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Search for a new scalar decaying into new spin-1

bosons in four-lepton final states with the ATLAS

detector
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A search is conducted for a new scalar boson (, with a mass distinct from that of the

Higgs boson, decaying into four leptons (ℓ = 4, `) via an intermediate state containing two

on-shell, promptly decaying new spin-1 bosons /d: ( → /d/d → 4ℓ, where the /d boson

has a mass between 15 and 300 GeV, and the ( boson has a mass between either 30 and

115 GeV or 130 and 800 GeV. The search uses proton–proton collision data collected with the

ATLAS detector at the Large Hadron Collider with an integrated luminosity of 139 fb−1 at

a centre-of-mass energy of
√
B = 13 TeV. No significant excess above the Standard Model

background expectation is observed. Upper limits at 95% confidence level are set on the

production cross-section times branching ratio, f(66 → () × B(( → /d/d → 4ℓ), as a

function of the mass of both particles, <( and </d.
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1 Introduction

Notwithstanding its spectacular successes, the Standard Model (SM) is incomplete. In particular, the

nature of dark matter is unknown. A potential framework for extending the SM to include dark matter is

the Hidden Abelian Higgs Model (HAHM) [1–6], which posits a ‘hidden’ or ‘dark’ sector of particles

and fields, including a field with a * (1)d dark gauge symmetry mixing kinetically with the SM * (1)Y
hypercharge gauge field with some coupling strength n . This results in an additional scalar ( along with a

new gauge boson /d or ‘dark photon’. The scalar ( mixes with the SM Higgs boson with coupling ^, so all

processes that can produce a SM Higgs boson also produce an ( boson. Hence, the dominant production

process for ( in proton–proton (??) collisions would be gluon–gluon fusion. The decays of the /d boson

are determined by the gauge couplings and are independent of the mixings for n, ^ ≪ 1; the branching

ratio of the /d boson into electron or muon pairs would therefore be around 10% to 15% over the /d boson

mass range 1 GeV < </d
< 60 GeV [1].

Previous studies [7–12] have searched for a resonantly produced SM Higgs boson mixing with a new scalar

decaying into a /d/d or a //d pair, with each /d or / boson decaying into a pair of electrons or muons

(ℓ ≡ 4, `) with opposite electric charge. Other similar searches, including searches for pairs of light bosons

decaying into muons, g-leptons, photons, and/or jets, as well as searches for a single light boson decaying

into a pair of muons, using both
√
B = 8 TeV and

√
B = 13 TeV data, were performed at the Large Hadron

Collider (LHC) by the ATLAS [13–17], CMS [18–21], and LHCb [22] experiments. Further searches for

a SM Higgs boson decaying into undetected particles are reported in Refs. [23, 24]. The present work

extends the previous ATLAS � → /d/d → 4ℓ search [7], where the additional scalar ( decaying into the

/d/d pair, ( → /d/d → 4ℓ, has a mass distinct from that of the SM Higgs boson. The search reported

here makes no use of information about any possible jets or missing transverse energy, and so may also be

sensitive to other signal processes that may produce extra particles in addition to four leptons.

2 The ATLAS detector

The ATLAS experiment [25] at the LHC is a multipurpose particle detector with a forward–backward

symmetric cylindrical geometry and a near 4c coverage in solid angle.1 It consists of an inner tracking

detector surrounded by a thin superconducting solenoid providing a 2 T axial magnetic field, electromagnetic

and hadronic calorimeters, and a muon spectrometer. The inner tracking detector covers the pseudorapidity

range |[ | < 2.5. It consists of silicon pixel, silicon microstrip, and transition radiation tracking detectors.

Lead/liquid-argon (LAr) sampling calorimeters provide electromagnetic (EM) energy measurements with

high granularity within the region |[ | < 3.2. A steel/scintillator-tile hadronic calorimeter covers the

central pseudorapidity range (|[ | < 1.7). The endcap and forward regions are instrumented with LAr

calorimeters for EM and hadronic energy measurements up to |[ | = 4.9. The muon spectrometer surrounds

the calorimeters and is based on three large superconducting air-core toroidal magnets with eight coils

each. The field integral of the toroids ranges between 2.0 and 6.0 T m across most of the detector. The

muon spectrometer includes a system of precision tracking chambers up to |[ | = 2.7 and fast detectors

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector

and the I-axis along the beam pipe. The G-axis points from the IP to the centre of the LHC ring, and the H-axis points upwards.

Polar coordinates (A, q) are used in the transverse plane, q being the azimuthal angle around the I-axis. The pseudorapidity is

defined in terms of the polar angle \ as [ = − ln tan(\/2) and is equal to the rapidity H =
1
2

ln
(

�+?I
�−?I

)

in the relativistic limit.

Angular distance is measured in units of Δ' ≡
√

(ΔH)2 + (Δq)2.
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for triggering up to |[ | = 2.4. The luminosity is measured mainly by the LUCID–2 [26] detector, which

is located close to the beampipe. A two-level trigger system is used to select events [27]. The first-level

trigger is implemented in hardware and uses a subset of the detector information to accept events at a rate

below 100 kHz. This is followed by a software-based trigger that reduces the accepted event rate to 1 kHz

on average depending on the data-taking conditions. A software suite [28] is used in data simulation, in the

reconstruction and analysis of real and simulated data, in detector operations, and in the trigger and data

acquisition systems of the experiment.

3 Data and simulated event samples

The data used in this search were recorded during the 2015–2018 LHC run with ?? collisions at
√
B = 13 TeV.

After requiring that all detector systems were operational [29] without excess calorimeter noise [30], this

corresponds to an integrated luminosity of 139 fb−1 [31]. Events were selected by triggers requiring either

one or two electron or muon candidates [32–34]. The trigger thresholds on transverse momentum ?T range

from ?T > 7 GeV to ?T > 60 GeV, depending on lepton multiplicity and flavour. In either case, the trigger

efficiency is above 95% relative to the offline signal event selection criteria. Collision events are selected

by requiring an identified primary vertex with at least two tracks [35] and at least four lepton candidates

satisfying the requirements given in Section 4.

The expected contribution of the ( → /d/d → 4ℓ (ℓ = 4, `) signal is determined from Monte Carlo

(MC) simulations. Samples for this process are produced according to the HAHM implementation [36]

for the gluon–gluon fusion production process at leading order (LO) using MadGraph5_aMC@NLO

2.2.2 [37] with the mixing parameters n and ^ both set to 10−4 so that decays of the /d boson are prompt [1].

Parton showers and decays are simulated using Pythia 8.186 [38], along with EvtGen 1.2.0 [39] to decay

heavy-flavour hadrons. The NNPDF2.3lo [40] set of parton distribution functions (PDFs) and the A14

tune [41] are used. The width of the scalar ( is taken to vary with mass in the same way as the SM

Higgs boson [42]. The signal samples cover different <( and </d
mass hypotheses, in two regions. In the

first region, there are 32 samples with 30 GeV < <( < 110 GeV and 15 GeV < </d
< 48 GeV, and in the

second there are 49 samples with 150 GeV < <( < 800 GeV and 15 GeV < </d
< 300 GeV. In both cases,

<( > 2</d
. Detector effects are included using a Geant4 [43] simulation of the ATLAS detector [44].

The effects of additional ?? collisions in the same or a neighbouring bunch crossing (pile-up) are included

in the simulation.

Most background processes are estimated by using MC simulations, which consider ℓ = 4, `, g, and thus

include leptonic g-lepton decays. The samples used are identical to those of Ref. [7] and are briefly

summarized here. The non-resonant @@̄ → //∗ → 4ℓ and 66 → //∗ → 4ℓ background processes are

simulated using Sherpa 2.2.2 [45–51] at next-to-leading order (NLO) for up to one additional parton

and at LO for up to three additional partons. The � → //∗ → 4ℓ background is simulated with

Powheg Box v2 [52–56] for the gluon–gluon fusion, vector–boson fusion, and CC̄� processes, with

Pythia 8.186 for the +� process, and with MadGraph5_aMC@NLO for the 11̄� process. Higher-order

electroweak processes, including triboson production (+++) and vector–boson scattering (VBS), are

simulated using Sherpa 2.2.2, while the process CC̄ + (/ → ℓℓ) is simulated with Sherpa 2.2.0. Other,

reducible, backgrounds have fewer than four prompt leptons in the final state, but can be accepted by the

event selection if there are additional leptons from, for example, heavy-flavour decay or jets misidentified

as leptons. Backgrounds due to / + jets and CC̄ processes are estimated from data (see Section 5), but the

method also requires simulations of these processes; the / + jets process is simulated with Sherpa 2.2.1,
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while the CC̄ process is simulated with Powheg Box v2. The ,/ process was generated with Powheg Box

at NLO. For processes simulated with MadGraph5_aMC@NLO and Powheg Box v2, Pythia is used to

simulate parton showers and decays along with EvtGen. For the portion of the 66 → //∗ → 4ℓ sample

with <4ℓ > 130 GeV (corresponding to a few percent of the total estimated background) and the +++

samples, detector effects are included using a fast simulation [44], of just the calorimeter response [57]

component, which relies on a parameterization. All other samples use the full Geant4 simulation.

In addition to the backgrounds mentioned above, numerous other simulated background processes were

checked, including CC̄ associated with a diboson pair, +� with the Higgs boson decaying into two, bosons,

/Υ, C�, C,�, and @@̄ → //∗ at low ?T. The contributions from these backgrounds were lower than 0.02

events, so they were not included in the further background calculations.

4 Event selection

After reconstruction, electrons and muons are identified using the standard ATLAS ‘Loose’ criteria [58,

59], defined to maximize the reconstruction and identification efficiencies while still providing good-quality

candidates. Electron candidates must satisfy ?T > 7 GeV, |[ | < 2.47, and must also have an additional

associated hit in the innermost layer of the silicon detector. Longitudinal and transverse impact parameters

with respect to the primary vertex must satisfy |I0 sin \ | < 0.5 mm and |30 |/f30
< 5. Muon candidates

must satisfy ?T > 5 GeV and |[ | < 2.5, except that ‘calorimeter-tagged’ (CT) muons, identified by

matching an inner-detector (ID) track (with no corresponding track in the muon system) with a deposit in

the calorimeter consistent with a minimum-ionizing particle, must instead satisfy ?T > 15 GeV. Except for

‘stand-alone’ (SA) muons lacking a matching ID track, muon candidates must also have impact parameters

satisfying |I0 sin \ | < 0.5 mm, |30 | < 1 mm, and |30 |/f30
< 3. Quadruplets are then formed from two

same-flavour, opposite-sign lepton pairs: either 44, 242`, or 4`. A quadruplet may contain no more than

one CT or SA muon. In the case of four same-flavour leptons, two quadruplets are formed, one for each

possible pairing. If there are more than four leptons then there may be additional quadruplets, depending

on the flavours and signs of the leptons.

Leptons must be isolated from other deposits in the calorimeter or ID tracks [58, 59]. This rejects

backgrounds in which leptons arise from the decay of heavy-flavour hadrons, or in which jets are

misidentified as leptons [60]. For each lepton, the sum of the transverse energies of topological clusters [61]

within a cone of Δ' = 0.2 around it (excluding energy attributed to the lepton itself) must be less than

20% of its ?T for electrons, and less than 30% of its ?T for muons. The transverse momenta of tracks in a

cone around the lepton are also summed, and must be less than 15% of its ?T. The radius of the cone

depends on the momentum of the lepton. For electrons, it is Δ' = min(0.2, 10 GeV/?T), while for muons

it is Δ' = min(0.3, 10 GeV/?T). In both cases, tracks and energy clusters attributed to other leptons in the

quadruplet are excluded from the sums.

For each possible quadruplet, the invariant masses of the two pairs are denoted <01 and <23 , where

<01 > <23 . If all four leptons have the same flavour, then the alternative pairing <03,12 can be defined

taking the positively charged lepton of the <01 pair and the negatively charged lepton of the <23 pair to

make <03 and the remaining two leptons to make <12.
2

2 These <01,23 variables are distinct from the <12,34 variables used in Ref. [7], which were chosen such that |<12 − </ | <
|<34 − </ |. For <4ℓ < 2</ , <01,23 = <12,34. For larger <4ℓ , either <01,23 = <12,34 or <01,23 = <34,12.
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Each quadruplet must contain all the leptons corresponding to at least one of the triggers satisfied by the

event. The three highest-?T leptons must satisfy ?Tℓ1
> 20 GeV, ?Tℓ2

> 15 GeV, and ?Tℓ3
> 10 GeV. To

remove poorly-measured leptons and electrons from bremsstrahlung, all pairs of same-flavour leptons in

the quadruplet must satisfy a separation requirement of Δ'(ℓ, ℓ′) > 0.1, while different-flavour pairs must

satisfy Δ'(ℓ, ℓ′) > 0.2. At least one quadruplet per event is required. If more than one quadruplet passes

these requirements, the one with the smallest mass difference between the two pairs, Δ<ℓℓ = |<01 − <23 |,
is chosen.

All dilepton pair masses <01, <23 , <03 , and <12 must be larger than 11.105 GeV, corresponding to

<Υ(3() + 0.75 GeV, where <Υ(3() is taken to be 10.355 GeV [62]. This removes events where the alternate

pairing may be consistent with //∗ decay as well as events with lepton pairs consistent with �/k or Υ

decay.

Two signal regions are defined, each considering a scalar ( with a mass different from that of the

SM Higgs boson. The lower mass signal region (SR1) requires <4ℓ < 115 GeV and, to reject background

from / bosons, either <01 < 50 GeV or <01 > 106 GeV (this is the complement of one of the signal

region requirements from the � → //d → 4ℓ search in Ref. [7], and was chosen to avoid overlap with

that search). The higher mass signal region (SR2) requires <4ℓ > 130 GeV, and |<01,23 − </ | > 8 GeV

and |<03,12 − </ | > 4 GeV, where the latter requirement on the alternative pairing applies only to the 44

and 4` events. These pair mass requirements were set to optimize the expected significance.

Consistency between <01 and <23 is enforced by requiring <23/<01 > 0.85 − 0.1125 5 (<01), where the

modulating function 5 decreases monotonically from 5 (<01 ≤ 10 GeV) = 1 to 5 (<01 ≥ 50 GeV) = 0.

It is the result of re-optimizing the analysis to allow for larger /d widths at lower lepton-pair invariant

masses, where the background is low, and is fully described in Ref. [7].

Finally, if � ′
01

is defined as the energy of the 01 dilepton pair in the rest frame of the four-lepton system,

then
� ′
01

<4ℓ

=
1

2

(

1 +
<2

01
− <2

23

<2
4ℓ

)

.

The additional requirement |� ′
01
/<4ℓ − 0.5| < 0.008 reduces the dominant //∗ background by about a

factor of 1.5, while reducing the efficiency for the signal by less than five percent over most of the (<( , </d
)

range.

5 Background estimation

Backgrounds with four prompt leptons are estimated directly from simulation (see Section 3). The dominant

background, comprising 90%–95% of the total, is the non-resonant process //∗ → 4ℓ. As described in

Ref. [7], the prediction of this background was verified using background-dominated validation regions.

The background from SM Higgs boson production is effectively suppressed by the requirement that the

overall invariant mass <4ℓ not be consistent with that of the SM Higgs boson. Other processes with four

prompt leptons include CC̄/ → 4ℓ + - and processes with three gauge bosons and are found to be small

in comparison with the dominant //∗ background. The reducible background due to ,/ production is

similarly small.

Contributions from / + jets and CC̄ (including CC̄/ decays with fewer than four leptons) processes to the

signal regions are estimated from data. They are estimated separately but with similar techniques. In both

5



cases, the event sample is enlarged by relaxing the requirements on isolation and impact parameters for two

of the lepton candidates. For the CC̄ background, the two candidates with largest ?T must satisfy the nominal

requirements. For the / + jets background, the two candidates in the pair with invariant mass closest to

that of the / boson must satisfy the nominal requirements. In both cases, events are then classified into

four regions based on the requirements satisfied by the other two candidates:

• Region A: The remaining two candidates both satisfy isolation and impact parameter requirements.

• Region B: The remaining two candidates both satisfy the isolation requirement, but at least one does

not satisfy the impact parameter requirement.

• Region C: The remaining two candidates both satisfy the impact parameter requirement, but at least

one does not satisfy the isolation requirement.

• Region D: All other events.

To obtain adequate statistics, event selections are applied only as far as the quarkonia veto, and the electron

identification is also relaxed. Backgrounds other than the one being estimated are subtracted from the

event counts in regions B, C, and D, using estimates from simulation. The number of background events

in the signal region A can then be estimated as #A = nsel#B#C/#D, where nsel is the efficiency of the

remaining selections as determined from simulation. This assumes that the isolation and impact parameter

requirements are uncorrelated. This is nearly the case for the 44 and 242` final states (correlation coefficient

A < 0.01), but they are more correlated for the 4` final state (A ≈ 0.4). The effect of the correlation is taken

into account as a systematic uncertainty assigned to the yields of the / + jets and CC̄ backgrounds.

6 Systematic uncertainties

The uncertainty in the integrated luminosity is 1.7% [31], obtained using the LUCID-2 detector [26].

Uncertainties in the yields and efficiencies of simulated samples due to pile-up arise from differences

between the predicted and measured inelastic cross-sections and from the reweighting procedure. These

uncertainties are approximately 1%.

The efficiency for events to satisfy the selection depends on the triggering, reconstruction, identification,

and isolation efficiencies for leptons, as well as the determination of their momentum scale. Tag-and-probe

techniques are applied to dilepton resonances, including / → ℓ+ℓ−, �/k → ℓ+ℓ−, and Υ → `+`−, to

measure the efficiencies as well as momentum scales and resolutions for electrons and muons. This leads

to corrections to account for differences between data and simulation along with an estimate of the residual

uncertainty [58, 59]. As there are four leptons in the final state, small single-lepton uncertainties can result

in larger uncertainties in the final yields and efficiencies for simulated samples, up to 17%, dominated by

the uncertainties on the electron reconstruction and identification efficiencies.

Uncertainties in the modelling of the simulated signal and background processes are estimated by varying

the PDFs according to the prescription of Ref. [63] and the factorization and renormalization scales up and

down by a factor of two. For the signal process, the resulting yield uncertainties are taken from the results

for gluon–gluon fusion production of Ref. [64] and vary from 10%–19% depending on <( , dominated

by the uncertainty from factorization and renormalization scale variations. For the dominant //∗ → 4ℓ

background, these same sources result in an uncertainty in the yield of about 6%. Additionally, for this

sample, the matrix element matching scale is varied from the nominal value of 20 GeV to 15 GeV and

30 GeV; the resummation scale is varied up and down by a factor of four; and the alternate recoil scheme

6



Table 1: Expected event yields of the SM background processes and observed data in the two signal regions SR1

and SR2. The first uncertainty is the statistical component of the total uncertainty and the second the systematic

component.

Process Yield (± stat.± syst.)

SR1 SR2

//∗ → 4ℓ 30.9 ± 0.5 ± 3.2 62.0 ± 0.5 ± 7.9

� → //∗ → 4ℓ 0.61 ± 0.01 ± 0.04 0.22 ± 0.01 ± 0.03

,/ 0.06 ± 0.04 ± 0.03 0.42 ± 0.10 ± 0.05

VVV 0.06 ± 0.01 ± 0.01 0.78 ± 0.02 ± 0.14

CC̄ 0.33 ±<0.01 ± 0.31 0.78 ± 0.01 ± 0.46

/ + jets 0.70 ± 0.01 ± 0.72 2.53 ±<0.01 ± 1.08

Total 32.6 ± 0.5 ± 3.3 66.8 ± 0.6 ± 8.0

Data 36 55

of Ref. [65] (Sherpa parameter CSS_KIN_SCHEME=1) is compared. This results in an uncertainty in the

yield of 6% in SR1 and 12% in SR2, dominated by the matrix element matching scale. The uncertainty in

the yield for the � → //∗ → 4ℓ process is about 9% [66]. The uncertainty in the data-driven / + jets/CC̄
background estimate is 50%–100%.

7 Results

Table 1 reports the observed and expected yields in the signal regions. In SR1 (<4ℓ < 115 GeV), 36 events

are observed with an estimated background of 32.6 ± 3.3, while in SR2 (<4ℓ > 130 GeV), there are

55 events with an estimated background of 66.8 ± 8.0. The distributions of 〈<ℓℓ〉 = 1
2
(<01 + <23) for

both signal regions are shown in Figure 1, while Figure 2 shows the overall invariant mass <4ℓ , which

can also be interpreted as the mass of the scalar candidate. The selected events are represented in the

(<4ℓ , 〈<ℓℓ〉) plane in Figure 3, while the estimated background and an example signal shape in SR1 are

shown in Figure 4.

A two-dimensional interpolation procedure is used to obtain the shape of the 〈<ℓℓ〉 distribution for the

predicted signal at any point on the (<( , </d
) plane. For each generated signal MC sample, the 〈<ℓℓ〉

distribution is fit. In SR1, these distributions are fit well by Gaussians, with three parameters. However, in

SR2, the distributions are observed to be asymmetric, and a double-sided Crystal Ball distribution [67] is

used instead, with seven parameters. For this interpolation, the ( boson production cross-section and decay

branching ratios are factored out, with the cross-section taken from Ref. [64] and the branching ratio set to

one. Each fit parameter is then interpolated separately using the thin plate spline method [68–70], with the

regularization parameter set to zero so that the interpolation passes smoothly through each control point.

Exclusion limits on f(66 → () × B(( → /d/d → 4ℓ) are set using frequentist significance testing of a

statistic derived from a profile likelihood ratio that considers the data, the background model, and the signal

model distributions for various hypothesized (<( , </d
) points [71–73]. To reduce the resources required,

events are binned coarsely in <4ℓ and limits set independently within each <4ℓ bin as a function of 〈<ℓℓ〉.
Bins with a width of 1 GeV are used for 〈<ℓℓ〉. In SR1 there are eight equal-sized bins in <4ℓ in the range

of 30 GeV to 110 GeV, and for SR2, there are 14 equal-sized bins in the range of 125 GeV to 825 GeV.
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Figure 1: Distributions of the average dilepton mass 〈<ℓℓ〉 = 1
2
(<01 + <23) for the two signal regions (a) SR1 and

(b) SR2. The hatched bands show the uncertainty in the background prediction. The uncertainties on the data points

are asymmetric Poisson errors (Eqs. (40.76a) and (40.76b) of Ref. [62]).
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Figure 2: Distributions of the total invariant mass <4ℓ for the two signal regions (a) SR1 and (b) SR2. In (a), the

requirement <4ℓ < 115 GeV is not applied, but is shown by the arrow. The hatched bands show the uncertainty

in the background prediction; however, in (b), background uncertainties are not shown for <4ℓ > 115 GeV. The

uncertainties on the data points are asymmetric Poisson errors (Eqs. (40.76a) and (40.76b) of Ref. [62]).
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Figure 3: Events selected in signal regions (a) SR1 and (b) SR2, represented in the (<4ℓ , 〈<ℓℓ〉) plane. The points

are differentiated by final state (44, 242`, and 4`) and by data-taking period (2015–2016, 2017, and 2018).
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Figure 4: (a) Estimated background and (b) expected signal shape for (<( , </d
) = (110 GeV, 30 GeV) in SR1 in the
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Figure 5: 95% CL expected and observed limits on the total cross-section times branching ratio f(66 → () ×B(( →
/d/d → 4ℓ). (a) SR1 expected limit; (b) SR1 observed limit; (c) ratio of observed to expected limits in SR1; (d)

SR2 expected limit; (e) SR2 observed limit; (f) ratio of observed to expected limits in SR2. The horizontal bands in

the SR2 figures show the region excluded by the / boson veto requirement, |<01,23 − </ | > 8 GeV.

Only signal MC events with <4ℓ within one bin width of the generated <( value are used to form the

signal model distributions for this calculation. Limits are evaluated as described in Refs. [7–9] (using the

HypoTestInverter component of the RooStats toolkit [74] and evaluating the test statistic distributions

with MC pseudoexperiments taking into account both statistical and systematic uncertainties), resulting

in CLs frequentist upper limits at 95% confidence level (CL) on f(66 → () × B(( → /d/d → 4ℓ) as a

function of the </d
parameter in each <4ℓ bin. Expected and observed limits and their ratios are shown

in Figures 5(a) to 5(c) for SR1 and Figures 5(d) to 5(f) for SR2. The corresponding one-dimensional

local ?0-values are shown in Figures 6(a) and 6(b). In SR1, the point with the smallest ?0-value is at

(<( , </d
) = (110 GeV, 30 GeV) with a local significance of 2.7f, while in SR2 the smallest ?0-value is at

(<( , </d
) = (350 GeV, 75 GeV) with a local significance of 2.8f. The local significance can be converted

to a global significance by including the look-elsewhere effect using MC pseudo experiments as outlined in

Ref. [75]. For SR2, the largest global significance is 0.5f.

The local significance of the deviation in SR1 is re-evaluated using the same frequentist significance

testing as described above but applied in the two-dimensional (<4ℓ , 〈<ℓℓ〉) plane with a binning of

Δ<4ℓ ×Δ〈<ℓℓ〉 = 3 GeV× 1 GeV. The evaluation is done in a narrow window scanned over the plane with

size set to contain at least 99% of the expected signal. The resulting local ?0-value still corresponds to a

significance of 2.7f but for the mass point (<( , </d
) = (109 GeV, 31 GeV). Converting this to a global

significance yields 1.6f.
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Figure 6: Local ?0-values in the (<4ℓ , 〈<ℓℓ〉) plane for (a) SR1 and (b) SR2, evaluated in slices in <4ℓ . The horizontal

band in the SR2 figure shows the region excluded by the / boson veto requirement, |<01,23 − </ | > 8 GeV.

8 Conclusions

A search is presented for the decay of a new scalar ( into two new spin-1 particles ( → /d/d, with each

/d boson decaying into a pair of electrons or muons, yielding an inclusive four-lepton final state. It is

conducted in the plane of the reconstructed four-lepton mass and the average dilepton mass of the /d → ℓℓ

candidates, and it uses 139 fb−1 of ?? collision data at
√
B = 13 TeV recorded by the ATLAS experiment

at the LHC during the period 2015–2018. Two different signal regions are studied, corresponding to

30 GeV < <( < 115 GeV and 130 GeV < <( < 800 GeV. The data are found to be consistent with the

Standard Model background expectation, and 95% CL upper limits are set on the total cross-section times

branching ratio f(66 → () × B(( → /d/d → 4ℓ) as a function of <( and </d
. In the first signal region,

the limits range from 0.14 fb to 3.1 fb and in the second, from 0.05 fb to 0.60 fb. These represent stringent

constraints on the dark sector described by the Hidden Abelian Higgs Model, and also apply to similar

models resulting in a four-lepton final state.
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