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It is well known that asymptotically flat Schwarzschild black holes in general relativity in four spacetime

dimensions have vanishing induced linear tidal response. We extend this result beyond linear order for the
polar sector, by solving the static nonlinear Einstein equations for the perturbations of the Schwarzschild metric
and computing the quadratic corrections to the electric-type tidal Love numbers. After explicitly performing the
matching with the point-particle effective theory at leading order in the derivative expansion, we show that the
Love number couplings remain zero at higher order in perturbation theory.

1. Introduction

The tidal deformability of a compact object refers to its propensity to
respond when acted upon by an external long-wavelength gravitational
field. It is in general characterized in terms of complex coefficients that
capture the conservative and dissipative parts of the response. The coef-
ficients associated to the conservative response of the object are usually
referred to as Love numbers—conceptually, one can think of the Love
numbers as the analogues of the electric polarizability of a material in
electromagnetism. The tidal response coefficients are important because
they offer insights into the gravitational behavior and the body’s inter-
nal structure. In the case of a neutron star, the tidal deformability is
tightly related to the physics inside the object and its equation of state
[1]. In the case of black holes, the tidal response coefficients depend on
the physics at the horizon, and can be used to access and test the fun-
damental properties of gravity in the strong-field regime, including the
existence of symmetries of the black hole perturbations [2-8].

In a binary system of compact objects, the way one body responds
to the gravitational perturbation of its companion becomes more rele-
vant in the last stages of the inspiral, influencing the waveform of the
emitted gravitational waves. The tidal coefficients can be measured or
constrained with gravitational-wave data. They can be used to detect
binary neutron star systems [9,10] and have been the subject of recent
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searches in the LIGO-Virgo data [11]. Future observations will achieve
much better accuracy and demand high-precision calculations, such as
those developed with various schemes in [12-16]. The incorporation
of tidal effects in these schemes will be crucial, as highlighted, e.g., in
[17-21].

It is well known that isolated asymptotically flat black holes in gen-
eral relativity have exactly vanishing Love numbers [22-33]. Quite
interestingly, this result holds only in four dimensions, while higher-
dimensional black holes display in general a non-vanishing conservative
response [25,34-37]. Most of the results in this context have regarded
so far linear perturbation theory only. However, nonlinearities are an
intrinsic property of general relativity. Nonlinerities have been studied
for instance in relation with quasinormal modes (see, e.g., [38-45]),
but much less is known regarding nonlinear corrections to the tidal
response of compact objects.! In this work we make progress in this
direction and derive quadratic corrections to the static Love numbers
of Schwarzschild black holes in general relativity in four spacetime di-
mensions. Our strategy will be to compute the response of a perturbed
Schwarzschild black hole solution to an external gravitational field in
the static limit and perform the matching up to quadratic order in the
external perturbation with the worldline effective field theory (EFT).
The latter provides a robust framework to define the tidal response of
compact objects [49-51]. For simplicity, we will consider an external
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1 See [27,46-48] for previous works in this context. Note that our findings agree with [27,47] in the particular case of axisymmetric perturbations—although we
go beyond axisymmetry here. In addition, in contrast with [46], we define the nonlinear Love numbers at the level of the worldline effective theory, see section 2
below. This definition has the advantage that it does not rely on any choice of coordinates.
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field with a quadrupolar structure and even under parity transforma-
tion. The two main results of our work can be summarized as follows:
(i) the vanishing of the linear Love numbers, defined as Wilson cou-
plings of quadratic derivative operators in the worldline EFT, is robust
against nonlinear corrections?; (ii) the quadratic Love number couplings
also vanish.

The structure of the paper is as follows. In section 2, we introduce
the worldline EFT. In section 3, we solve the nonlinear Einstein equa-
tions up to second order in perturbation theory and in the static limit.
For illustrative purposes, we will focus on the even sector only, and as-
sume quadrupolar tidal boundary conditions at large distances for the
metric perturbation. In section 4, we perform the matching between the
EFT and the full solution in general relativity, up to second order in the
external tidal field amplitude. Some details and useful technical results
are collected in the appendices. In particular, appendix A provides all
the equations necessary for the computation of the metric solution at
second order in the Regge-Wheeler gauge, while appendix B summa-
rizes the Feynmann rules for reference.

Conventions. We use the mostly-plus signature for the metric,
(—,+,+,+), and work in natural units, # = ¢ = 1. We use the notation
Kk =1327zG = 2MP_|1 and the curvature convention R’,,, = 6”1"66 +...
and R,, = R?,,,,. We use round brackets to identify a group of totally
symmetrized indices, e.g.,

1
Aw €, By = 2 (4,C,B,+4,C,B,).
Our convention for the decomposition in spherical harmonics is
Y(t,r,0,¢) = Zﬂm ‘I’(t,r,f,m)Y;”((y‘, ¢). For simplicity, we will often
omit the arguments on ¥ altogether and drop the tilde, relying on the
context to discriminate between the different meanings.

2. Worldline effective theory and Love number couplings

A robust way of defining the tidal response of a compact object is in
terms of the worldline EFT [49-51]. By taking advantage of the sepa-
ration of scales in the problem, the worldline EFT implements the idea
that any object, when seen from distances much larger than its typical
size, appears in first approximation as a point source. Finite-size effects
can then be consistently accounted for in terms of higher-dimensional
operators localized on the object’s worldline. As in any genuine EFT,
they are organized as an expansion in the number of derivatives and
fields.

Let us start from the bulk action, which we take to be the standard
Einstein—Hilbert term in general relativity:

M2
SEH=/d4x,/—g TPIR. )

The point-particle action is

dx# dxVv
Sy s fany -, GG @

where M is the mass of the point particle, s is its proper time and 7
parametrizes the worldline.

To capture finite-size effects we now include derivative operators at-
tached to the worldline. Neglecting dissipative effects [52,53]—which
are absent for the static response of nonrotating Schwarzschild black
holes—and focusing for the moment on the lowest order of the deriva-
tive expansion, the quadrupolar (¢ = 2) Love number operators can be
written as [49,54-56]

2 This is a consistency check of the natural expectation that the linear re-
sponse of an object does not depend on the type of source that is used to probe
it, in particular whether it has a nonlinear bulk dynamics or not.
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where E,, is the electric (even) component of the Weyl tensor C,,,,,,
defined as

E, = Cppou’®, @
where u# = dx* /ds is the particle’s four-velocity, normalized to unity,
u"uu = —1. Since we will focus only on the even response, in (3) we

omitted to write explicitly operators involving the odd part of the Weyl
tensor [54-56]. One can easily extend (3) to higher # by introducing
the multi-index operators [56]

p— vV v,
Epyoe TP P Vg o Vo By gy » ®)

where P is the projector on the plane orthogonal to u*, i.e.,
PH, =6, +utu,. (6)

In (3), /lﬁ,E) are the (quadrupolar) Love number couplings at the nth or-
der in response theory. This provides an unambiguous way of defining
the tidal deformability, which is independent of the choice of coordi-
nates and the field parametrization. Putting all together, the EFT for
the point-particle is

Serr = St + Spp + Sine - )

At this level, 4, are generic couplings, which will then be determined
after performing the matching with the full theory.

3. Nonlinear static deformations of Schwarzschild black holes

In this section we solve the quadratic static equations for the met-
ric perturbations of a Schwarzschild black hole in general relativity,
given some suitable tidal boundary conditions at large distances. We
will denote here with gi‘ﬁh the Schwarzschild solution for the metric,
g‘sl‘;h =diag[-1+ rf, 1- rTS)_l, r2, 1% sin” 0], where ry=2GM, and with
08y =8&uv — gﬁf/h the metric perturbation.

The quadratic equations for 6g,,, schematically take the form

268 ~ 0(5g”), ®)

where 2 is a differential operator and the right-hand side is quadratic
in 6g. We will solve (8) in perturbation theory by expanding 6g =
6gM + 6g@, where 6@ ~ 0((6g1")?). The static linearized solutions
are well studied and lead to the well-known fact that the induced static
response of a Schwarzschild black hole is zero, once regularity of the
physical solution is imposed at the black hole horizon [22-27,34] (see
also Appendix A below). Once the linear solution for 6gV) is known,
the source on the right-hand side of (8) becomes fully fixed and the in-
homogeneous solution to eq. (8) can be derived using standard Green’s
function methods. We shall stress that there are two expansion param-
eters in the problem: there is k¥ =2/ Mp,, which controls the number of
graviton field insertions, and there is the amplitude of the external tidal
field, which we will denote with & and which controls the nonlinear re-
sponse. The two should in general be kept separate, as they appertain
to different power countings in the EFT (see section 4).

In the following we will compute nonlinear corrections to the Love
numbers by explicitly solving the second-order equations (8) in some
particular cases. As briefly reviewed in Appendix A, we will parametrize
the metric perturbations ég,, by distinguishing them in even (polar)
and odd (axial) components, &g, = 5g;“’/e" + (nged (see egs. (A.1) and
(A.2) for the explicit expressions). We will assume that the external tidal
field is purely even. As such, we can just focus on the even sector and set
the odd perturbations 6g°‘3d to zero: at quadratic order in perturbation
theory, an external even tidal field cannot induce a parity-odd response
(see Appendix A for further details).
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In full generality, we shall parametrize 6g|°" as in eq. (A.1). After
choosing the Regge-Wheeler gauge (A.3) and solving the nonlinear (tr)
constraint equation, as outlined in Appendix A, the expression for 5g;“’/e"
takes a simple diagonal form:

5 even _ djag [(1 _ r75> H,, H,, 2K, r? sinzeK] Y;n(97¢), 9

where we decomposed the field perturbations in spherical harmonics.
Plugging (9) into the Einstein equations, one finds the following decou-
pled equation for H, (see also eq. (A.9)):
" 2r—ry ’_
r(r—ry)

f(f+1)r(r—rx)+r§ 3
r2(r—rg)? 0= P H

1o

0>
where § H, is fully dictated by the known linearized solution for (Sge"e“
Note that to write (10) we have projected the equation for H, in real
space with an (¢, m) spherical harmonic. As a result, the right-hand side
of (10) is proportional to an integral of the product of three spherical
harmonics,
%,f;,ﬁ};,?z = / Y;’*(e,qb)Y;:l (0,¢)Y;"22(€,¢) sin 8d¢do an
which enforces the standard angular momentum selection rule £ =
¢ ® ¢. Given the tensor product (¢,m;) ® (5, m,) between two dif-
ferent representations of the rotation group, the resulting total angular
momentum ¢ satisfies the triangular condition || — /5| <7 <7 + ¢»,
while the total magnetic quantum number is given by the sum m =
m; + m,. For the sake of the presentation, we will focus in the follow-
ing on the case in which the external tidal field contains only a single
quadrupolar harmonic, i.e., ¢; = £, = 2. The analysis will be analogous
with a more general tidal field and for higher harmonics.

Solving first the homogeneous linearized equation (10) and impos-
ing regularity at the horizon yields the following linear solution for the
radial profile of H:

p

O~ 5—(1——3), 12)
r

where the amplitude &,, depends on the magnetic quantum number m.

The other components of 6ge‘ce“ are obtained from (12) via the con-

straint equations. The linearized solutions for H, and K are

HO2m _p I g2 _ g —2<1—i> (13)
2 "2 X 2r2
N N

Using (12) and (13), the right-hand side of (10) is completely fixed. At
second order, a general solution for (10) is given by a superposition of
the homogeneous solution and a particular one. The latter can be ob-
tained via standard Green’s function methods (see Appendix A.1). One
of the two integration constants for the homogeneous solution simply
corresponds to a redefinition of the tidal field amplitude in (12) and
can be set to zero. The other integration constant is chosen in such a
way that the solution at second order preserves regularity at the hori-
zon. Note that, from the standard angular momentum selection rules,
an Z =2 can induce at second order in perturbation theory the harmon-
ics £ =0, 2 and 4. In the following, we will focus on the quadrupole,
which contributes to the leading order in the derivative expansion (3).
We find the following quadratic solution for the (£ = 2, m) harmonic of
H,, up to quadratic order in perturbation theory:

(¢=2m) _ rg 222 r2r +3ry)
= (1—7) [gm— Y Gl 222 e B

my,my

Similarly, for H, and K, we find

(15)

“my = mmy my 452
N

r(dr+r
H T == [,m— Y Gt rérr,) s)],
S

mp,my
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2
Ke=2m sf1-22 (16)
r2 2r2
2
e
“m m2 mml Jmy 16 2 rz :
my,my Ty

Note that the quadratic terms in &, are small corrections as long as
Ert < r . This should not surprise because the tidal field is formally
dlvergent at large distances, and sufficiently far away perturbation the-
ory is expected to break down. However, in physical situations, such
as in binary systems, this does not happen, because the external field
acts as a growing source only on a finite region, beyond which it decays
to zero at infinity. In practice, we will perform the matching with the
worldline EFT in the region r, < r <r,/ \/é’_m, which is sufficiently far
from the black hole that the object can be treated as a point particle,
but still within the range of validity of the perturbative expansion.®

The previous results have been derived under the assumption that
the external source is composed by a single quadrupolar harmonic.
However, they can be generalized to the case of more general tidal
fields, such as a superposition of different harmonics, using the same
procedure.

4. Matching with effective theory

Given the results of section 3, we now need to perform the matching
with the worldline effective theory (7) and derive the Love number
couplings in eq. (3). We shall see explicitly that the matching with the
calculation in general relativity can be performed with just (1) and (2),
without turning on any of the Love number couplings in (3).

For this computation, it is convenient to use the background field
method [58-60]. We shall then expand the metric in eq. (7) around a
non-trivial background as follows

guv=g”V+KhW, a7

where the background metric §,, represents the external tidal field that
satisfies the vacuum Einstein equations, while 4, parametrizes pertur-
bative corrections in G to this tidal field and, possibly, a response.

At this point, we can explicitly compute the one-point function of
h,, induced by the external tidal field coupled to the point particle by
performing a path integral as follows:

<hﬂv(x)>:/@[h] h”v(X)ei(SEFTJrSGF), 18)

up to a normalization factor. In the above action we have introduced the
usual gauge-fixing term S arising from a Faddev-Popov procedure.
Since we are ultimately interested in the classical limit of the above
equation, following Ref. [49] we shall discard all diagrams with closed
graviton loops. Hence, we do not need to add any ghost field. Finally,
in order to maintain covariance of the final result with respect to the
external metric g, , we work with the following gauge-fixing action,

SGF - d4 XV = g”vfﬂrv ’ 19)

e 1.
rﬂzg“ﬂ(vahﬂy—zvﬂhaﬁ). 20)

Here, V, is the covariant derivative associated to the metric g,, and
gHV is the inverse of the background metric.
At a practical level, we shall expand also the tidal field as

g_yv:nyv+H;lv' (21)
3 Note that such “secular”-type effects are not a consequence of solving the

equations in curved space. They are present also on flat space, as it can be seen
for instance by formally taking in (14) the limit r, — 0, with &,,/ r? fixed.
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Fig. 1. Feynman diagrams that reconstruct the Schwarzschild metric up to order

rz.
s

X X
M M
Y uv
(a) (b)
X X
M M
uv uv
(© (d)

Fig. 2. Feynman diagrams needed for the computation of #,,. Diagram (a)
yields the order-r, correction to the linear tidal field solution. Diagrams (b), (c)
and (d) represent instead order-r corrections to the tidal source at second order
in the external field amplitude.

The one-point function can then be constructed by considering all Feyn-
man diagrams with one external h,,. We will use the following dia-
grammatic conventions:

ANNNAN = h}l\/ ?
X—— = Hy,
@~~~ = Dpoint-particle source.

For the comparison with section 3, we need to compute the diagrams
represented in Fig. 1 and 2. Their explicit expressions can be found
using the Feynman rules listed in appendix B. We shall compute all
diagrams in the rest frame of the point-particle, which means that = =¢
and the worldline is given by*

x*=(1,0,0,0), v* =(1,0,0,0), (22)

dxH
where v# = &<,

The advantrage of working with the background field method is that,
as we mentioned, the final result for 4, is covariant under diffeomor-
phisms of the external metric §,,. This means that we can choose the
tidal field in any convenient gauge of our choice. Hence, we choose
the gauge such that H,, satisties the vacuum Einstein equation on a
flat background consistent with the Regge—-Wheeler gauge used in sec-
tion 3. In particular, to compare with the results of that section we focus
on a tidal field composed by just the harmonic # = 2. Written in Carte-
sian coordinates, this reads

H,\(x) = (,, +20,0,) A 5x"x" (23)

where A, is a symmetric-trace-free, purely spatial constant tensor (of
mass dimension 2), i.e., A, 0" =0 and At =0. To be concrete, in
spherical coordinates one has

4 Notice that the normalization of v* with respect to the Minkowksi metric is
simply v¥v¥y,, =—1.

Physics Letters B 854 (2024) 138710

2
Agpx*xP = 6, =Y. 4), 4
r

s

where r = 4 /x'x/§;; and we have chosen the amplitude &, of the exter-

nal tidal field in such a way as to match the notation of section 3.
As a sanity check, we have verified that the sum of the diagrams in
Figs. 1 and 2 satisfies the gauge condition

r,=0, @5)

and that the diagrams in Fig. 1 give the Schwarzschild metric up to
order G? in the gauge (25).° This is consistent with the well known
result of, e.g., Refs. [49,61] and reproduces the background metric giﬁh
in section 3.

We can now match the result of the other diagrams to the full-theory
solution 6g,,, derived in section 3. However, while H,,, is already in the
gauge used in section 3, {(h,,,) is not. Therefore, to do the comparison
we must first transform (A, ) from the coordinates x# defined by the
gauge condition (25) into the coordinate xﬁw defined by the Regge-
Wheeler gauge. The gauge transformation reads
k() = K(hy,) = 90,8, = 28,(,0,)&" » (26)

u

where &4 = Xpw

— xH is given below. This allows us to define

5g5§"f =H, + K<h}j§"> , (27)

which is now in the Regge-Wheeler gauge and can be compared to the
full-theory solution 5g,,, .

For simplicity, we will compare only the (##) component, the other
components of g, being fixed in terms of ég,, via the Einstein equa-
tions. Since (h,,) is static, then the gauge transformation must be
time-independent. Therefore, if we focus on the (#f) component, the
gauge transformation simplifies to <h5W> = (h,) — £'0,8,,. The deriva-
tive of the background metric is at least of order of the amplitude A of
the tidal field, hence, we only need to find & up to order r,A. Explicitly
this is given by

f=(x+ 27 Al x; — Ajxd xExT) (28)
r

Moreover, since /l(zE) is independent of m, it is enough to perform
the matching for any particular configuration of (m,m;,m,) in order to
compute its value and show that it vanishes. For concreteness, we will
consider the case where m; =0 and m, = 0, resulting in m = 0 at second
order. Performing the coordinate transformation above and projecting
the result on the (Z = 2,m = 0) harmonic, we find

=2 e 2 r 1 /5 1 r
5gEFT <f—2’m—°>=g’—<1—2—s)——\/jé°2—(1—1), 29
8y | r2 r 4vVaz 2r 29

where & = &,,_. The first term on the right-hand side, proportional to
&, results from the diagram 2(a) and reproduces the r,/r correction
at leading order in the tidal field [62]. The second term on the right-
hand side, proportional to &2, results from the last three diagrams in
Fig. 2. In particular, diagram (b) is simply the iteration of (a) due to
the solution of the tidal field at order &2. Instead, diagrams (c) and (d)
are a double insertion of the lowest-order tidal field given in eq. (23).
More details on the calculation of these diagrams will be provided in
[63]. The sum of all the four diagrams matches the full-theory solution,
68, =—-ry/r)Hy, with H, given in eq. (14) for m =m; = m, =0, upon

expanding for small r;/r and using %020202 = % %

The matching with the full theory in section 3 is obtained with-
out the inclusion of any of the higher dimensional operators (3) in the
point-particle action. In other words, up to quadratic order in the exter-

5 Intermediate divergences coming from diagram 1(b) are handled using di-
mensional regularization.
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7‘1(E> X K(E> X

(a) (b)

Fig. 3. Feynman diagrams for the (a) linear and (b) nonlinear tidal deformation.
Note that these diagrams contribute at the same order in powers of the external
field amplitude as the diagrams in Figs. 2(a) and 2(b)-(d), respectively.

nal source, the couplings associated with the diagrams in Fig. 3, which
capture the induced response of the body, vanish for black holes. Note
that, for the # =2 induced response, this conclusion can be reached
directly from a simple dimensional analysis: the higher dimensional op-
erators (3) correspond to a scaling ~ 1 /rf +1in the one-point function
of h n which is absent in the full solution (14).

5. Conclusions

In this work, we have derived the static nonlinear response of
Schwarzschild black holes in general relativity. We have explicitly
solved the nonlinear Einstein equations in the static limit and up to
second order in the perturbations of the Schwarzschild metric. We have
then performed the matching with the worldline EFT, which provides
a robust and unambiguous way of defining the tidal deformability of
the object. At given order in powers of the external field amplitude, dif-
ferent types of diagrams contribute in the EFT: there are the diagrams
in Fig. 3 corresponding to the operators E? and E? in (3), and there
are those in Figs. 1 and 2 obtained from the interaction vertices in (1)
and (2). The former capture the true induced (linear and quadratic, re-
spectively) response of the object, while the latter combine to resum
the external source. By comparing the full solution in general relativ-
ity with the EFT, we have concluded that /I(IE) = A(ZE) =0 in (3) up to
quadratic order in perturbation theory. For simplicity, we have focused
on the leading order in the derivative expansion in the EFT and consid-
ered only parity-even perturbations. Our approach can be employed to
study higher multipoles and odd perturbations [63].

To summarize, the vanishing of the nonlinear Love numbers is a
consequence of the following results: (i) at quadratic order in pertur-
bation theory the inhomogeneous solution is constructed from a source
(see eq. (A.18)) that is made of only the linear tidal field; (ii) the point-
particle EFT can be matched with the full solution without turning on
Love number couplings, while nonlinear corrections to the static solu-
tion in general relativity can be reconstructed from the EFT, at all orders
in ry, via just graviton bulk nonlinearities.

The result A(lE) = /1(2E> = 0 was previously obtained in [46] using
a different approach, which relies on harmonic coordinates and the
framework of post-Newtonian theory. In contrast, our approach is not
bound to the post-Newtonian expansion and is manifestly gauge invari-
ant. Our methodology can be applied to prove the vanishing of other
types of nonlinear Love numbers, such as those involving couplings
with the gravitomagnetic field, or to compute dynamical nonlinear Love
numbers beyond the static approximation; see e.g. [46,64]. Further-
more, defining the Love numbers as Wilson coefficients of a worldline
effective field theory makes it more transparent that their vanishing
necessitates the existence of a nonlinear symmetry in general relativ-
ity, such as those proposed for linear fields in [3,4] (see also [5-71).
It would be interesting to understand to what extent such symmetries
can be extended to higher orders in perturbation theory. In addition,
it will be interesting to see how our conclusions change for rotating
Kerr black holes, black hole solutions in higher dimensions and different
spins [32,34,36,37,65]. We leave all these aspects for future investiga-
tions.
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Appendix A. Second-order perturbation theory

In this section, we outline the derivation of the quadratic equations
for the perturbations of a Schwarzschild black hole in the static limit.
We shall denote the metric perturbation tensor with ég,, = g, — gish,
where giih is the background Schwarzschild metric, and further de-
compose it in even (polar) and odd (axial) components as dg,, =

5g§“’f“ + 5ngd. A general parametrization of 6g§‘ce“ and 6g,‘j‘vld in four
spacetime dimensions is given by [571°:
I's P P
(1—7)110 H& 0,7 0y
Seeven _ * H, 0974 0576
Buv = * x P2K+7 G r2(0,0,- 2% G|
0% sing ¢
* * * r2sin 6 (K — # G)
(A1)
1 .
00 —Waqsho sin 9()9:,
0 ——0,h sin 60,
odd _ sing ¢ 1 071
08, =\« « -L (ﬁ(,ad, - %%)hz %sin9(0; — g ﬁaé)hz ,
. x sin6 (9,0, — 220, ) hy
(A.2)
where the asterisks denote symmetric components and where we in-
troduced the differential operator # = %(03 - %69 — ,;2902). Each
S S’

odd
Hv

harmonics as, for instance, Hy(r,0,¢) = Zf’m Héf’m)(r)Y{f” (0, ¢), where
Y"(0.¢) are normalized as / dQ Y;"*(e,qb)yg’ (0, ) = 5, 5™ . How-
ever, to streamline the discussion, in the main text and below we omit
the tilde and the argument " of the spherical harmonic coefficients.
For instance, we will denote H (()f’m)(r) simply as H(r). Since Sgl‘j‘f“ and

component of 5gfl“’/e“ and 6g°“ can be further decomposed in spherical

(Sg;"éd have opposite transformation rules under a parity transformation,
the spherical symmetry of the background §,, ensures that (ng“’f" and

6 Note that the definition of h, differs by a sign with respect to [57,66]. In
addition, the definition of G differs by the subtraction of a trace, and we have
reabsorbed a factor 1/(1 — '—r‘) in the definition of H,.
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(Sgged do not couple at the level of the linearized equations of motion.
Mixing will appear starting from quadratic order.

A.1. Quadratic solution from even tidal field

In this section, we derive the even quadratic equations for the metric
perturbations in the static regime and solve them under the assumption
of a purely even tidal field at large distances. Without an odd tidal
field we can set 6gﬂfd to zero altogether and just focus on the even
perturbations 6g;“’f“.

Gauge fixing At each order in perturbation theory, we choose to fix the
Regge-Wheeler gauge as follows [39,57,67]:

Hy=H=G=0. (A.3)

Since this is a complete gauge fixing, it can be performed directly in the
action without losing any constraints [68].

Constraint equation With the gauge choice (A.3), the only off-diagonal
metric component in 5g§“’f“ is thus H, which is a constrained variable.
It is not hard to see that, in the static limit and in the absence of odd
perturbations,

H, =0, (A.4)

at each order in perturbation theory. This follows from solving G,, =0,
where G,, = R, — %gwR is the Einstein tensor. In fact, by construc-
tion, G, is at each order proportional to (derivatives of) H,, i.e.,
it vanishes when H; vanishes. As a result, with the gauge choice
(A.3) and the nonlinear solution (A.4) in the static limit, the met-
ric perturbation 5gfl‘;e“ boils down to the diagonal form: 5g;“’f“ =
diag [(1 — ) Hy, Hy. PK. 2 sin? 91(] [69]. Next, we plug this into the
Einstein—Hilbert action, which we expand up to cubic order in the per-
turbations H), H, and K. Taking then the variation with respect to
each of the three metric components, we can write down the quadratic
equations for Hj, H, and K. Two of them will lead to constraints, while
only one will give the static equation for the physical (even) degree of
freedom. To make this manifest, it is first convenient to perform the
following field redefinition,

2

H,=y + r
P

' r 3ry
K+ 2- 4 Ak, (A5)
—ry 2(}"—;‘.)2 r

_ 2 cos
where A = d5 + =0y

sphere, defined with line element dQ2 =d6? + sin? 0 d¢p? and satisfying
Ao K =—£(¢ + 1)K. The resulting equations are

62 is the spherical Laplacian on the 2-

W,+(f2+f+2)r+2rs _f(f+1)’[(f2+f—2)’+3’s]K
— 3
2 2r(r —ry) 40r—ry) (A.6)
-t / QY (0,4)S,(r,0,4).
K=o (1) - KO L D 2 (1)
r r—rg I r Ts
4r

=———— [ dQY™(0,p)csc0S,(r,0,9),
M]%Irs(r—rs) / ‘

(A.7)
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rlry =2 + r] K

,+r[rx—f(f+l)r] ,

rg(r—ry) ot 2(r —ry)?
CC+ Dr(r—ry) —r,2r+ry) &+ Dr(r—=2ry)

- rry(r—ry) ro(r—ry)? 0
r[f(f+ D(2+E=5)rr,— (€ —DEE+ D+ +QCr  +r) ]
2r (r—r,)?

43

=_—")2/dQY;"*(G,¢)CSCHS3(r,9,¢)

My ry(r
(A.8)

where S|, S, and S5 are source terms, quadratic in the fields—which
we will not write explicitly. The goal is to solve (A.6)-(A.8) in pertur-
bation theory. After straightforward manipulations, one finds that the
field components H, and K can be solved algebraically for in terms of
H, and derivatives thereof. Hence, the problem reduces to solving the
H’s equation of motion, which, after some massaging of (A.6)-(A.8), is
found to be

O+ Dr(r—ry) + r?

r2(r—ry)?

H + 2r—ry H — -5
0 r(r—ry) 0 0 Ho>

o (A.9)

where S 1 is a linear combination of (derivatives of) the source terms
in (A.6)-(A.8).

The homogeneous part of (A.9) is a (degenerate) hypergeometric
equation, which can thus be solved in closed form. To bring it in stan-
dard hypergeometric form, it is convenient to perform the following
field redefinition,

r

Hyr(x) =x (1 =07 ux),  x==. (A.10)
Using (A.10), the homogeneous equation takes on the form

x(1 = )" (x) 4 [c — (a + b+ Dx]u (x) — abu(x) = (A11)
with parameters

a=¢ -1, b=¢+1, c=20+2, (A.12)

satisfying the relation ¢ — a — b = 2. The two linearly independent solu-
tions are”

u () =,F (£ = 1,6+ 1,26 +2:%), (A.13)

uy(x)= (=) L F (4, 1,357 (A.14)

Since the first argument of u, is a non-positive integer and the third
argument is a positive number, we can use the formula [34]

(S AN SN R 3~x—‘)=
(A.15)

=D+ D, _,
)flz G X

where (), is the Pochhammer symbol. Notice that only this second
solution leads to a H,, that is regular at x =1 (u; contains instead a
logarithmic divergence). In particular, H, constructed out of u, is a fi-
nite polynomial with only positive powers of r—we recover in other
words the well-known fact that Love numbers of black holes in four
spacetime dimensions vanish.

In terms of H,), the two linearly independent solutions read

(rs )f+1
"
1-5

r

H(r) = P —1LE+1,20 42, (A.16)

7 This case corresponds to line 20 of the table in Sec. 2.2.2 of [70], with
m=¢ -2, n=¢ and [ = 2. The two independent solutions can be found in
egs. 2.9(1) and 2.9(13) of [70]. There is a typo in the case 20 of the table in
Sec. 2.2.2: the “u,” should be instead “u,”.
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@, (=) L
H,"(r=———>,F (—f,f+1,3,r—). (A.17)
rs s
_ 7)
The solution to the inhomogeneous solution (A.9) is
Hy(r)= / G(r,r)Sp, (ar, (A.18)
rS
where the Green’s function satisfies
2 — &+ Drir—r)+r?
2y 0 T Gy =60r— ). (A19)

rorr=ry) " F2(r—ry)?

For r # r/, the most general solution for G(r,r’) that is regular at the

horizon and is continuous across r = 1 is given by the combination

G(r,r') = 1

7o HHP o -1

+HOHHP R0 - 1|, (420

where Hél)(r) and H(g4)(r) can be read off from egs. (A.16) and (A.17),
and where W is the Wronskian,

w () =H" (o, H"(r) - H (0, H(r)
-1 (A.21)
=W, (i - 1> .
ro\r
W, is an £-dependent constant, which can be written in closed form as

- L

W
0 3r,

(—1)—f2-f-2{3<f —1)oF) (=¢.¢ +1:3;2),F,
x (f,f+2,2f+3; %) —4(f +1),F, (f— L+ 1,2f+2;%)

X [26,F) (1= £,6 +2,4;2) = 3,F, (=€, +1,3;2)] }

(A.22)
All in all, the inhomogeneous solution that is regular at the horizon can

be written as

1
Wir?

Hy(r) = [Hél)(r) / HP ) = rg)8y, (r)dr'

ro
+HP () / H "2 = r )8y, (dr | (A23)
r

In (A.23) we introduced an arbitrary radius r,. This is completely im-
material as the integral evaluated at r, can always be reabsorbed by
a redefinition of the integration constant of the homogeneous solution
that is regular at the horizon.

Appendix B. List of Feynman rules

In this appendix, we list the Feynman rules used in the main text for
the EFT matching computation:

k
_k, ;
Hv po _
ANNNANAN T kz—i0+P”Vp6, (B.1)
k, ki/ b
—>
a1y = ikQu)* 6D (ky + ky + ky) 71120 (B 2)

k;\ a3 f3
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ky ©p

=iH, ;5 (~ky — ky)V;"P" (B.3)

®pra3fs
ks a3f;
ko a3f3

d4
=i / Gyt M @ (B.4)

Ky

XHazﬂz (—k2 _ k3 _ q)V4”1/31”2ﬂ2
£ M

M .,Vvv\/_)‘“’ = iK7 /d1 e thex (@) p v (B.5)

where the cubic vertex 73 is obtained from expanding the Einstein—

Hilbert action up to cubic order in h,,. The cubic and quartic vertices

V3 and V, are obtained by expanding egs. (1) and (19) up to quadratic

order in both 4, and H,,. Their tensorial structures are handled using
the xAct package for Mathematica [71].

a3f304ps >
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