumps [28–30], therefore accounting for only a miniscule fraction of the total dark

matter. We find instead that the axions in these solitons can comprise as much as one fifth

of the total dark matter, implying a much larger population of such objects. An illustration

of our results can be found in figure 1, which shows the axion energy distribution soon after

matter-radiation equality in a numerical simulation.

The formation of axion stars at matter-radiation equality has been largely overlooked by

previous numerical studies because they employed N-body simulations, which are blind to

the wave nature of axions.1 The latter turns out to be important because of a combination

of different effects that shifts the spectrum of inhomogeneities towards smaller spatial scales

1Compatibly with our results, ref. [31] also found that axion stars can form soon after matter-radiation

equality, albeit in simulations with the axion mass m ≃ 10−8 eV, much smaller than the physical value in the

post-inflationary scenario.
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than previously assumed (in particular, close to the axion de-Broglie wavelength). Some

of these effects have being appreciated only recently thanks to modern simulations of the

string network evolution [32–36]. One instead is new and is associated to the impact of

self-interactions on non-relativistic axions as the axion potential grows after the decay of

topological defects, which turns out to be crucial for a reliable determination of the final

axion spectrum and therefore the properties of the axion stars.

This paper is structured as follows: in section 2 we review the current status of under-

standing of the evolution of topological defects in the post-inflationary scenario. In section 3

we show that, between the time when the axion string-wall network is destroyed and the

QCD crossover, self-interactions have a substantial effect on the axion energy spectrum. In

section 4 we consider the evolution of the axion field through matter-radiation equality and

study the formation of axion stars. In section 5 we discuss the possible dynamics of the axion

stars long after matter-radiation equality, and in section 6 we comment on directions for

future work and possible observational and experimental implications. Supporting evidence

for our results and details of our numerical simulations is provided in appendices.

2 Recap of the evolution of topological defects

In the post-inflationary scenario (i.e. when the Peccei-Quinn (PQ) symmetry is broken after

inflation), axion strings form and their dynamics dominate the field evolution until the axion

potential becomes relevant, close to the QCD crossover temperature Tc ≃ 155 MeV. The

evolution of the string network at early times has been studied extensively over the years

mostly using numerical simulations [32–48]. The present understanding is that soon after

formation the string network is driven into an attractor of the evolution, the scaling solution,

independently of the initial conditions. The attactor is such that on average the total string

length per Hubble patch ξ is fixed in terms of the ratio of the Hubble parameter H and

the inverse string core size mr (ξ ≃ 0.24 log(mr/H)).

To maintain the scaling solution the string network emits axion waves that populate a gas

of relativistic axions. At any given time the energy density of these free axions is comparable

to the energy density of the string network. The scaling regime ends when the QCD axion

potential starts to be relevant, when the temperature of the Universe approaches the QCD

scale. At this point domain walls form and, provided these are not stable, the string-wall

network collapses into axion waves. After a transient in which non-linearities from the axion

potential are important, the axions become non-relativistic and their comoving number

density is conserved. The number of axions produced by strings and the string-domain wall

network decay is strongly affected by the power spectrum of the emitted axions: depending

on whether this is more UV or IR dominated the final axion dark matter abundance from

such processes could be negligible or enhanced with respect to the naive estimate of that

from domain wall decay. A dedicated numerical study with high statistics was carried out in

ref. [33]. It was found that the spectrum of axions emitted during the scaling regime is UV

dominated at early times, but the spectral index evolves logarithmically with time towards

an IR dominated spectrum. Unfortunately the limited extent of the simulations did not

allow this change in behavior to be confirmed, although the statistical precision of the data

strongly disfavors a non-IR dominated spectrum at late times. If an IR dominated spectrum
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is firmly established, the number of axions produced by strings is enhanced, pointing to values

of fa ≃ 1010 GeV or lower. Employing adaptive meshing techniques, a subsequent study

was able to simulate the scaling solution for a longer time [34]. While the results are fully

compatible with those in ref. [33], the larger statistical errors of this study neither allowed the

small-time evolution observed in [33] to be resolved, nor an IR or UV dominated spectrum to

be distinguished at the level required for a reliable extrapolation. Ref. [35] recently performed

large simulations obtaining high statistics with a wide range of initial conditions and carried out

a thorough analysis of systematic uncertainties. The results confirm the evolution away from

a UV dominated emission spectrum consistently with [33]. However, increasing systematic

uncertainties as spectral index q = 1 is approached prevented a conclusive determination of

the asymptotic emission spectrum. Meanwhile, ref. [36] also studied the impact of different

initial conditions in detail, finding strong evidence for the logarithmic evolution of q. To

summarize, all high-statistics simulations to date agree on the presence of a logarithmic

evolution of the spectral index q, strongly disfavoring a UV dominated spectrum. The

resulting preferred values for the axion decay constant are fa ∈ [1, 6] × 1010 GeV, with the

two extrema corresponding to IR dominated and scale invariant spectrum respectively. Lower

values of fa are possible in the case the production from the decay of domain walls dominates

over that from strings or if the domain wall number NDW > 1 [33].

While waiting for bigger simulations with higher statistics to improve the determination

of fa, we now discuss the evolution of the non-relativistic axions from the time when the

strings and domain walls decay until the formation of the first gravitationally bound structures

at around matter-radiation equality (MRE), leaving fa as a free parameter pending a future

definitive result. In particular, we will show how the smaller values of fa, preferred by the

most recent numerical simulations, affect the nature of the small-scale structures of QCD

axion dark matter considerably.

3 Evolution after topological defects decay

Consider first the case of an axion-like particle (ALP) that has a temperature-independent

mass m. Let us assume that at the time t⋆, defined by the condition H⋆ = H(t⋆) = m, the

ALP energy density spectrum is peaked at the momentum kp⋆. Of key importance to our work

is the quantum Jeans scale kJ ≡ (16πGρm2)1/4 (where ρ is the axion energy density), which

sets the scale below which modes can collapse gravitationally, see section 4 and refs. [49, 50].

If we compare the value of the peak momentum at MRE, kp|MRE = kp⋆a⋆/aMRE, where a

is the scale factor, with the quantum Jeans scale at that time, we find

kp

kJ

∣

∣

∣

∣

MRE
=

kp⋆a⋆/aMRE

(16πGρMREm2)1/4
≃ kp⋆

H⋆
, (3.1)

where we used that the axion energy density at MRE is ρMRE ≃ ρ
(SM)
MRE ≃ ρ

(SM)
⋆ (a⋆/aMRE)4

and ρ
(SM)
⋆ = 3H2

⋆/(8πG) (we omit an order-one factor on the right hand side of eq. (3.1),

but include this in our subsequent numerical results). This means that if the spectrum of

ALPs is originally peaked at H⋆, at MRE its peak is close to the Jeans scale. In other words,

the dark matter fluctuations that first gravitationally collapse (at around MRE) have a size

comparable to the typical de Broglie wavelength of the ALPs, i.e. they are Bose condensates.
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In this case a fraction of dark matter would form a large number of Bose stars already around

MRE. This fact was noticed before in the context of dark photon dark matter in ref. [51], but

as we just saw it can happen anytime a spectrum of bosonic dark matter is produced peaked

at the Hubble scale at the time it becomes non-relativistic. In reality, for an ALP in the

post-inflationary scenario kp⋆ is expected to be one order of magnitude or more larger than

H⋆ and the production of Bose stars will not be efficient [52], as we are going to see later.

For the case of the QCD axion there are several differences. The main one is that the

axion mass is temperature-dependent and continues to grow even after t⋆. The relation

between H⋆ and the zero-temperature mass appearing in kJ at MRE will therefore differ.

Repeating the same steps as before but keeping track of the difference between the late-time

mass m and m⋆ = m(t⋆) we have

kp

kJ

∣

∣

∣

∣

MRE
=

kp⋆a⋆/aMRE

(16πGρMREm2)1/4
≃ kp⋆

H⋆

(

m⋆

m

)1/2

. (3.2)

Therefore, given that m⋆/m ≃ (Tc/T⋆)4 ∼ (fa/Mp)2/3 [53, 54],

kp

kJ

∣

∣

∣

∣

MRE
≃
(

fa

Mp

)1/3
kp⋆

H⋆
∼ 10−3 kp⋆

H⋆
. (3.3)

This would imply that for the QCD axion the spectrum is peaked at length scales much

larger than the Jeans scale and the gravitationally bound structures that would form at

MRE more closely resemble virialized halos of particles, miniclusters, than solitonic bound

states axion stars.

We are going to challenge this standard lore and argue that the naive estimate in eq. (3.3)

is not correct. This is because the time-dependence of the axion potential affects the evolution

of axions non-trivially even after they become non-relativistic, and non-linearities, although

too small to affect the conservation of number density, still play a crucial role in reshaping

the axion spectrum.2

To understand why this is the case, it is useful to track the importance of each term of

the Hamiltonian as a function of time. At T = T⋆ the mass, self-interaction and gradient

energy densities are roughly similar. For ALPs with a constant mass, in the non-relativistic

regime (i.e. after the mass term starts dominating the energy density) the mass term

redshifts as m2φ2 ∝ T 3 (from the conservation of the comoving number density n of ALPs,

n ∼ mφ2 ∝ s ∝ T 3, where φ is the axion field), the gradient term redshifts as (∇φ)2 ∝ T 5

and the quartic self-interaction as λφ4 ∝ T 6 (higher order non-linearities will redshift even

faster; here λ ≡ −V ′′′′(0)). Therefore, after the field becomes non-relativistic the hierarchy

m2φ2 ≫ (∇φ)2 ≫ λφ4 develops. The first of these inequalities signals that the ALPs become

more and more non-relativistic, while the second shows that the self-interactions become

less and less relevant. In principle, in this regime the self-interactions affect the spectrum by

2The destruction of the string-wall network will produce some long-lived oscillons called ‘axitons’ [55, 56]

(quasi-stable configurations with inverse size m in which the axion field φ ∼ fa), which can lead to additional

inhomogeneities on small scales when they decay. Axitons are also the result of the self-interaction, but they

act on smaller scales and are therefore distinct from the processes that we focus on in which the axion field

remains in the non-relativistic regime and with amplitude much smaller than fa.
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transferring momentum into the UV (the usual UV catastrophe of classical field theory) on

timescales τtherm = 64m5k2
p/
(

λ2ρ̄2
)

[57], where ρ̄ is the average energy density. However, the

thermalization process rapidly freezes out due to the Hubble expansion because

τthermH ≃ 64

(

mf2
a

n(T⋆/T )3

)2 (
T⋆

T

)2 (kp⋆

H⋆

)2

≫ 1 , (3.4)

for T ≪ T⋆.

For the QCD axion the steep time-dependence of the potential changes the relative

importance of the various terms. As long as T > Tc the axion mass increases as the Universe

cools as m ∝ T−4. Similarly, the quartic coupling increases as λ ∼ (m/fa)2 ∝ T−8. After the

axions become non-relativistic the number density is still covariantly conserved, therefore

mφ2 ∝ T 3, which now implies that φ2 ∝ T 7. We therefore have that the mass term now

redshifts as m2φ2 ∝ T−1, the quartic as λφ4 ∝ T 6 while the gradient (∇φ)2 ∝ T 9 (this

time-dependence is illustrated in figure 5 of appendix A.2). Consequently the hierarchies

are different: m2φ2 ≫ λφ4 ≫ (∇φ)2. The field is still non-relativistic, which means that the

comoving number density is conserved, and higher non-linearities are successively smaller.

However, the kinetic energy of the axion gas is small compared to the self-interaction energy.

When this happens the kinetic pressure is not able to balance the self-attraction of the axions,

which start clumping, and they accelerate until their kinetic energy becomes comparable

to the self-interaction energy, i.e. they virialize.

As we subsequently confirm with numerical simulations, in the regime m2φ2 ≫ λφ4 ≫
(∇φ)2 energy is moved to the UV on timescales of order [58]

τv = 8m/(λφ2) . (3.5)

For Tc < T < T⋆

τvH ≃
(

m⋆f
2
a

n(T⋆/T )3

)

(

T⋆

T

)

≃ 0.5

(

fa

1010 GeV

)(

Tc

T

)

, (3.6)

where we used that the axion comprises the full dark matter abundance in the second equality.

Consequently, τv is fast on cosmological timescales for some range of T . T⋆ provided

fa . 1011 GeV. As a result, the peak momentum of the spectrum is driven to larger values,

close to the ‘critical’ virialized momentum kv =
√

λφ2, such that (∇φ)2 ∼ λφ4. Notably

τtherm ≫ τv for kp ≫ kv (eq. (3.4) with m → m⋆ applies also for the QCD axion in this

regime), so kv acts as an approximate attractor. These dynamics, with kp tracking the

(time-dependent) kv, last until the QCD axion potential stops growing around T ∼ Tc. Soon

after that the normal ALP hierarchy among the terms in the Hamiltonian is restored and

the self-interactions freeze out.

We therefore assume that for the QCD axion kp ∼ kv is maintained until T ∼ Tc and

only afterwards kp redshifts freely. At T = Tc the peak momentum kp ∼ mφ/fa ∼
√

ρ(Tc)/fa.

Using that ρ(Tc) = ρMRE(aMRE/ac)
3, we then have kp|MRE =

√
ρMRE(aMRE/ac)

1/2/fa. As

a result, we estimate

kp

kJ

∣

∣

∣

∣

MRE
∼

√
ρMRE(aMRE/ac)

1/2/fa

(16πGρMREm2)1/4
∼
(

Mp

fa

TMRE

Tc

)1/2

∼
(

1010 GeV

fa

)1/2

, (3.7)
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where we used the approximate parametric relations ρMRE ∼ T 4
MRE and m ∼ T 2

c /fa. Conse-

quently, for values of fa in the range that might lead to QCD axion dark matter, the peak of

the axion energy density spectrum is also close to the quantum Jeans scale at MRE!

The rough estimate in eq. (3.7) captures the main features of the dynamics, but neglects

several effects that partially limit its applicability. For the larger values of fa (i.e. around

1011 GeV) τvH & 1 at some intermediate Tc . T . T⋆ so that self-interactions freeze-out

before T = Tc. Moreover, given that the axion kinetic energy is initially larger than the

quartic term (because, as observed from simulations, kp/H⋆ = O(10) at t⋆) the self-interaction

term might not have caught up to the gradient term prior such times. In this case kp/kJ |MRE

remains close its initial value set by the string-wall decay, which for such fa is likely to be

O(10−1) depending on the shape of the spectrum emitted by strings.

The situation is also different at smaller fa (in particular, fa . 5 × 1010 GeV). For these

values, the axion abundance from strings is so large that non-linearities delay the onset of the

non-relativistic regime until a later time tℓ (when T = Tℓ < T⋆) and shift kp towards the UV,

to the momentum that matches the axion mass at tℓ [33]. The physics at Tℓ is dominated

by relativistic non-linear dynamics and it is at this time that (topologically trivial) domain

walls will decay into a gas of axions that rapidly becomes non-relativistic. At the start of the

non-relativistic regime the quartic term is only slightly smaller than the gradient one, so it

again starts dominating before Tc, entering a second phase of non-linear dynamics, this time

in the non-relativistic regime. The combination of the first UV shift during the relativistic

non-linear evolution at tℓ and the second non-relativistic one still results in kp/kJ |MRE ≃ 1.

3.1 Numerical evolution before matter-radiation equality

To explore the dynamics in the regime m2φ2 ≫ λφ4 ≫ (∇φ)2, we numerically evolve

realizations of the axion field on a discrete lattice. We do this both in flat space-time (with

constant axion mass, quartic coupling constant, and scale factor), and cosmological simulations

during radiation domination, starting from when the axion field is first non-relativistic, not

much after T = T⋆, to times when T . Tc and the self-interactions have frozen out. We

define the non-relativistic field ψ by

φ =
1√

2m0ma3

(

ψe−i
∫ t

m(t′)dt′

+ c.c.

)

, (3.8)

where m0 is the zero-temperature axion mass and a ∝ t1/2 is the scale factor. In the limit

ψ̇ ≪ mψ, ψ̈ ≪ mψ̇, H ≪ m, which are satisfied soon after T drops below T⋆, the axion’s

equation of motion becomes

(

i∂t +
∇2

2m
−mΦ +

λ|ψ|2
8a3m0m2

)

ψ = 0 , (3.9)

where spatial derivatives are with respect to physical distances, and we expand the axion’s

potential V = 1
2m

2φ2 − 1
4!λφ

4 + . . . such that λ > 0 for an attractive self-interaction, as

for the QCD axion. At T ∼ Tc the gravitational potential Φ sourced by the axion field is

– 7 –
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negligible. We fix the initial field to have a Gaussian distribution,3 with power spectrum Pφ

peaked at kp and with Pφ̇(k) = m2Pφ(k), where for generic field X(t, ~x) we define

〈X∗(t,~k)X(t, ~k′)〉 = (2π)3 δ(3)
(

~k − ~k′
) 2π2

k3
PX(t, k) , (3.10)

with X(t,~k) the Fourier transform of X. We have m2Pφ(k) = ∂ρ/∂ log k where ρ is the

total axion energy density, which is dominated by the mass energy at these times. Each

momentum mode is generated with a random phase. The box has typical size 2π/kp, and

thus contains only a fraction of the Hubble volume. As we discuss subsequently, the specific

form of the initial spectrum at k ≪ kp and k ≫ kp is unimportant for our results; we take

Pφ(k) ∝ k3 for k ≪ kp and ∝ k−1 for k ≫ kp.

Simulations in flat space-time confirm that while kp . kv the energy spectrum indeed

evolves towards the UV on timescales of order τv given by eq. (3.5). This is in fact the only

time scale of the equations of motion, eq. (3.9), if the gradient and the gravitational potential

terms are negligible. Once the peak of the energy spectrum reaches kp & kv the gradient

term becomes relevant and the evolution slows, consistent with the expression for τtherm,

which is valid in this regime. Meanwhile, cosmological simulations show that the effects are

as anticipated: for fa . 1011 GeV, kp is driven close to kv while T & Tc and once T . Tc

the comoving spectrum freezes. The resulting attractor-like behaviour is imperfect because

kv is time-dependent and even once kp ≃ kv there is a slow drift of energy into the UV on

timescales of order τtherm. The self-interactions can alter the shape of the spectrum around

its peak from its initial form by an order-one amount. We also find that the final value of kp

is insensitive to the detailed shape of the initial spectrum at k ≪ kp and k ≫ kp. Details

and further analysis can be found in appendix A.4.

The values of kp at the different epochs are summarized in figure 2 as a function of

fa. Although poorly known because a reliable extrapolation to large log(mr/H) is lacking,

we assume that the decay of the string network leads to kp(T⋆) ∼ 10H⋆ and estimate the

uncertainty as kp(T⋆)/H⋆ ∈ [5, 20].4 For fa . 5 × 1010 GeV the non-linear evolution of the

axion field as it becomes non-relativistic at T = Tℓ increases kp. The value of kp immediately

after this transient is approximately independent of kp(T⋆), however we assume a factor of 2

uncertainty in its determination from simulation results presented in ref. [32].5 Predictions

for kp at T ≪ Tc, after the axion self-interactions freeze out, are obtained from numerical

3In fact, rather than represent a pure gas of uncorrelated waves, the axion field is expected to have

non-Gaussian features associated to the to the non-linear transient at tℓ and the decay of the string-wall

network [56], but we do not expect our quantitative conclusions to be substantially affected.
4In more detail, numerical simulations at earlier times find kp(T⋆) ∼ 10H⋆, which might be expected to

increase proportionally to
√

ξ during the scaling regime [56]. However the non-linear dynamics at tℓ shift the

spectrum to a larger value making the sensitivity on the original position of kp only logarithmic [33]. The

subsequent non-relativistic non-linear evolution until tc discussed here further washes out the uncertainty

related to kp(T⋆).
5These results apply both if the instantaneous emission spectrum from strings is IR dominated at large

log(mr/H) or scale invariant, because in both cases the total axion spectrum at T = T⋆ has the same 1/k form

up to logarithmic corrections. The amplitude of this spectrum is set by the assumption that, for a given fa,

the axion comprises the full dark matter abundance (e.g. by assuming different values of ξ⋆ or log(mr/H⋆)).

For fa & 5 × 1010 GeV such a transient is absent.

– 8 –
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inevitably has fluctuations (relative to the Standard Model radiation bath these are isothermal

perturbations). The fluctuations are characterised by the density power spectrum Pδ, where

δ(t, ~x) ≡ (ρ(t, ~x) − ρ̄(t))/ρ̄(t) is the overdensity field. Assuming that the non-relativistic

axion field is Gaussian, Pδ can be straightforwardly expressed in terms of ∂ρ/∂ log k (see

e.g. ref. [61]). We define kδ to be the momentum at which Pδ is maximized. For ∂ρ/∂ log k

with the typical shape that emerges from the string decay and non-linear evolution, kδ ≃ 2kp

and Pδ(kδ) ∼ O(1) indicating that there are order-one overdensities on spatial scales ∼ k−1
δ .

We note that Pδ ∝ k3 for k ≪ kδ provided ∂ρ/∂ log k ∝ kβ with β ≥ 3/2 for k ≪ kp, and

Pδ ∝ Pa for k ≫ kδ. The results of numerical simulations seem compatible with a Pδ ∝ k3

behavior in the IR part although the limited range of momenta available did not allow us to

determine precisely such power. However, as will become clear later, the evolution of the

system at around MRE is mostly determined by the position of the peak kδ and much less by

the precise values of the power indices of the spectrum away from the peak.

The subsequent evolution of an overdensity depends on its size relative to the quantum

Jeans scale kJ : overdensities on spatial scales much smaller than k−1
J are strongly affected by

wave-effects, in particular quantum pressure, and those on spatial scales much larger than

k−1
J are unaffected (this is most easily seen after a Madelung transformation of the equations

of motion to a fluid description, as we review in appendix B) [50, 62]. What is relevant for

the collapse of a particular overdensity is the local value of kJ , but this is proportional to

(ρ(~x)/ρ̄)1/4 so for the order-one to -ten overdensities typical of the initial axion field kJ (ρ(~x))

is within a factor of a few of kJ (ρ̄). Notably, the comoving quantum Jeans scale associated to

the mean dark matter density kJ(ρ̄)a ∝ a1/4 increases with the scale factor but only slowly.

An overdensity that is unaffected by quantum pressure and has initial magnitude δ & 1

remains approximately frozen in comoving coordinates during radiation domination until

a/aMRE ≃ 1/δ when it undergoes gravitational collapse. Meanwhile fluctuations of initial

δ ≪ 1 grow as δ(a) ∝ (1 + (3a)/(2aMRE)) [63] and collapse once they reach δ ≃ 1. The

result of collapse is a minicluster supported by angular momentum that is expected to have

a density of approximately 102δ3(1 + δ)ρ̄MRE. N-body simulations suggest that the density

profiles in the centers of such objects have a power law or Navarro-Frenk-White (NFW) [64]

form [20, 65]. Conversely, overdensities that are affected by quantum pressure oscillate rather

than growing or collapsing. As a result, fluctuations on comoving spatial scales much smaller

than k−1
J (ρ̄MRE)/aMRE do not collapse prior to structure formation on larger scales.

From figure 2, we see that for the QCD axion kp, and consequently also kδ ≃ 2kp, is

within a factor of a few of kJ(ρ̄) at MRE. In this intermediate regime, quantum pressure is

relevant on scales close to the size of the order-one overdensities and is therefore expected

to play a role in the bound objects that form but not prevent collapse entirely.7 There are

indeed solutions of the axion equations of motion and the Poisson equation consisting of

gravitationally bound objects, axion stars, that are supported by quantum pressure [66, 67]

(see also e.g. [68] for a recent discussion). In particular, we consider axion stars that are

7In more detail, at the would-be time of collapse in the absence of quantum pressure, a/aMRE = 1/δ, the

comoving quantum Jeans scale locally to an overdensity δ(~x) & 1 is given by kJ ((1 + δ)ρ̄) = kJ (ρ̄)|MRE. Hence,

an overdensity on comoving scale kδa such that (kδ/kJ (ρ̄))|MRE < 1 is expected to collapse at 1/δ as in the

absence of quantum pressure. Meanwhile, for (kδ/kJ (ρ̄))|MRE > 1 collapse occurs at a/aMRE ≃ (kδ/kJ,MRE)4/δ.
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bound by gravitational interactions (as opposed to self-interactions) and in which the axions

are non-relativistic. The density profile of such an axion star takes the universal form

ρ(r) = ρsχ (r/λJ(ρs)) , (4.1)

where χ(0) = 1, so ρs is the central density, and λJ(ρs) ≡ 2π/kJ(ρs). The function χ(x) is

close to constant for x ≪ 1 and decays exponentially for x ≫ 1. The de Broglie wavelength

in the center of an axion star is of order λJ(ρs) and roughly 98% of a star’s mass is within

this distance of its center. The mass of a star Ms and the radius R0.1 at which the density

is a factor ten smaller than at the center (within which approximately three quarters of

the total mass is contained) satisfy

MsR0.1 ≃ 5.2

Gm2
=⇒ R0.1 ≃ 4.2 × 106 km

(

fa

1010 GeV

)2
(

10−19M⊙

Ms

)

, (4.2)

ρs ≃ 0.0044G3M4
sm

6 ≃ 7.1 × 10−3 eV4

(

1010 GeV

fa

)6 (
Ms

10−19M⊙

)4

, (4.3)

where we specialize to a QCD axion in relating m and fa. An axion star is the lowest energy

configuration of a system with fixed particle number, and for an overdensity of size k−1
J the

timescale for an axion star to form coincides with the gravitational in-fall time.

We therefore expect that for a QCD axion a substantial fraction of the bound objects

that form from the collapse of the O(1) density perturbations at around MRE are axion stars.

These are likely to be surrounded by a “fuzzy halo” of axions that is partly supported by

angular momentum. The central density of an axion star will be roughly given by the local

axion density at the time when it forms, i.e. ρ(tcoll, ~x) = (1 + δ)ρ̄MRE (aMRE/acoll)
3 where

“coll” denotes quantities at the time of collapse. Meanwhile, the mass of an axion star Ms is

expected to be an order-one fraction of the total mass in the initial fluctuation. As a result,

the order-one overdensities are expected to lead to axion stars of mass

Ms ≃ (1 + δ)ρ̄(tcoll) (2π/kδ(tcoll))
3

≃ (1 + δ)

(

kJ

kδ

)3
∣

∣

∣

∣

∣

MRE

MJ,MRE ,
(4.4)

where we define MJ,MRE = ρ̄MRE (2π/kJ,MRE)3 ≃ 2.2 × 10−19M⊙
(

fa/1010 GeV
)3/2

. The

masses predicted by eq. (4.4) are self-consistently such that the axion quartic coupling is

negligible in the axion stars.

4.1 Numerical simulations around matter-radiation equality

To determine whether axion stars do indeed form, we numerically solve the equations of

motion of the non-relativistic axion field through MRE with initial conditions with different

kδ/kJ |MRE ∈ [0.3, 5] corresponding to the plausible range of kp identified in section 3. The set-

up of these simulations is similar to those described in section 3.1, but with the gravitational

potential Φ included. We start the evolution at a/aMRE = 0.01, when the spectrum of density

fluctuations is frozen, with an initial axion field that is Gaussian with energy spectrum close

to the expectation from the earlier evolution, in particular given by eq. (A.16) in appendix A.3
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with s = 4. The simulation results are only reliable while 1) the (increasing) physical lattice

spacing is sufficient to resolve the cores of collapsed objects and 2) the density fluctuations

on length scales comparable to the box remain perturbative, i.e. Pδ (2π/L) . 1 where L the

box size. The maximum scale factor compatible with the preceding, competing, requirements

given our available computing resources depends on the initial kδ.

For all initial kδ tested, density perturbations collapse into gravitationally bound objects

around the time of MRE, characterised by their central density decoupling from Hubble

expansion and instead remaining approximately constant. At the final simulation times these

objects are mostly well-separated, although the beginnings of a “cosmic web” of overdense

filaments is visible in figure 1. Gravitationally bound objects form later for larger kδ, which

is consistent with quantum pressure delaying collapse (see appendix C.3). We confirm that

the axion quartic self-interactions play no role in the dynamics by carrying out simulations

starting from identical initial conditions with λ = 0 and λ set to its physical value, which

lead to final field configurations that differ by much less than 1%.

We classify gravitationally bound objects as axion stars or miniclusters based on their

density profiles. First, we define an object as collapsed if its central density ρs > 50ρ̄(t),

which in practice captures all objects that have approximately constant density. We then

identify an object as being an axion star if its spherically averaged density profile matches

the predicted form, eq. (4.1), to within a factor of 2 at both λJ (ρs)/4 and λJ (ρs)/2; at these

points the predicted axion star ρ(r) is approximately 60% and 16% of ρs, respectively. We

use these generous identification criteria to account for the stars not forming in the ground

state immediately (as we discuss at the end of the section, demanding stronger criteria does

not change our conclusions substantially). The radial derivative of the quantum pressure

∂rΦQ matches that of the gravitational potential ∂rΦ to within a factor of 2 at both λJ (ρs)/2

and λJ(ρs)/4 in roughly half of the objects identified as stars (with slightly larger deviations

in the remainder, which are typically recently formed), confirming that quantum pressure

indeed plays a role in supporting the objects. The regions identified as stars are close to

spherically symmetric, with the projections of the density field onto spherical harmonics ym
l

satisfying
∫

dΩ ym
l (θ, φ)ρ(r, θ, φ) . ρ(r)/10 for r . λJ(ρs) with l ≥ 1.

Based on the preceding definition, more than 75% of identified objects contain a central

axion star for all initial kδ. As expected, the axion stars are surrounded by a halo in which

the de Broglie wavelength is comparable to the typical length-scale but angular momentum

is relevant. Such fuzzy halos are evident from the density profiles deviating from the axion

star prediction and instead taking a power law form ρ(r) ∝ r−n with n ≃ 2.5 (and also

∂rΦQ 6= ∂rΦ). For initial kδ/kJ,MRE & 2 the average density profile of the objects that

contain stars, which interpolates from the soliton to power law form, has a universal shape

independent of kδ with a power law at r & λJ(ρs). Meanwhile, for initial kδ/kJ,MRE . 2

the average density profile switches to a power law at smaller r/λJ(ρs) for smaller kδ. We

also note that the central density of a given axion star oscillates with time by as much as

an order of magnitude, indicating that the stars are produced with quasi-normal modes

excited. Simulations of axion stars in flat space-time, which can be run for arbitrarily long

times, suggest that the longest-lived quasi-normal modes persist for at least 102 oscillations

(detailed analysis of these modes can be found in refs. [69, 70]).
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increase in the comoving quantum Jeans scale, but these have progressively smaller masses

Ms ∼ ρ̄k−3
J ∝ a

−3/4
coll . For larger initial kδ/kJ |MRE quantum pressure delays the collapse of

overdensities of size k−1
δ until later times. With initial kδ/kJ |MRE & 3, fstar is still increasing

at the end of simulations, because not all of the order-one overdensities have collapsed by this

time (the rate of production of axion stars also shows no sign of decreasing). We expect that

for kδ/kJ |MRE ≃ 5, fstar & 0.1 will be reached beyond the final simulation time, although we

cannot determine if the asymptotic fstar is the same as for kδ ≃ kJ,MRE. Finally, for initial

kδ/kJ |MRE ≃ 0.3, fstar reaches values larger than 0.1 in simulations. In figure 3 we also show

the total fraction of dark matter bound in axion stars, fuzzy-halos or miniclusters, which

reaches values greater than 0.1 for all initial conditions tested. Consistent with our analysis of

the density profiles of clumps, the ratio of mass in stars to the total bound mass is similar for

all initial kδ/kJ |MRE & 2 and is smaller for smaller kδ/kJ |MRE. This suggests that fstar for

kδ/kJ |MRE ≃ 0.3 might saturate at slightly smaller values than the other initial conditions.

In combination with the results of section 3, the initial value of kδ/kJ |MRE can be related

to a corresponding approximate fa, which we indicate on figure 3. Remarkably, fstar & 0.1 is

expected over the full range of plausible fa. For fa & 5 × 1010 the stars form immediately

at MRE whereas for smaller fa they are produced somewhat later.

The mass distribution of the axion stars is potentially phenomenologically important.

In figure 4 we plot the value of

M̄s =

∑

starsM
2
s

∑

starsMs
=

∑

{axions in stars}Ma

Na,bound
, (4.5)

where Ma is the mass of the star that an axion is bound in, and Na,bound is the total number

of axions in stars. In other words, most of those axions that are in axion stars are contained

in stars with mass of approximately M̄s. We also show the distribution of axion star masses,

d logns/d logM where ns is the number density of axion stars. These results are plotted

for each initial kδ, and related to a corresponding fa via figure 2. The blue curves with

arrows show the uncertainty in fa, which is estimated from the upper and lower edges of the

red band in figure 2. Numerical simulations give the axion star masses in terms of MJ,MRE,

and the relation between this and M⊙, given below eq. (4.4), depends on the value of fa.

Consequently the uncertainties in fa lead to overall uncertainties in M̄s/M⊙ and the mass

distribution, which are indicated by the vertical displacement along the blue curves. Contours

of fixed ρs are also plotted, obtained from eq. (4.3) (because the mass-central density relation

of the stars that form is close to that of isolated stars). Larger initial kδ, corresponding to

smaller fa, leads to stars with smaller typical central densities because these form later.

By the end of the simulations M̄s has reached an approximately constant value for initial

kδ/kJ |MRE ≤ 2.4, consistent with fstar saturating, but M̄s is still decreasing for larger initial

kδ, see figure 18 in appendix C.3. Meanwhile, the distribution dn/d logMs is still evolving

at the final simulation time for all initial conditions, with axion stars of increasingly small

mass continuing to form. Mergers between relatively heavy axion stars are quite rare, with

only ∼ 10% of the stars with mass larger than M̄s/2 having merged with another similarly

heavy star prior to the end of the simulations (meanwhile, mergers between heavy and light

stars are more common). We discuss the evolution of axion stars after formation further in

section 5, using analytic estimates, and leave a full numerical analysis to future work.
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factor of 1.5 rather than 2 at r = λJ(ρs)/4 and r = λJ(ρs)/2 changes fstar and M̄s by at

most 25%. An alternative possible condition that ∂rΦ and ∂rΦQ match to within a factor 2

at the same values of r decreases fstar by at most 35%. A further uncertainty comes from

the shape of the initial Pδ. In appendix C.3 we show that changing the shape the peak

of Pδ by order-one amounts, keeping kp fixed, alters fstar and M̄ by roughly 25%, which

does not affect our qualitative conclusions. If Pδ was not proportional to k3 at k ≪ kp

this would alter the rate of hierarchical structure formation on larger spatial scales at times

beyond the reach of our simulations (discussed in the next section) but would not affect our

present results. Meanwhile, the form of Pδ at k ≫ kp is irrelevant because the corresponding

fluctuations are always prevented from collapsing by quantum pressure. As mentioned, we

have neglected possible non-Gaussianities in the axion field left over from the decay of the

string-wall network [56] and we have also not considered possible non-Gaussianties arising

from the self-interactions at T ∼ Tc. It would be interesting to investigate whether such

features in the axion field could alter the number of axion stars that form, but we leave

this for future work. Additionally, we reiterate that there are uncertainties in relating fa

to the initial kp and kδ from the earlier evolution.

5 Axion stars

As seen in the previous sections, for any value of fa between 1010 GeV and 1011 GeV, soon

after MRE the fraction of axions contained in axion stars satisfies 0.1 . fstar . 0.2. The

actual value of fa mostly affects the time at which the stars form and their properties.

For values of fa closer to 1011 GeV (corresponding to a suppressed production of axions

from strings) at MRE the spectrum is slightly infrared compared to the Jeans scale and

solitons form readily. At such a time the mean dark matter density is relatively large, so

the axion stars in this case are comparatively dense and compact. For values of fa closer

to 1010 GeV (associated with an enhanced production of axions from strings and favored by

recent simulations [33–36]) the spectrum is slightly more ultraviolet than the Jeans scale

at MRE. Most solitons therefore form somewhat later, when the dark matter density has

further redshifted, resulting in less compact stars. Because the initial fluctuations are on

smaller comoving scales, the axion stars are also lighter in this case.

The results of the numerical simulations in figure 4 indicate that most of the axions in

stars are contained in solitons with mass given by the empirical relation

M̄s ≈ 2 · 10−19M⊙

(

fa

1010 GeV

)
5

2

, (5.1)

approximately valid for fa between 1010 GeV and 1011 GeV, with an energy density in

their center

ρ̄s ≈ 0.1 eV4
(

fa

1010 GeV

)4

, (5.2)

and a radius

R̄0.1 ≈ 2.1 · 106 km

(

1010 GeV

fa

)
1

2

, (5.3)
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at which the density is a factor of ten smaller than in the center. The exact dependence on

fa should be taken with caution given the uncertainties in relating this to the position of

the peak of the density power spectrum (see e.g. figure 4).

The axion stars therefore have a mass comparable to a mountain-size asteroid, but

a radius a few times larger than the Earth-Moon distance and a density more than four

orders of magnitude larger than the local dark matter density at the Sun’s location. In their

gravitational ground state, the axions bound in these stars orbit with extremely low velocities

v̄b =
kJ(ρ̄s)

m
≈ 6 · 10−13

(

fa

1010 GeV

)
3

2

∼ mm/s . (5.4)

Axion stars with masses smaller than M̄s continue to form at later times. These lighter

and less dense solitons eventually dominate the number density of stars, but they remain

a sub-dominant component of the dark matter energy density in stars (see e.g. figure 17

right in appendix C.3). Being less compact they might be more prone to tidal disruption

during the subsequent evolution.

Such a large population of axion stars could have important phenomenological conse-

quences. It is therefore crucial to understand whether they survive the cosmological evolution

and what their abundance and properties would be today. Given the large hierarchies of

scales involved, tracking the full evolution from matter-radiation equality until the present

day is a challenging task that merits a dedicated study and is beyond the scope of our present

work. We limit ourselves here to some educated estimates based on simple arguments and

existing results in the literature to demonstrate the potentially interesting implications and

to motivate a more systematic and precise analysis (e.g. we neglect wave effects in destruction

processes [71, 72]). Several aspects of this discussion are in common with that of vector

dark matter stars in ref. [51], while detailed studies for miniclusters can be found in [73–76]

(see also refs. [77, 78] for related analysis).

Probably the most threatening processes that could deplete our primordial axion star

population are gravitational tidal disruptions among axion stars, with larger dark matter halos

or with compact astrophysical objects. To estimate the importance of such events it is useful

to recall that the critical distance dc for tidal disruption of a gravitationally bound object of

mass M1 and size R1 (with escape velocity v1 =
√

2GM1/R1) off the gravitation potential of

a second object of mass M2 passing with relative velocity vr is given by the relation8

d2
c

R2
1

≃ v1

vr

M2

M1
. (5.5)

From this it follows that:

1. Two axion stars of equal masses M1 = M2 can disrupt each other (i.e. dc & R1) only

if vr . v1, i.e. they are gravitationally bound to one another and they merge. This

agrees with ref. [79], which finds from numerical simulations that solitons colliding with

relative velocity less then the escape velocity merge into a larger star, while solitons

colliding with higher velocities pass through each other basically unaffected.

8Obtained by matching the escape velocity of the gravitational bound object v1 with the tidal velocity

vt ≃ at∆t produced by the tidal acceleration at = 2GM2R1/d3

c and accumulated during the crossing time

interval ∆t ≃ dc/vr.
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2. When two axion stars of different mass (say M2 > M1) get close enough, the heavier one

is never disrupted while the lighter one is disrupted if M2 &M1(vrb
2)/(v1R

2
1), where b

is the impact parameter (obtained by requiring b . dc). Note that, as soon as larger

clusters of stars form, the typical relative velocities among stars grow rapidly, hence a

large hierarchy in masses is required for the less dense stars to be disrupted (typical

values for vr/v1 in our galactic halo today are O(1010)).

3. An axion star is not disrupted by other dark matter halos (such as miniclusters) if the

latter are less dense than the axion star. This is indeed the typical situation in our

case given that the axion stars are the first objects to form, at the locations of highest

dark matter over-density. Non-solitonic halos formed at matter-radiation equality and

later, while larger and more massive, are less dense. A possible caveat however is that

the profiles produced during structure formation tend to develop an NFW shape with

higher densities in the core, which could affect this conclusion; we discuss this further

below.

4. Miniclusters are never disrupted by axion stars, passing outside them, whose mass is

less than the total minicluster mass, which is also typically the case.

5. For an axion star passing in the vicinity of another compact object, such as an as-

trophysical star or a black hole, eq. (5.5) can be rewritten more conveniently using

eqs. (4.2)–(4.3) as

d2
c

R2
1

≃ GM2m

vr
or d2

c ≃
√
GM2

vr
√
ρs

, (5.6)

where m is the axion mass and ρs is the axion star’s central density.

From these considerations we deduce the following evolution. After the first axion stars

(which contain most of the axions that are in stars) form around matter-radiation equality,

hierarchical structure formation starts. Nearby solitons begin falling into the gravitational

potential of larger and larger local overdensities, accelerating toward each other and virializing

into larger and larger structures. We expect that a sub-dominant portion of the initial axion

star population might merge (in particular those stars that by chance are formed close

enough that their relative velocity remains small when they approach each other) while the

majority virializes. At this time, possible encounters among stars become irrelevant. Such

a picture is compatible with what is observed in numerical simulations, where just a few

stars are seen merging, although the time extent of the simulations is limited. Merging

could still remain relevant for less dense axion stars, because for them this effect switches

off later, when the virial velocities of structure grows above the axion stars’ mass ratios.

We might therefore expect a change in the tail of the mass distribution function during

hierarchical structure formation.

Because the axion stars that contain most of the dark matter (those with mass M̄s) are

the most compact dark matter objects, they will not be disrupted by other dark matter

halos. Indeed from the previous considerations this is probably true even for most of the

rest of the axion star population. Moreover, from the estimates above, it is plausible that
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at least part of the fuzzy halos hosting the axion stars might also survive the hierarchical

structure formation phase.

As bigger dark matter structures form, new axion stars could be created through

gravitational relaxation [57]. These solitons, appearing later in the evolution, are expected

to grow more massive and compact than our bulk axion star population, although they will

necessarily be much rarer. It is plausible that the two different populations coexist.9

During structure formation larger and larger dark matter halos develop with possibly

denser cores. A virialized axion star at distance R from the center of such a halo will feel a

gravitational mass M(R) =
∫

d3xρ(|x| < R). Using eq. (5.6), tidal disruption will happen only

for those stars whose central density satisfies ρs .M(R)/R3, which is equivalent to ρs < ρ(R)

if the integral defining M(R) is dominated by the region at |x| ≃ R, as in the case of NFW

profile (neglecting baryons, the inner NFW profiles follow the scaling ρ(r)r = const). At our

position, R ≃ 8.3 kpc, in the Milky Way the local dark matter energy density is more than

four orders of magnitude smaller than those of eq. (5.2), which means that this effect should

not be a problem for average axion stars in typical dark matter halos. On the contrary, smaller

mass axion stars are much less dense (ρs ∝ M4
s ) so the low mass population of the axion star

distribution could easily be affected. Similar conclusions follow if instead of using eq. (5.6) we

compare the tidal force from the halo core with the gravitational force in the axion star or if

we include the effects of baryons and black holes in the galactic bulge, at least for our galaxy.

Provided the arguments above are correct, we need only to worry about possible encounters

between axion stars and astrophysical compact objects. Here we focus on such events within

the Milky Way. Consider a typical axion star with mass M̄s gravitationally bound in the

Milky Way halo. The probability for it to be tidally disrupted by a close encounter with

an astrophysical object, in particular a star, with average mass M⋆ during a crossing of

the galactic disk is P× = σtn⋆, where σt is the cross section for tidal disruption off an

astrophysical star and n⋆ is the number density of stars per unit area on the disk. The

former can be estimated simply from eq. (5.6)

σt = πd2
c = π

√
GM⋆

vr
√
ρ̄s
, (5.7)

where vr is now the virial velocity O(10−3). The latter is meanwhile given by n⋆ = Σ/M⋆,

where Σ is the superficial density of stars on the galactic disk. Therefore the probability

of disruption for a typical axion star crossing the galactic disk in the proximity of the Sun,

where Σ ≃ 50M⊙/pc2 [80, 81], is

P× = π

√
GΣ

vr
√
ρ̄s

= 6 · 10−4

(

eV4

ρ̄s

)
1

2
(

Σ

50M⊙/pc2

)

. (5.8)

This probability should be multiplied by the number of revolutions around the galaxy

between formation and today. For low eccentricity orbits the revolution time is Trev. ∼ 2πd⊙/vr

9Note that these more dense axion stars are not expected to pose a threat to our dominant axion star

population. Their growth rapidly slows down after their escape velocity reaches the virial velocity of the host

halo. From our analysis, a less dense axion star encountering such an object is only marginally disrupted if it

passes within an axion star radius distance, which is quite a rare event.
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(where d⊙ ≃ 8.3 kpc is the distance of the Sun from the center of the galaxy), but for typical

dark matter eccentricities in the halo, e ≃ 0.9 [82], Trev. can be an order of magnitude larger.

The average number of revolutions until today is therefore Nrev. ≃ O(100)(1−e). The fraction

of axion stars crossing the galactic disk at the Sun’s location that are tidally disrupted is

therefore expected to be small with P×Nrev. ∼ 10−2 ÷ 10−1.

We also note that the galactic dark matter halo extends much further from the center of

the galaxy than the baryonic disk does, so most of the axion stars have larger orbits, with

even smaller disruption probabilities, than in the estimates above. Only the tiny fraction of

axion stars with very large eccentricities, again constituting a small fraction of the population,

will pass close enough to the center of the galaxy (where the number density of astrophysical

objects is large) to be destroyed.

We are therefore led to assume that most of the axion stars with mass of order M̄

formed at MRE survive until today, maintaining similar properties, and in particular that

this is the case for stars with orbits in the Milky Way halo comparable or larger than that

of our solar system.

The local number density of such axion stars is ns = fstarρ
loc
DM/M̄s, where ρloc

DM is the

average local dark matter density, which we take to be 0.4 GeV/cm3. Consequently, the

average distance between two axion stars is

n−1/3
s = 1.4 · 108 km

(

M̄s

10−19M⊙

)
1

3
(

0.1

fstar

)
1

3

, (5.9)

i.e. typically there are four axion stars within one astronomical unit of us and 105 in the

solar system at any given time! Consequently, the rate at which solitons pass through Earth

might be non-negligible. Indeed we can estimate the average waiting time on Earth for an

encounter with an axion star of mass Ms to be τ⊕ = 1/(σ⊕nsvr), where σ⊕ = πR2 is the

geometric cross section for encountering an axion star at distance ≤ R from its center and

vr the virial velocity. Substituting the relevant values we get

τ⊕ = 5 yrs

(

R0.1

R

)2 ( 0.1

fstar

)

(

M̄s

10−19M⊙

)3(
1010 GeV

fa

)4

, (5.10)

which, substituting M̄s from eq. (5.1), suggests that for low fa the axion stars’ encounters

with Earth might be interestingly frequent! Such encounters would last for an interval

∆t ≃ 2R0.1

vr

√

1 − R2

R2
0.1

= 8 hrs

(

10−19M⊙

M̄s

)

(

fa

1010 GeV

)2
√

1 − R2

R2
0.1

, (5.11)

which can be long compared to timescales relevant to experiments. One may wonder whether

axion stars would be tidally disrupted by the Earth or the Sun before reaching the surface

of the Earth. In fact an axion star passing through the Earth will be disrupted, however

this would happen much after the star has left the Earth.10

10Indeed the dispersion ∆x accumulated by the axions in the axion stars over the interval of time ∆t = d⊕/vr

that it takes for the star to pass by the solar system (d⊕ = 1 AU being the Earth-Sun distance, i.e. the impact

parameter with the Sun of the axion star passing through the Earth) is ∆x = 1

2
at∆t2, where at ≃ GM⊙R0.1/d3

⊕

is the tidal acceleration in the axion star. The relative dispersion of axions accumulated before reaching the

Earth is therefore only ∆x/R0.1 ≃ (GM⊙)
(

d⊕v2

r

)

∼ 10−2.
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Given that the dark matter density inside the axion stars could be more than four

orders of magnitude larger than the average local one, for axion dark matter experiments

looking in this mass range, such as those in refs. [83, 84], a broadband strategy might be

more competitive than a resonant one. Note also that there could be many more stars with

smaller density but bigger cross sections flying around. While their survival probability is

less certain, their presence could have important implications for experiments: if at least

part of this population survives until today it could completely alter expectations for the

local dark matter density observed on Earth, which would fluctuate continuously by orders of

magnitudes over time scales of order days or more. The streams resulting from the destruction

of such stars could also lead to interesting features in the dark matter density [85, 86].

6 Conclusion

To summarize, we find that in the axion post-inflationary scenario the dark matter power

spectrum resulting from the decay of topological defects is peaked near the quantum Jeans

scale at matter-radiation equality, almost independently of the uncertainties in the precise

value of the QCD axion mass that fits the observed dark matter abundance, at least provided

fa & 1010 GeV (see figure 2). This coincidence enhances the number of axion stars that form

around the time of matter-radiation equality. Numerical simulations confirm this expectation

showing that 10 to 20% of the total dark matter axions end up gravitationally bound in

solitonic cores, which are surrounded by less dense halos containing a larger fraction of the

remaining dark matter particles (see figure 3). Estimates suggest that a sizable fraction of this

primordial axion star population survives to the present day in our galaxy. The axion stars

have a much larger density than the average local dark matter density in the neighborhood

of the Sun (around four orders of magnitude for fa ≃ 1010 GeV, see eq. (5.2)) and one could

pass though a detector on Earth every few years, see eq. (5.10).

There are several important directions for future work. As mentioned, perhaps the most

urgent of these is a dedicated study of the evolution of the axion stars after MRE. To this end,

it would be useful to carry out simulations from MRE until later times than we have been

able to. This would require a greater separation between the box size and the lattice spacing,

a challenge that is well suited to adaptive mesh refinement, as implemented in refs. [87, 88].

Such simulations would allow the first stages of hierarchical structure formation, as the axion

stars cluster into larger objects, to be studied and precise statistics about possible soliton

disruption or mergers to be obtained. It would also be interesting to analyze the evolution

of the axion stars within their surrounding fuzzy-halos, for example to determine whether

the stars increase in mass due to accretion or evolve towards the core-halo relation proposed

in ref. [89], and to study the decay of their quasinormal modes. The dynamics of the axion

stars at even later times, within the much larger halos from adiabatic perturbations, and

their probability of survival in the Earth’s local environment are also critical.

Numerous possible signals of axion clumps in the post-inflationary scenario have been

proposed and analyzed in the literature, and reanalysing these in light of our results would

be worthwhile. Gravitational signals can arise from lensing effects [90], although in the case

of femtolensing (which is the most relevant process for the axion stars themselves given

the masses that we find) the sensitivity is weak due to finite source size and wave optics
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effects [91]. Heavier “mini-halos” from the IR part of the density power spectrum could lead

to micro-lensing events [18, 19]. Particularly promising is caustic microlensing [92], which

might be sensitive to axion mini-halos with masses as small as 10−15M⊙. Gravitational signals

of dark matter clumps inside the solar system have also recently been considered [93–95],

including for clumps in the mass range we expect for axion stars; these are interesting given

our prediction of a large number of axion stars. There are also possible signals arising from the

solitonic nature of the axion stars (which have previously been studied assuming stars form by

condensation inside miniclusters) that typically rely on the axion-photon coupling. There has

been extensive work on signals from collisions between axion stars and neutron stars [96–102]

or main sequence stars [103]. Other ideas include axion stars converting to photons in the

Milky Way [104], monochromatic photon signals from collapsing axion stars [105, 106], and

radio emission from axion stars [107]. Finally, we reiterate that a detailed analysis of the

implications of our results for direct detection experiments would certainly be valuable.
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A Details of the self-interactions

A.1 The non-relativistic axion field

After the string-wall network collapses at T ≃ T⋆, the axion field φ follows the Klein-Gordon

equation of motion with potential V = 1
2m

2φ2 − 1
4!λφ

4 + . . . , with temperature-dependent

(i.e. time-dependent) mass m and quartic coupling λ.

In the non-relativistic limit, it is convenient to rewrite the equation of motion of φ in

terms of ψ defined by eq. (3.8) in the main text, which leads to eq. (3.9). The gravitational

potential Φ satisfies

∇2Φ =
4πG

a3

m

m0

(

|ψ|2 − |ψ|2
)

, (A.1)

where, as in the main text, an over-line denotes the spatial average (m0 is the zero-temperature

axion mass). Φ has a negligible effect in the axion field’s equation of motion deep in radiation

domination, including when T & Tc. Still considering the non-relativistic limit, the axion
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energy density and number density are given by, respectively,

ρ =
1

2
φ̇2 +

1

2
m2φ2 =

m

m0

|ψ|2
a3

, n =
ρ

m
=

|ψ|2
m0a3

. (A.2)

The spatially averaged comoving number density, n̄a3 = |ψ|2/m0, is conserved even when m

is temperature-dependent, while the average of ρa3 is not conserved and instead increases

while m is growing.

At T & Tc, the axion mass is temperature-dependent. We model this dependence as

m

m0
=

[

1 +

(

T

Tc

)
α
2r

]−r

, (A.3)

with α ≃ 8 and r ≃ 0.4 providing reasonable fits to lattice data [54], where we set Tc = 155 MeV

(note that m2 ∝ T−α for T ≫ Tc). Although the quartic coupling at T > Tc is not well

determined from current lattice results, we assume that it takes the form

λ = c0

[

1 + c
1

2r
0

(

T

Tc

)
α
2r

]−2r
m2

0

f2
a

, (A.4)

where c0 = 0.35 and, as before, α ≃ 8 and r ≃ 0.4. Eq. (A.4) is such that λ = c(T )m2/f2
a

with c(T ) interpolating between the zero temperature value from chiral perturbation theory,

c(T ≪ Tc) ≃ c0

With the preceding axion mass temperature dependence at T ≫ Tc (and using that the

effective number of relativistic degrees of freedom at T = T⋆ is g⋆ ≃ 60), we obtain

T⋆

Tc
≃ 20

(

1010 GeV

fa

)1/6

. (A.5)

Provided that, as is expected, the string-wall network is destroyed when m is roughly of

order H, all of the strings and domain walls are destroyed soon after T = T⋆ with only a

weak dependence on the particular value of m/H at which the destruction happens because

of the fast growth of the axion mass (simulation results find that for log(mr/H⋆) ≃ 6 no

strings remain after T ≃ T⋆/2 [56]).

Freely-propagating modes of momentum kp become non-relativistic at approximately

a/a⋆ =
(

kp/H⋆|T =T⋆

)1/(α/2+1)
. Therefore, in the absence of a non-linear transient, basically

all modes of interest are non-relativistic by a/a⋆ ≃ 2 assuming kp(T⋆) ∼ 10H⋆. The situation

is more complicated in the case of a sizable non-linear transient as the axion field becomes

non-relativistic, as occurs for fa . 5×1010 GeV. In this case, the temperature of the Universe

when the axion field is first non-relativistic is in the range Tℓ = T⋆/3 (for fa ≃ 1010 GeV)

and Tℓ = T⋆/2 (for fa ≃ 5 × 1010 GeV). The axion energy spectrum is modified by such a

transient, in particular its peak is shifted close to the value of the axion mass at the time

when T = Tℓ. Full expressions for Tℓ and kp after this transient, simulations confirming these

dynamics, and fits of the order-one coefficients that appear in the analytic formulae can be

found in ref. [33]. Here we simply note that (with the values of the numerical coefficients
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obtained in [33]) kp(Tℓ) corresponds to

kp

kJ

∣

∣

∣

∣

MRE
≃ 0.4

(

1010 GeV

fa

)1/2

, (A.6)

which is the red line in figure 2. For sufficiently large fa such a non-linear transient is absent;

the simulations results in [33] show that the critical value of fa above which there at most

a minor effect on the axion spectrum is approximately 5 × 1010 GeV.

We also note that, as discussed in Footnote 2, some oscillons will form during the decay

of the string-wall network and will persist after T = Tℓ, however these small objects do not

affect the dynamics on the larger scales.

A.2 Analytic analysis

As discussed in section 3, self-interactions drive the peak of the axion energy spectrum

towards the UV. The rate at which this occurs depends on the relative size of the gradient

and self-interaction energy densities in the Hamiltonian.

Neglecting gravity, in the non-relativistic regime the equation of motion of the axion

field, eq. (3.9), can be written in terms of its Fourier transform ψk(t) defined by ψ(t,x)=
∫ d3k

(2π)3ψk(t)e−ik.x as

i∂tψk =
k2

2m
ψk − λ

8m3

∫

d3p d3q d3l

(2π)9
ψ∗

pψqψl(2π)3δ(3)(k + p − q − l) , (A.7)

which holds regardless of the relative sizes of the gradient and self-interaction terms in

the Hamiltonian.

For (∇φ)2 & λφ4 the non-relativistic axion momentum modes have dispersion relation

ωk ≃ k2/(2m) (up to small corrections from the self-interactions) and the system is well

described by kinetic theory [30, 57, 109–111]. In this limit eq. (A.7) implies (see e.g. [112]

for a derivation)

∂tfk =
λ2

32m4

∫

d3p d3q d3l

(2π)9
(2π)4δ(4)(k + p− q − l) ((fk + fp)fqfl − (fq + fl)fkfp) , (A.8)

where the mode occupations fk ≡ |ψk|2/(mV ) (with V the system volume) such that

ρ̄ = m
∫

d3k/(2π)3fk, and the free dispersion relation is assumed in the energy part of the

delta function. Using that the typical momentum and energy scales are kp and k2
p/2m in

eq. (A.8), and that fk/(2π)3 ∼ ρ̄/(mk3
p), this leads to the estimate of the thermalisation

rate given in the main text

τtherm =

(

1

fk

∂fk

∂t

)−1

≃ 64
m5k2

p

λ2ρ̄2
, (A.9)

(note that the numerical coefficient on the right hand side of eq. (A.9) is not sharply

determined). Using the approximate relation λ(T ) ≃ m2(T )/f2
a and that the axion number

density is n = ρ/m we have

τthermH ≃ 64
f4

ak
2
p

n2(T⋆/T )6

m⋆

m

(

T

T⋆

)−4

, (A.10)
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which is valid both for the QCD axion and an ALP. The denominator in the first fraction is the

axion number density redshifted back to T⋆ assuming comoving number density conservation

(this will not coincide with the true axion number density at T⋆ if there is a first non-linear

transient as the axion field becomes non-relativistic). For an ALP with a temperature-

independent mass eq. (A.10) simplifies to eq. (3.4) in the main text. As discussed in section 3,

such a particle satisfies (∇φ)2 & λφ4 for all T < T⋆ so τtherm is the relevant timescale for

self-interactions, and moreover τthermH & 1 for all T < T⋆.

Conversely, in the regime (∇φ)2 ≪ λφ4 the gradient term in the axion’s equation

of motion, eq. (3.9), is irrelevant compared to the self-interactions (this is similar to the

situation soon after preheating, as occurs in some theories of cosmic inflation, analyzed in

ref. [113]). As mentioned in the main text, in this limit the only timescale in the axion

field’s equation of motion is

τv =
8m

λφ2
≃ 8f2

a

n
, (A.11)

which is therefore expected to set the time for the axion spectrum to change by an order-one

amount.

For the QCD axion at Tc ≪ T < Tℓ (where Tℓ < T⋆ is the temperature at which the

axion field is non-relativistic after the first transient), we have m ≃ m⋆(T/T⋆)−4, λ ∼ m2/f2
a

and the comoving axion number density is conserved. This leads to

τvH ≃
(

m⋆f
2
a

n(T⋆/T )3

)

(

T⋆

T

)

. (A.12)

Using (Tc/T⋆) ≃ (fa/Mp)1/6, and m⋆/m0 ≃ (fa/Mp)2/3, m0 ∼ T 2
c /fa we obtain

τvH ∼
(

fa

MPl

)(

Tc

TMRE

)(

Tc

T

)

. (A.13)

Repeating this calculation including numerical factors leads to eq. (3.6) in the main text. We

see that the axion self-interactions are relevant when the comoving axion number density is

larger than the naive contribution from domain wall decay n(T⋆/T )3 ≃ m⋆f
2
a , corresponding

to fa . 5 × 1010 GeV. This is indeed the case if the number of strings per Hubble patch

ξ ∼ 10 at T ≃ T⋆ and a scale-invariant or IR dominated emission spectrum, as is strongly

suggested by simulation results. We also note that the thermalisation timescale valid instead

for (∇φ)2 & λφ4 is related to τv by

τtherm = τv

(

kp

kv

)2

, (A.14)

where kv ≡
√

λφ2 is the critical momentum such that (∇φ)2 ≃ λφ4, as described below

eq. (3.6). As a result, the timescale τv connects to τtherm continuously as kp increases towards

kv and the rate at which energy moves to the UV slows down for kp & kv. Denoting comoving

momenta k̃ ≡ k(a/a⋆), a straightforward calculation gives

k̃v(T ) ∼ 700k̃⋆

(

Tc

T

)3/2
(

1010 GeV

fa

)5/6

, (A.15)
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axion mass and quartic have the form in eqs. (A.3) and (A.4), with the parameter values

quoted there (we have checked that changing r by an order one factor and varying α in the

range [6, 10] does not substantially affect the final position of the peak of the axion spectrum

once the self-interactions freeze out at T . Tc).
12

We start cosmological simulations at the time when T = 5Tc, which is a reasonable

estimate of when the axion field is first non-relativistic for the fa ∈ [1010, 1011] GeV that we

consider. We have checked that our results do not change substantially (compared to the

uncertainties we estimate in figure 2) if the initial T/Tc is varied by a factor of 2 in either

direction.13 We fix the axion field in the initial conditions to have a Gaussian distribution

with power spectrum

Pφ̇(k) = m2Pφ =
∂ρ

∂ log k
∝
(

k

kp

)4


1 + 4

(

k

kp

)
5

s





−s

, (A.16)

and for each fa we carry out simulations with different peak locations kp. The parameter s

in the ansatz in eq. (A.16) parameterizes the shape of the spectrum. For s ≃ 4, the shape

is a good match to that emerging from the non-linear transient as the axion field becomes

non-relativistic, as occurs for fa . 5 × 1010 GeV [33].14 We assume that this shape is a

reasonable fit to the initial spectrum also for larger fa (in which case it is directly determined

by the string-wall decay). The uncertainties arising from our limited knowledge of the initial

spectrum are discussed in appendix A.4.

Systematic uncertainties in our numerical simulations arise from the finite time-step, the

finite box size, and the finite lattice spacing. We have tested the impact of these for each fa

and initial kp (different simulation parameters are required to avoid systematic uncertainties

in each case). The time-step is chosen sufficiently small that it introduces at most order

% level uncertainty. We fix the box size L large enough that the peak of the axion energy

spectrum is well captured with 2π/L . kp/3 (we have tested that the results are unchanged

for bigger L). The number of lattice points that we have sufficient computing resources to

evolve, N3 . 5123, then limits the lattice spacing. In figure 7 left we plot the axion energy

spectrum at the final simulation time in cosmological simulations starting from the same

initial conditions for different lattice spacing. The finite lattice spacing leads to an unphysical

peak in the axion energy spectrum, at momentum modes within a factor of 2 of the lattice

spacing scale, forming during the evolution. As expected, the fraction of the total energy in

this unphysical peak decreases as the lattice spacing is decreased. If such a peak contains

more than approximately 25% of the total energy or is not well-separated from the main peak,

the shape and evolution of the main, physical, part of the spectrum is affected (i.e. there are

significant systematic uncertainties from the finite lattice spacing). We therefore consider

12In more detail, for fa . 5 × 1010 GeV the position of the peak is dominantly determined by the axion

potential at around T ≃ Tc, which is not sensitive to α and r. For larger fa, the values of α and r are

potentially more relevant, however τv(T ) is approximately independent of α (as can be seen from the right

hand side of eq. (A.11)) and kv(T ) only depends on α as kv ∝ T −α/4 so the uncertainty is minor.
13The temperature at which the axion field is first non-relativistic can be calculated in terms of fa, but such

precision is not needed for our purposes.
14As mentioned in the main text, the form of the initial spectrum at k < kp is not reliably known, but this

does not affect our results.
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