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a previously unexplored region of parameter space. Other new particle models that lead
to the same experimental signature, including ALPs coupled to gluons or photons, U(1)B
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1 Introduction

The ForwArd Search ExpeRiment (FASER) [1–3] is an experiment at the CERN Large
Hadron Collider (LHC) designed to search for light, weakly-interacting particles produced at
the ATLAS interaction point (IP1). These particles include the neutrinos of the Standard
Model (SM) and also new particles associated with beyond-the-SM (BSM) phenomena.

The FASER detector [4] is positioned on the beam collision axis, or line of sight (LOS),
480 m from IP1. The detector is in an ideal location to study light particles that are produced
in proton-proton collisions and are so feebly interacting that they can travel through a
hundred meters of concrete and rock, offering a relatively large acceptance and efficiency for
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long-lived particle decays. High-energy neutrinos and muons are the only Standard Model
particles that can pass through the rock and reach the detector. While muons are deflected
by the LHC magnets, not all of them are affected. Neutrinos from colliders were first directly
observed using the electronic components of FASER using 2022 data [5]. Neutrinos can also
be detected through their interactions with the neutrino-specific passive detector component,
FASERν [6], which has been used to observe the first electron neutrinos at colliders and also
measure neutrino cross sections in the previously unprobed TeV energy range [7].

Long-lived particles are predicted by a wide range of BSM models that can accommodate
a suitable dark matter (DM) candidate, absent in the SM. These models often involve new
particles in a hidden sector, feebly interacting with standard matter. Depending on their
mass and couplings to SM particles, they can be long-lived and potentially decay within the
FASER detector volume. FASER’s reach for BSM long-lived particles has been studied in
ref. [8]. The first search for new physics published by FASER focused on models characterized
by the presence of dark photons using the 2022 dataset [9]. It exploited the signature of an
electron-positron pair appearing within the detector and reconstructed as charged particle
tracks associated with a high-energy deposit in the electromagnetic (EM) calorimeter of
the FASER detector.

In this paper, a search for light, neutral new particles decaying to a pair of photons
is reported. Events are required to have a high-energy deposit in the EM calorimeter,
corresponding to the signature of energetic photon pairs, in addition to no upstream activity.
Incoming charged particles are vetoed through FASER’s scintillator systems.

Axion-like particles (ALPs) form a broad category of pseudoscalar particles that en-
compasses axions. Axions are particularly significant due to their potential to solve the
strong CP problem [10–12]. Furthermore, axions and ALPs within extended, UV-complete
models can offer a variety of phenomenological benefits across a large range of masses [13–18].
They can be viable dark matter candidates or mediate the interactions between SM and DM
particles, and several classes of models exist differing by the kind of coupling between the
ALP and SM particles. Models with ALPs dominantly coupling to weak gauge bosons and
decaying into a pair of photons are the primary target of this paper, probing a range of masses,
ma, between 50 and 500 MeV and couplings to the SM particles, gaW W , between 10−5 and
10−3 GeV−1. Models where ALPs interact either exclusively with gluons or photons [19–22]
are also considered for interpretation. Furthermore, events characterised by the presence of a
pair of highly-energetic EM deposits can be a signature for other new physics models. Results
are therefore also interpreted in the gauged U(1)B model [23–25], with a new light gauge
boson coupled to baryon number, in the up-philic model [26, 27], predicting light scalars
predominantly coupled to up-quarks, and in Type-I two-Higgs doublet models (2HDM), where
light scalars with relatively long lifetime can also be accommodated [28–30].

The paper is structured as follows: section 2 reports the details of the new physics
models used as primary target or considered for interpretation. The FASER detector is
briefly presented in section 3. Section 4 summarises the event reconstruction and details
about the data and simulation samples used. Section 5–section 7 describe the core of the
analysis, from event selection, to the estimation of the backgrounds and the evaluation of
systematic uncertainties. Section 8 reports the results and their statistical interpretation
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(a) ALP-W production (b) ALP-W decay

Figure 1. Primary Feynman diagrams of production and decay of the ALP-W model.

as constraints on the parameter space of the ALPs and other hidden sector models. The
appendices contain additional details of the analysis, comparisons to existing bounds, an
event display, and a reinterpretation of the results of this paper in the dark photon model,
where electron-positron pairs are identified as EM deposits with no tracking requirements.

2 Signal models

FASER can probe several types of new physics models characterised by the presence of
long-lived particles produced through a variety of processes. Depending on their mass and
couplings to SM particles, several interesting decay modes can be searched for at FASER,
helping constrain new regions in the parameter space. In models where the ALP couples to
the SU(2)L gauge bosons before electroweak symmetry breaking (EWSB) [31–33], referred to
as the electroweak-philic ALP model (ALP-W), the phenomenology is particularly favourable
for FASER. In this case, after EWSB, the ALP (aW ) couples to both photons and weak
gauge bosons, as detailed in the following. The corresponding Lagrangian is [31–33]

L ⊃ −1
2m2

aa2
W − 1

4gaW W aW W a,µνW̃ a
µν , (2.1)

where ma is the ALP mass, gaW W is the ALP-W coupling parameter, and W µν is the
SU(2)L field strength tensor. At the LHC, these particles can be produced in decays of b- or
s-flavoured hadrons produced at IP1, primarily via flavour-changing neutral current (FCNC)
decays. The dominant production processes, at almost equal rates, include the decays of
B0 and B± mesons into ALPs and various possible strange hadrons. The production of
Bs mesons is suppressed primarily because the strange quark is heavier than the up/down
quarks and, consequently, it contributes significantly less to the ALP-W production rate.
In the low ma range, where kinematically allowed, kaons can also decay into a pion and
an ALP. Once produced, the dominant ALP-W decay mode is into two photons, a → γγ.
The decay a → γee through an off-shell photon has a branching fraction at the percent level
and is negligible for this study. An example production mechanism and decay within the
ALP-W model is shown in figure 1.

The ALP-W is the primary target of the study presented here, with the largest projected
sensitivity expected within FASER among the many models initially investigated in ref. [8].
The expected acceptance, the fraction of ALPs with energy >1.5 TeV and the signal yield
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Figure 2. (a) The acceptance for events from the ALP-W model at truth level to decay inside
FASER. (b) The fraction of ALP events in FASER with ALP energies above 1.5 TeV. (c) Expected
number of ALP-W signal events in FASER, assuming 57.7 fb−1 and accounting for the typical signal
selection efficiency on top of a 1.5 TeV energy requirement. Shaded areas highlight previously excluded
parameter space.

as a function of ma and gaW W are shown in figure 2. Predictions are obtained using Monte
Carlo (MC) samples generated with the FORESEE [26] package before the detector response
simulation, referred to as truth level, and assuming an integrated luminosity of 57.7 fb−1. In
the parameter space of interest, typical signal acceptances in the FASER detector volume
are of the order of 10−6 to 10−7 (figure 2(a)). FASER covers around 10−8 of the solid angle
of the ATLAS IP and the probability to decay in the FASER decay-volume is < 0.3%, this
highlights the beneficial location of FASER for such BSM searches. Since forward hadrons
inherit a sizable fraction of the beam energy, the ALPs produced in their decay and reaching
FASER can have multi-TeV momenta [8]. In the ALP-W case, the fraction of events with
energy above 1.5 TeV (as shown in figure 2(b)) corresponds to the selection criterion for
the signal region used in the analysis. For high coupling values, this fraction is well above
50%. Across a broad portion of the parameter space, such as around masses of 100 MeV and
coupling values as low as 10−5 GeV−1, the fraction remains at 10% or higher. At a luminosity
of 57.7 fb−1, signal yields evaluated at truth level as a function of ma and coupling gaW W are
shown in figure 2(c), where the effects of the aW momentum selection and the typical signal
selection efficiency are included. The latter takes into account as well the efficiency of the
other selections applied in the analysis and is around 80%. As evident in this figure, with
the current dataset, FASER has the sensitivity to see hundreds of aW events in currently
unconstrained regions of parameter space. Assuming a background-free analysis, also shown
is the contour highlighting the region with more than three expected signal events, which
indicates that previously unexplored parameter space with masses ma ∼ 60 MeV–400 MeV
and couplings gaW W ∼ 10−5–10−3 GeV−1 are expected to be probed by FASER.

Additional models with similar expected detector signatures have also been considered
for interpretation and are described in the following.

• ALP-photon. A benchmark model of axion-like particles suggested by the Physics-
Beyond-Colliders group [19] is an effective Lagrangian with an ALP only coupling to
photons, referred to as the ALP-photon model, defined by its coupling to photons
gaγγ and its mass [22]. The ALP-W model introduced in eq. (2.1) can be seen as a
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UV-completion of the ALP-photon model. The dominant production mode for ALP-
photons to enter FASER is through the so-called Primakoff process [19, 34, 35], where
a photon interacts in matter and converts to an ALP. This can happen in material
between IP1 and FASER, most importantly the TAN [36], which is an absorber for
neutral particles. In the mass and coupling ranges allowing the ALP-photon to decay
within FASER, ALPs decay almost solely into two photons.

• ALP-gluon. Models where axion-like particles can interact exclusively with gluons
through coupling gagg are also considered. These models are especially intriguing because
axions were originally proposed as a solution to the strong CP problem, with their
mass being directly related to the strength of their interaction with gluons. Interactions
between ALPs and ordinary matter affect quarks properties (at one loop), induce
changes in quark flavours (at two loops), and extend to leptons and photons (at three
loops). The model considered in this paper, referred to as the ALP-gluon model, was
studied in previous works [20], and FASER’s reach was first evaluated in ref. [8]. The
dominant production mode arises from mixing with neutral scalars such as π0, η, and
η′. Flavour-changing couplings to quarks can produce ALP-gluons via B-meson decays
(B → Xsa), but these are loop-suppressed and thus not considered in this study. At
low masses, ALP-gluons decay only to two photons, with hadronic decays such as to
3π and π+π−γ occurring above approximately ma = 0.4 GeV. Estimates of the decay
widths for hadronic decays for the relevant mass range are taken from ref. [20].

• Up-philic scalar. Long-lived scalar or pseudoscalar particles such as ALPs offer inter-
esting model-building prospects, since they can avoid many symmetry-based constraints
restricting the properties of vector-like new particles. A light scalar predominantly
coupling to up-type quarks [27] (also referred to as the up-philic scalar, S) can be
introduced avoiding strict constraints from B-meson decays and other flavour-related
experimental data measurements, while still allowing for high production rates in
proton-proton collisions. The model hereby considered can be entirely defined through
the scalar mass, mS , and its coupling gu to SM up quarks. The primary production
modes for this up-philic scalar are rare decays of η and η′, specifically η, η′ → π0S, with
suppressed kaon and B-meson decays [26]. The scalar decays mainly into hadronic
final states, predominantly a neutral pion pair, if kinematically allowed. For lower
scalar masses, the lifetime of S is significantly extended due to loop-induced decays
into photons.

• U(1)B vector boson. A common approach to add potential dark sector mediators is
by introducing an additional U(1) symmetry, with a new vector gauge boson. A well-
known class of such models are dark photons, which only interact with the SM through
kinetic mixings with the SM fermions. This can be extended to a direct gauge coupling
between the new boson and SM fields. Introducing a dark sector through a U(1) gauge
symmetry conserving baryon number would lead to an additional vector boson coupling
to the baryon number (gB), here referred to as the U(1)B gauge boson [23–25]. The
existence of these new bosons could explain the accidental baryon number conservation
of the SM. The main production of U(1)B gauge bosons at the LHC is through dark
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bremsstrahlung or light meson decays. The U(1)B vector boson can decay into an
electron-positron pair at small masses, below 0.2 GeV. Above that, its main decay
channel is into a neutral pion and a photon, leaving a photonic final state in FASER.
At higher masses, a decay into a charged pion pair and a neutral pion is also possible.

• Type-I 2HDM. Type-I “fermiophobic” two Higgs doublet models (2HDM) predict
a second Higgs doublet Φ2 coupling to fermions and leading to a new CP-even scalar
Higgs, H. For large values of tanβ (the ratio of the vacuum expectation values of
the two doublets) and small values of cos(β − α) (parametrizing the coupling of H

to gauge bosons, with the mass-squared matrix of the scalars diagonalised by the
angle α), the scalar H is very weakly coupled to fermions and gauge bosons [28–30].
Hence it can be long-lived and potentially detectable in FASER. Following ref. [28],
we further choose cos(β − α) = 1/tan(β) to suppress strong bounds from h → HH

decays and mA = mH+ = 600 GeV to decouple the pseudo-scalar and charged Higgs
boson. The scalar H is mainly produced through rare B-meson decays, B → XsH , with
small contributions from B → XsHH. The single scalar production rate scales with
1/tan(β)2, while a double scalar production is independent of tan(β). The additional
scalar primarily decays into two photons, H → γγ.

Examples of decay diagrams for new particles as predicted by the above-listed additional
models considered in this paper are shown in figure 3. This showcases the variety of coupling
and model specifications FASER can probe exploiting photon-based signatures. An overview
of the production and decay mechanisms for all models discussed are given in appendix B.
The expected acceptance, efficiency, and signal yield for each model are similar or lower
than those evaluated for the ALP-W model and depend on the mass, coupling of the new
predicted particle to ordinary matter and the production mode. Additionally, the photon-
signature-based analysis presented in the following can be used to infer interpretations in
models with electron-signatures, such as given in appendix A.

3 The FASER detector

The FASER experiment, described in detail in ref. [4], is located in the TI12 connection
tunnel about 5 m away from the LHC. It is aligned with the LOS of the IP1 collision axis.1
However, due to the crossing angle in IP1,2 the LOS is offset vertically by up to 6.5 cm
with respect to the centre of the detector. With a 10 cm-radius active transverse size, it
covers an angular acceptance corresponding to a pseudorapidity η > 9.2 around the LOS

1FASER uses a right-handed coordinate system. The origin of the coordinate system in the transverse
plane is the centre of the detector axis. In the longitudinal direction, the origin is at the front of the first
tracking station of the spectrometer, which is 477.759 m from IP1. The x-axis points horizontally towards the
center of the LHC, the y-axis vertically towards the Earth’s surface, and the z-axis along the central detector
axis, away from IP1. The radius from the centre of the detector is calculated as r =

√
(x2 + y2), with the

azimuthal angle ϕ around the z-axis. Pseudorapidity is η = − ln tan(θ/2), where θ is the polar angle from the
z axis.

2In 2022, the half-crossing angle was fixed at −160 µrad, while in 2023 it varied slightly between −165 µrad
and −135 µrad during physics fills, with most luminosity recorded around −160 µrad.
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(a) ALP-photon Decay (b) ALP-gluon Decay (c) U(1)B Decay

(d) Up-philic Decay (mS < 2 ×
mπ0)

(e) Up-Philic Decay (mS > 2 ×
mπ0)

(f) 2HDM Decay

Figure 3. Examples of decay diagrams for new particles as predicted by (left to right, top to bottom):
ALP-photon (a), ALP-gluon (b), U(1)B (c), up-philic (d and e) and 2HDM (f) models. In the case of
up-philic models, decays for scalar mass ranges above or below twice the mass of the π0 are shown.

with respect to IP1. FASER also includes a sub-detector, FASERν [6], designed to detect
neutrinos produced in the LHC collisions and to study their properties.

The detector (as illustrated in figure 4) consists of a front scintillator veto system, the
FASERν emulsion detector, the interface tracker, the FASER scintillator veto station, the
decay volume, the timing scintillator station, the FASER tracking spectrometer, the preshower
(PS) scintillator system, and the EM calorimeter system. The detector includes three 0.57 T
dipole magnets, one surrounding the decay volume and the other two embedded in the
tracking spectrometer. The key components of interest for this analysis are the scintillator
(including the preshower) systems, and the EM calorimeter. Furthermore, the calorimeter
trigger is used for the data set considered.

The scintillator system includes four stations, each featuring multiple scintillator layers
as follows:

• At the front of the detector is the vetoNu station, comprising of two scintillator layers
positioned in front of the FASERν tungsten/emulsion detector. While the FASERν

detector is not utilized in this analysis, the eight interaction lengths of tungsten play a
role in suppressing potential backgrounds.

• In front of the decay volume is the veto scintillator station composed of three scintillator
layers, with a 10 cm-thick lead absorber placed between the two downstream scintillators
and the upstream one.

• For triggering and timing measurements and as an additional veto layer, the timing scin-
tillator station is placed after the decay volume and in front of the tracking spectrometer.

– 7 –
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Figure 4. A sketch of the FASER detector, showing the different detector systems. The detector
coordinate system is also shown [4].

This station consists of two scintillator layers separately covering the top and bottom
half of the detector (with a small overlap region in between). The scintillators are 1 cm
thick to minimize the material in the detector volume. The timing scintillators cover a
bigger transverse area with respect to the LOS, facilitating identification of incoming
large-angle muons that miss the veto scintillators and could lead to a high-energy
deposit in the calorimeter.

• A preshower detector, consisting of two scintillator layers, is placed after the tracking
spectrometer and in front of the calorimeter. Both layers are preceded by a 3 mm-thick
layer of tungsten radiator to create a simple preshower detector. The purpose of the
preshower in FASER is to differentiate between an incoming EM shower formed by a
high-energy photon or electron and a neutrino interacting in the calorimeter material.
To reduce backsplash from the calorimeter and preshower radiator into the last tracking
station, a 5 cm-thick graphite block is placed in front of each layer of tungsten and
between the final scintillator layer and the calorimeter.

All scintillators (except the preshower) are used to veto events with incoming charged
particles, which are mostly muons.

Since the signal of interest does not rely on the reconstruction of tracks through the
tracking spectrometer (see section 5), the analysis is sensitive to ALPs decaying within an
extended decay volume comprising the region between the veto scintillators and the preshower
scintillator station, which consists of the decay volume, spectrometer magnets, tracker stations
and the timing station (referred to as the sensitive detector volume in the following and is
a total length of 4.15 m with a 10 cm radius).

The EM energy of particles traversing the detector volume is measured by the EM
calorimeter, located at the furthest end of the detector. The calorimeter is composed of four
spare modules from the outer electromagnetic calorimeter of the LHCb detector [37], each
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comprising a total depth of 25 radiation lengths. The energy resolution has been measured
to be O(1%) [4] in the high-energy range most relevant for this analysis, using data collected
in the test beam at the CERN SPS carried out in July 2021.

4 Data and simulation samples

This analysis uses data events collected during 2022 and 2023 in
√

s = 13.6 TeV collisions
provided by the LHC during its ongoing Run 3 data-taking. The dataset analysed corresponds
to an integrated luminosity of 57.7 fb−1 after data quality selections were applied to remove
data taken during non-standard conditions. The ATLAS luminosity measurements and
calibrations described in refs. [38–41] are used.

Events are triggered by signals from the scintillators or calorimeter system, with a typical
total trigger rate of 1 kHz in the relevant years. This is dominated by high-energy muons
entering FASER from collision decay products in IP1. The average detector deadtime was
measured to be 1.3%. The trigger and data acquisition system is described in more detail
in ref. [42]. In this analysis, only the calorimeter trigger is used and is fully efficient for
energy deposits above 20 GeV.

Monte Carlo (MC) simulated samples are used in the analysis to evaluate signal and
background yields and optimise the event selection. Additionally, the MC was used to aid in
the evaluation of some of the systematic uncertainties for the analysis. The simulation of all
signal MC samples is based on FORESEE. For each signal model, samples are simulated for a 2-
dimensional grid in the mass-vs-coupling plane. To overcome the computational impracticality
of running the full detector simulation for fine grids with large sample statistics, a method of
parameterizing the efficiency, as a function of energy, of long-lived particles decaying into
specific final states to pass analysis selections was adopted. These parameterized efficiencies
were obtained for all relevant decay final states using large full detector simulation samples
with a flat energy distribution and the energy dependence was modeled with parameterised
functions (as given in appendix C). The method was validated against the full simulations
for various benchmark models, showing agreement within the MC statistical uncertainty, and
then used to generate a large number of simulation points across different models, facilitating
a more accurate statistical analysis.

The decay of ALPs, up-philic scalars, U(1)B bosons and 2HDM scalars up until the first
preshower layer was simulated within a 100 mm radius of the detector axis. The simulation
of forward B-mesons, from which ALPs or light scalars arise, followed the latest prescription
developed in ref. [43], using POWHEG [44–46] with the NNPDF3.1sx+LHCb PDF set [47, 48] to
model B-meson production at next-to-leading order and using parton distribution functions
including small-x resummation at next-to-leading logarithmic accuracy and matched with
Pythia 8.3 [49, 50] to model the parton shower and hadronization. Various sources of
uncertainties on the predicted signal yields were evaluated. The main uncertainties taken
into account are on the B-meson production rates and were estimated as uncertainties on
the flux based on variations of the renormalization and factorization scales of the different
generators. The kaon decay rate prediction is based on EPOS-LHC[51], with SIBYLL 2.3d [52],
QGSJET 2.04 [53] and a dedicated forward physics tune of PYTHIA 8.3 [54], used as alternative
MC generators to estimate the corresponding flux uncertainty.
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For background studies, described in detail in section 6, various MC samples are used.
Neutrinos are produced upstream of FASER through light- and charm-hadron decays and
can then undergo charged- and neutral-current interactions in FASER. The neutrino fluxes
were obtained using the fast neutrino flux simulation presented in ref. [55], with adjustments
made to match the LHC’s configuration during Run 3 [56]. Following the recommendations
detailed in ref. [56], the central prediction for the neutrino flux from light hadrons is based
on EPOS-LHC, with systematic uncertainties estimated by the spread of generator predictions
from SIBYLL, QGSJET and Pythia. For charm hadrons, the POWHEG+Pythia prediction is used,
with uncertainties from scale variations [45]. Neutrino interactions in FASER were simulated
with GENIE [57–59]. For each of the nominal samples and variations, 10 ab−1 of events were
simulated. The Bodek-Yang model [60–62] employed in GENIE agrees with more recent cross
section models [63, 64] to within 6% over the range of energies of interest [56]. Two dedicated
high-energy muon simulation samples were used to aid in the evaluation of neutral-hadron
and large-angle muon backgrounds (see section 6), both from dedicated FLUKA simulations of
the production and propagation of muons produced from the collision products in IP1 [65–67].
The two muon samples used are: a FLUKA sample with 150 × 106 muons from 200 million pp
collisions, and a dedicated FLUKA sample of 4× 105 muons simulated at large angles and radii.
The FLUKA setup includes a realistic LHC infrastructure model between IP1 and FASER,
validated by LHC data. The first sample contains muons entering FASER from IP1, while the
second consists of muons generated upstream of the vetoNu stations, with radii between 9 and
25 cm. Additional muon simulation samples were used for systematic uncertainty evaluation.

To simulate the particles, GEANT4 [68] is used to simulate the propagation and interactions
within the FASER detector. It includes a realistic detector geometry, including passive
material. An additional 8.8% correction factor is applied to the calorimeter EM energy based
on testbeam studies, aligning the calibrated MC energy with the testbeam data, following
the procedure of ref. [9].

5 Event reconstruction and event selection

The reconstruction of data events recorded in FASER uses the Calypso [69] framework,
based on the open-source ATLAS Athena reconstruction software [70, 71]. The total charge
deposit3 of the calorimeter and scintillator signals is extracted by summing the digitised PMT
pulse values post-pedestal subtraction. Simulation samples follow the same reconstruction as
data. The detector response is calibrated using muons (as minimum-ionising-particles, MIPs),
with charges being converted to EM energy/ MIP-equivalent (nMIPs) for the calorimeters
or scintillators, respectively.

The typical signature of a signal event in the detector is shown in figure 5 for ALPs,
and can be summarised as:

• No signal is observed in the veto and timing scintillators, since ALPs are electrically
neutral.

• Preshower charge deposits consistent with an EM shower arising from the decay photons.

• A large energy deposit in the calorimeter left by the high-energy photon pairs.
3A charge deposit is defined as the measured charge in the photomultiplier tube (PMT) when particles lose

energy and generate light in the scintillators.
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Figure 5. Sketch of an ALP traversing through the FASER detector. As ALPs are electrically
neutral, no signature is expected in any of the veto scintillator stations, followed by signal in the
preshower and a large deposit in the calorimeter. The dotted lines show that the ALP leaves no signal
in the detector and the white blobs in the preshower layers and the calorimeter depict energy deposits.
The ALP is allowed to decay within the sensitive detector volume comprising the region across all
three magnets, with a total length of 4.15 m with a 10 cm radius.

The same topology is expected for all the signal models considered in this paper. To
avoid any bias in the analysis, a blinding methodology was implemented on the data sample.
A “blinded” region was defined as events with a limited deposited charge in any of the
veto scintillators and calorimeter energy surpassing 100 GeV. Event selection, background
estimation, and the consideration of systematic uncertainties were all finalised prior to
investigating this blinded region.

Following the above, the event selection requires events triggering the calorimeter and in
time with the collision timing. Only events corresponding to colliding bunches are selected,
with a requirement on the calorimeter timing to be > −5 ns and < 10 ns to ensure consistency
with collision timing. These times are with respect to the expected collision time, and are
calibrated on a run-by-run basis using muon events.

Since no veto signal is expected from signal events, the charge deposited in each of the
five veto scintillator stations is required to be less than half that expected from a MIP (< 40
pC). Similarly, the charge deposited in the timing scintillator is required to be less than
half a MIP too (resulting in a selection of < 20 pC).

The two (or more) photons produced in signal particles’ decays cannot be resolved, hence
selections on the overall charge deposits in the preshower and calorimeter are applied. A
positive, non-zero charge deposit is required in both the preshower layers, with the one in the
second layer being greater than the charge deposit equivalent of 10 MIPs, and the preshower
ratio (ratio of the charge deposited in the second preshower layer to the charge deposited in
the first preshower layer, also referred to as PS ratio) being greater than 4.5. This is because
the photons are expected to shower in the preshower material, releasing more energy in the
second layer, hence the preshower ratio is expected to be high. Additionally, these selections
will filter out events with the first preshower layer having any negative or saturated charges.
Lastly, a large calorimeter energy deposit above 1.5 TeV is required, where the calorimeter
energy variable considered is the summed calorimeter energy across all four modules.

The selections applied on data and MC are summarised in table 1. The event selection is
designed to ensure high acceptance of ALPs that decay anywhere in the sensitive detector
volume, and is equivalently effective for light scalars and new gauge bosons as predicted
by the other models considered for reinterpretation. The efficiency to select events with
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Trigger and Data Quality
Selecting events with calorimeter triggers
Calorimeter timing (> −5 ns and < 10 ns)

Baseline Selection
Veto/VetoNu Scintillators to have no signal (< 0.5 MIPs)

Timing Scintillators to have no signal (< 0.5 MIPs)
Signal Region

Preshower Ratio to have EM shower in the Preshower (> 4.5)
Second Preshower Layer to have signal (> 10 MIPs)

Calorimeter to have a large energy deposit (> 1.5 TeV)

Table 1. Selections used in the analysis.

Selection Efficiency Cum. Efficiency
ma = 140 MeV, gaW W = 2 × 10−4 GeV−1

Veto/VetoNu Scintillators to have no signal (< 0.5 MIPs) 99.6% 99.6%
Timing Scintillators to have no signal (< 0.5 MIPs) 97.8% 97.4%

Preshower Ratio to have EM shower in the Preshower (> 4.5) 85.7% 83.5%
Second Preshower Layer to have signal (> 10 MIPs) 98.6% 82.3%

Calorimeter to have a large energy deposit (> 1.5 TeV) 91.6% 75.4%

Table 2. MC cutflow for a representative ALP-W signal point with ma = 140 MeV and gaW W = 2 ×
10−4 GeV−1, showing the percentage of signal events passing each selection.

signal particles decaying inside the calorimeter will be suppressed by the preshower selections.
Timing scintillator charge selections will also reject any event where a photon converts before
the timing scintillator.

Cutflows showing the fraction of events that pass the above selections are shown in
table 2 for a representative ALP-W model point. Across the (ma, gaW W ) parameter space, in
regions FASER is sensitive to, the efficiency of the preshower ratio requirement is between 75
and 80%. The selection efficiency through the Veto Scintillator signal and Timing Scintillator
signal is above 99% and 97%, respectively throughout the ALP-W parameter space. Across
the aW mass range, the efficiency of the second preshower layer selection is above 95%. The
efficiency of the calorimeter energy selection is mostly dependent on the coupling. For low
masses and high couplings the efficiency is close to 99%, whilst at higher masses the efficiency
is between 30% and 90%. At low masses and low couplings this falls to less than 30%, but
this region is already largely excluded as seen in figure 2.

6 Background estimation

Various sources of background are considered in the analysis. The primary background
results from neutrino interactions within the detector. Other physics-related backgrounds
may arise from neutral hadrons entering the detector, muons that bypass the veto scintillator
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> 1.5 TeV signal region
νe 0.34 ± 0.33 (flux) ± 0.11 (exp.) ± 0.05 (stat.)
νµ 0.10 ± 0.05 (flux) ± 0.05 (exp.) ± 0.02 (stat.)

Total 0.44 ± 0.39 (88.6%)

Table 3. Summary of the MC estimate of the neutrino background in the signal region. MC statistical
uncertainties, uncertainties on the flux, as well as experimental uncertainties, further discussed in
section 7, are also given. The numbers are normalised to 57.7 fb−1.

systems as they enter the detector at an angle, or veto inefficiencies. Additionally, non-
collision backgrounds originating from cosmic rays or beam-related events are also taken
into account. The following subsections provide a detailed description and quantification
of the neutrino interactions as well as the evaluation and checks of the other, ultimately
negligible, background sources.

6.1 Neutrino background

Neutrinos are produced upstream of FASER through light- and charm-hadron decays and
can then undergo charged and neutral current interactions within FASER. They will evade
FASER’s veto scintillator stations but interact in or near the preshower or the calorimeter,
resulting in a possibly significant background contribution due to minimal upstream activity,
resembling signal events. For neutrino interactions to produce >1.5 TeV in the calorimeter,
the neutrino interaction must be a charged current νe interaction producing a high-energy
electron (typically with 70% of the neutrino energy), or the large EM energy can come
from a very energetic π0 from the hadronic side of a charged current or neutral current
neutrino interaction.

This background is evaluated using MC simulations (see section 4), which are validated in
regions designed specifically to target neutrinos interacting in different areas of the detector.
In addition, FASER measurements of high energy neutrinos [7] shows good agreement of
data with the simulation predictions, albeit with large uncertainties. The MC predictions of
neutrino interactions in the signal regions for the targeted dataset are summarised in table 3.
The prediction is shown split by neutrino flavour. Systematic uncertainties, as discussed
in section 7, are also reported. As they can be asymmetric, when combined they are first
symmetrised by taking the maximum absolute variation from the nominal.

As described in section 5, only small charge deposits are expected in the veto, vetoNu,
and timing scintillators for an ALP decaying in FASER. The neutrino background is therefore
studied after the baseline selection requirements on those charge deposits described in table 1.

Imposing requirements on the preshower variables has been shown to provide selection
power among neutrinos interacting in different parts of the detector. Effective distinction
between neutrinos interacting in the magnet, calorimeter, and preshower is achieved through
selections on the charge deposited in the second preshower layer and the ratio of deposits of
the two preshower layers. Neutrinos interacting in the magnet material deposit high charges
in the second preshower layer and have a PS ratio around one when large calorimeter energy is
also required, whereas neutrinos interacting in the calorimeter material deposit lower charges
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Figure 6. Schematic of the regions used in the analysis. The signal region is a high-energy subset of
the preshower region, with an additional energy requirement of at least 1.5 TeV.

in the second preshower layer and have a broader PS ratio range. Those interacting in the
preshower material closely resemble signal events, posing a challenging background. Three
regions are therefore defined for the validation of the background estimates on the basis
of the above categorization, as illustrated in figure 6. In the following, they are referred
to as the “magnet”, “calorimeter” and “preshower” regions, with the preshower region at
high-energy representing the signal region. A fourth region, labelled as “Other”, is in between
the “calorimeter” and “magnet” regions with PS ratio between 1.5 and 4.5. In the design of the
validation regions, particularly the “magnet” and “calorimeter” regions, signal contamination
was taken into account. That is found to be below 30% for the ALP-W parameter space
not previously excluded. Even though this contamination can be significantly higher for
the additional new physics models considered for reinterpretation, MC predictions are in
agreement with observed data, and no background normalisations capable of absorbing a
potential signal contribution are in use within this analysis.

Figure 7 shows the distribution of the location of the neutrino interaction vertex in the
(z, r) plane in simulation, as well as the decay vertex of a representative ALP-W signal model
with ma = 120 MeV and gaW W = 10−4 GeV−1. The radius r =

√
x2 + y2 is the distance from

the central detector axis. Events with a minimum calorimeter energy deposit of 100 GeV
are shown in the left column of figure 7, and events with a larger than 1 TeV energy deposit
in the right column. Neutrinos of both electron and muon flavour can be seen interacting
throughout the detector volume, in particular in detector areas with larger material density
such as the magnet, preshower scintillator system, and the calorimeter. The “calorimeter”
region is shown in the first row of figure 7, clearly favouring neutrinos interacting within the
calorimeter volume. In the second row of figure 7, the background composition in the “magnet”
region is given. The last row highlights the “preshower” and signal regions, dominated by
neutrinos interacting in the preshower and, at higher energies, dominated by aW decays.

The “magnet” and “calorimeter” regions show high efficiency (> 80%) and purity among
neutrino events (> 90%) for selecting true neutrinos interacting in the magnet and calorimeter,
respectively. The efficiency is defined as the percentage of target neutrinos that are selected,
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Figure 7. Distributions in the (z, r) plane of the neutrino (ALP-W, a) interaction (decay) vertex
within the FASER detector for the different regions with different requirements on the calorimeter
energy. Only the part of the detector downstream of the decay volume and timing scintillator station
is shown.
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Figure 8. Calorimeter energy distributions in the “calorimeter” (left) and “magnet” (right) region. The
uncertainty band includes MC statistical uncertainties, experimental uncertainties, and uncertainties on
the neutrino background flux. The last bin contains all events above 1.5 TeV. Equivalent distributions
split by neutrino production mechanism can be found in appendix F.

and the purity is defined as the percentage of target neutrinos selected relative to all neutrinos
selected. The “preshower” region’s efficiency is < 40%, but this achieves a purity of around
80% in neutrinos interacting in the preshower material. In combination with the “calorimeter”
and “Other” region, this offers a good validation of all neutrino compositions.

Table 4 shows the observed number of data events in each validation region, as well as
the expected neutrino contribution, split in terms of νe and νµ, as predicted by MC. The MC
describes the data well in all regions within statistical and systematic uncertainties, the latter
dominated by the uncertainty on the neutrino flux modelling, which is around 30% to 60%. A
breakdown of the composition by neutrino production mechanism can be found in appendix F.

Figure 8 shows the energy distribution in the “calorimeter” region and the “magnet” region,
comparing data to MC predictions. The “calorimeter” region is dominated by muon neutrinos,
particularly at lower energies. The “magnet” region is dominated by muon neutrinos produced
in light hadron decays, showing good agreement between data and MC within uncertainties.
The “preshower” region most closely emulates the neutrino event topologies in the signal
region, serving as additional validation of the background modelling. The high-energy tail
includes events from the signal region, and it is shown and further discussed in section 8.

6.2 Other background contributions

Veto system inefficiency. One potential source of background events is muons traversing
the detector volume. FASER’s veto system prevents significant amounts of muons from
contaminating the regions of interest. Possible inefficiencies of each of the five veto scintillators
are assessed using data by specifically choosing events with one well-reconstructed track
passing through all the veto scintillators. For each individual plane, the inefficiency is
determined by counting the proportion of events with signal corresponding to half of a
MIP crossing the scintillator. This background is considered to be negligible based on the
measured per-layer inefficiencies of the scintillators being below 10−5 in 2022 and 2023 data
and the expected number of muons being of the order of 108. It has been assumed that the
scintillator inefficiencies are uncorrelated since the scintillators and high voltage supplies
are independent for the veto layers.
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“Preshower” region
νe 5.4 ± 2.7 (flux) ± 0.6 (exp.) ± 0.2 (stat.)
νµ 13.2 ± 2.4 (flux) ± 1.8 (exp.) ± 0.3 (stat.)
Total 18.7 ± 5.4 (29.1%)
Data 15
“Calorimeter” region
νe 22.7 ± 12.8 (flux) ± 0.7 (exp.) ± 0.4 (stat.)
νµ 40.0 ± 6.9 (flux) ± 2.8 (exp.) ± 0.5 (stat.)
Total 62.9 ± 19.7 (31.4%)
Data 74
“Magnet” region
νe 13.9 ± 10.3 (flux) ± 1.4 (exp.) ± 0.3 (stat.)
νµ 29.5 ± 8.0 (flux) ± 3.8 (exp.) ± 0.4 (stat.)
Total 43.6 ± 18.3 (41.9%)
Data 34
“Other” region
νe 6.5 ± 3.6 (flux) ± 0.8 (exp.) ± 0.2 (stat.)
νµ 15.3 ± 2.7 (flux) ± 2.2 (exp.) ± 0.3 (stat.)
Total 21.9 ± 7.0 (32.1%)
Data 17

Table 4. Breakdown of the neutrino composition and data yields in the “magnet”, “Other”,
“calorimeter” and “preshower” regions (excluding events passing signal region selections). Listed are
data and neutrino yields as predicted from MC in 57.7 fb−1, split by electron and muon neutrino
components. Uncertainties on the flux as well as experimental uncertainties further discussed in
section 7 are also given.

Background from Large-Angle muons. Muons traversing the detector volume at a large
angle might miss the veto system, interact, and deposit high-energy within the calorimeter.
Unlike in the search for dark photons [9], there are no requirements for tracks associated
to the muon that can be used to veto such background, hence several checks are performed
on MC and data to ensure it is negligible. Dedicated MC samples have been produced (see
section 4) of muons traversing FASER using FLUKA. No such MC events pass the selections
applied. A partially data-driven method was used to validate the MC results by selecting
events with inverted veto scintillator charge requirements in bins of calorimeter energy. To
increase the number of events in the selected regions, inverted timing scintillator requirements
were also applied. Events were then split in two regions, depending on whether they passed
the preshower ratio selection or not. In the former case, the selection closely replicates that
of the signal region, but the number of events is low and the regions are largely contaminated
by neutrino events. In the latter case, a larger sample of muons is selected, mimicking large-
angle muon events albeit significantly differently from signal region events. By considering
estimates from both regions, one providing an upper limit and the other leading to an overly
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conservative estimate, it was determined that the contribution of large-angle muons is 9 to
40 times smaller than that of neutrinos in the signal region. As this leads to an estimate of
at most O(0.01) events, this background contribution is considered negligible in the analysis.

Neutral hadron background. Background events from neutral hadrons generated in muon
interactions within the rock in front of FASER may occur if these neutral hadrons pass
through the veto system and subsequently interact or decay within the detector decay volume,
resulting in signal in the preshower and a high calorimeter energy deposit. The likelihood
of this background is significantly reduced by the requirements that the neutral hadron
traverse the entire eight interaction lengths of the FASERν detector and that the parent
muon scatters in a way that avoids the veto scintillators. Additionally, the high calorimeter
energy requirement suppresses neutral-hadron background events further. In the dark photon
analysis [9], the estimate of the neutral hadron background passing the analysis selections
was found to be negligible. In the present analysis, the veto scintillator requirements are
the same, and the calorimeter energy requirement is 1.5 TeV, compared to 500 GeV in the
dark photon analysis. Hence, such background is considered negligible.

Non-collision background. For non-collision background studies, events were collected
during periods without colliding bunches in IP1. Cosmic data worth 33 days of beam-free
data-taking were examined, equivalent to the full 2022 and 2023 physics data-taking duration.
No events with calorimeter energy deposits exceeding 100 GeV were observed, and only 9
events, irrespective of energy, pass the baseline selections outlined in table 1. This indicates
the negligible impact of cosmic-ray events when considering the other analysis requirements.

Beam background from LHC Beam 1 (B1), the incoming beam to ATLAS in the FASER
location, is the most relevant non-collision background for FASER. Potential detector activity
arises from beam-gas interactions or beam tails interacting with the beampipe aperture,
resulting in particles coming from a direction where FASER is much less shielded. Low-
energy activity can be observed in FASER correlated with B1 bunches passing the back
of the detector, 127 bunch-crossings before particles from the collisions of the same bunch
would be recorded in FASER. This beam background is studied by checking the detector
activity in events with bunch crossing identifiers corresponding to proton bunches in LHC
B1 passing the back of FASER, but which do not correspond to colliding bunches at IP1.
Despite observing events with no signal in the veto scintillators and timing scintillators,
beam background is suppressed to a negligible level when calorimeter timing selections are
applied. Studies of collision timing and beam background show that the timing of such B1
events and collision events are well separated. The timing selection outlined in section 5
effectively removes all B1 background.

As a result, the overall contribution from non-collision backgrounds, including cosmic
rays and beam background, is deemed negligible.

7 Systematic uncertainties

Systematic uncertainties arise from various sources and apply to both expected signal yields
and background estimates.
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The largest source of uncertainty that affects signal yields is the uncertainty associated
with the modelling of the flux of SM particles produced in the forward direction of the
LHC, from which signal events are produced [43, 54]. Uncertainties on the production of
B-mesons are obtained from scale variations, while uncertainties on light hadron production
are estimated using the spread of generators compared to the “central value” provided by
the EPOS-LHC prediction. The shift in the yields for each component is added in quadrature.
An additional 20% uncertainty, to account for uncertainties in the modeling of the B → Xsa

branching ratio [43], is also included in the signal theoretical systematic uncertainties. As an
example, the overall theoretical uncertainties on the aW signal yields are around 60%.

The experimental uncertainties on the signal yields arise from the modelling of the
detector response in the MC simulation. The uncertainty on the calorimeter energy scale
calibration is evaluated following the procedure used in ref. [9], that considers the difference
in the calibration of the energy scale between data and MC simulation. It is quantified as
around 6% across the energy range of interest, and its effect on the signal yield uncertainty
varies across signal models.

Correction factors are evaluated for the simulated response of the preshower, both in
terms of the second preshower layer charge deposit, measured in terms of energy deposit of
a MIP or nMIP, and the preshower ratio. Photon conversion events from FASER data as
well as single-particle electron events from testbeam data are used to obtain the correction
factors. These are estimated through fitting the deposited energy distributions for each layer
and extracting the most probable value for data and MC. The latter are then corrected to
match the data. The correction factors are 1.20 and 1.13 for the second preshower layer
nMIP and the PS ratio, respectively, and show no dependence on the energy. The systematic
uncertainties on the correction factors for the second preshower layer MIP-equivalent charge
deposit and PS ratio are evaluated considering the difference between the factors obtained
with FASER and the testbeam data and are 20% for the second preshower layer and 12%
for the PS ratio. The resulting effect on the yields is evaluated as a shift in the respective
parameter values used in region definitions and is of the order of 1% and 5% for the second
preshower layer and PS ratio, respectively. All above mentioned uncertainties were evaluated
for each signal point in the ALP-W parameter space, as well as for other models considered
for reinterpretation. Overall, experimental uncertainties on the calorimeter energy scale and
preshower-related quantities are O(20%) on the signal yield.

The luminosity uncertainty for the 2022 and 2023 dataset was taken from ATLAS and is
quoted to be 2.0% [38–41] and was applied to both data and MC. The statistical uncertainty
from the number of MC simulated signal events is also included and ranges from 1 to 4%.

The impact of changes in the beam half-crossing angle on the signal and background
yields was also studied as a potential source of uncertainty. These small changes in the
crossing angle caused a shift in the LOS position in FASER, leading to a potential ∼ 7%
variation in the expected signal and neutrino background yields. However, considering the
luminosity fractions corresponding to different crossing angles, the overall effect on the full
dataset is below 1% for signal and background. Given that the theoretical uncertainty on
the signal and neutrino background yields is above O(50%), this small effect is negligible
and is not considered in the final analysis.
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Signal Samples

Uncertainties ma = 140 MeV
gaW W = 2 × 10−4 GeV−1

ma = 120 MeV
gaW W = 1 × 10−4 GeV−1

ma = 300 MeV
gaW W = 2 × 10−5 GeV−1

Theo.
59.4% 57.3% 58.0%

theoretical uncertainties including flux and branching ratio

Luminosity
2.0% 2.0% 2.0%

uncertainty on the luminosity estimate

Calo E-scale
3.6% 16.3% 15.8%

uncertainty on calorimeter energy scale

PS ratio
7.9% 6.9% 8.4%

uncertainty on the preshower ratio

Second PS
0.6% 0.6% 0.6%

uncertainty on the second preshower layer charge deposit

MC stat.
1.8% 3.5% 2.9%

statistical uncertainty of the MC sample

Table 5. The various sources of systematic uncertainties associated with the aW signal. The-
ory uncertainties include the uncertainty associated with the flux and branching ratio. Experi-
mental uncertainties include the uncertainty on the luminosity, the calorimeter energy, the sec-
ond preshower layer charge and the preshower ratio. These are shown for three aW MC signal
points: ma = 140 MeV, gaW W = 2 × 10−4 GeV−1; ma = 120 MeV, gaW W = 10−4 GeV−1; and
ma = 300 MeV, gaW W = 2 × 10−5 GeV−1. The MC statistical uncertainty is also reported.

Table 5 shows a break down of different theory and experimental systematic uncertainties
for three representative aW signal samples.

The main source of systematic uncertainty for the SM background arises from the
theoretical modeling of the flux of neutrinos used to quantify the contributions due to their
interactions. The composition of neutrinos arriving in FASER originates from both light and
charm hadron decays as described in section 6. The hadron flux uncertainty is accounted for
using the prescription of generator and scale variations detailed in ref. [56]. The overall impact
on the background estimate for neutrino interactions is around 90%. The same experimental
uncertainties as detailed for the signal above are also applied to the neutrino background
MC. Additionally, an uncertainty in modeling the preshower geometry, not relevant for the
signal as non-interacting, is determined by estimating the amount of missing material in
the MC simulation, which is approximately 6%.
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Source Event Rate

Neutrino Background

0.44 ± 0.35 (flux)
± 0.01 (Luminosity)
± 0.15 (Calo E-scale)
± 0.06 (PS ratio)
± 0.02 (second PS)
± 0.02 (PS geometry)
± 0.05 (MC stat.)

Total: 0.44 ± 0.39 (88.6%)

aW (ma = 140 MeV, gaW W = 2 × 10−4 GeV−1)
70.7 ± 42.0 (theo.)

± 6.4 (exp.)
± 1.3 (MC stat.)

aW (ma = 120 MeV, gaW W = 1 × 10−4 GeV−1)
91.1 ± 52.2 (theo.)

± 16.2 (exp.)
± 3.2 (MC stat.)

aW (ma = 300 MeV, gaW W = 2 × 10−5 GeV−1)
4.0 ± 2.3 (theo.)

± 0.6 (exp.)
± 0.1 (MC stat.)

Data 1

Table 6. Summary of the expected number of events for the neutrino background and three
representative ALP-W models, along with the number of events observed in the experimental data. A
breakdown of the different sources of experimental and theoretical systematic uncertainties is also
provided.

8 Results

The total background expectation in the signal region is summarised in table 6. Also shown
are the expected yields for three benchmark ALP-W mass and coupling models representative
of the parameter space targeted by this analysis. One event is observed in the signal region,
consistent with the background-only hypothesis and within 0.6 standard deviations of the
SM expectation. This data event has a calorimeter energy of 1.6 TeV, a preshower ratio
of 9.0, and a large charge deposit in the second preshower layer. A visualisation of the
event is given in appendix E.

Figure 9 shows the neutrino background expectation in the “preshower” and signal regions,
with uncertainty bands including the experimental and theoretical systematic uncertainties.
To illustrate the possible signal contributions, three representative aW signal predictions
are overlaid. The signal region is dominated by electron neutrinos produced in light- and
charm-hadron decays.

A statistical interpretation of the result has been performed following a profile likelihood
estimation performed within the HistFitter statistical analysis framework [72]. Following
a convention of evaluating the CLs [73] values at 90% confidence level (C.L.), contours
encompassing the excluded parameter space in the ALPs, up-philic, U(1)B and 2HDM
models are produced.
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Figure 9. Calorimeter energy distribution in the “preshower” and signal regions, showing the
neutrino background composition, separated according to neutrino flavour. The last high-energy bin
above 1.5 TeV, highlighted with a green arrow, presents the signal region and includes the overflow.
The neutrino background contributions, separated by neutrino production mechanism, are given in
appendix F.

Figure 10 shows the excluded parameter space in the ALP-W coupling versus mass
plane. Reported in grey are existing experimental exclusion limits from a wide range of
experiments [31–33]. A detailed breakdown of the existing limits, shown here as joint excluded
parameter space, can be found in appendix D. For ALPs coupled to weak gauge bosons,
FASER is sensitive to previously unexplored parameter space with masses between 100 and
250 MeV and couplings ranging from 3×10−5 to 5×10−4 GeV−1. Masses as heavy as 300 MeV
can be excluded for a coupling of 2 × 10−5 GeV−1. This is complementary to searches at
kaon factories which are sensitive to lower masses, less than 100 MeV.

Exclusion limits for the ALP-photon model are shown in the left panel of figure 11.
FASER can probe ALP masses up to 80 MeV and couplings down to 10−4 GeV−1, again
demonstrating FASER’s complementary reach to existing constraints.

Results for the ALP-gluon model are shown in the right panel of figure 11. At low masses,
ALP-gluons decay only to two photons, with hadronic decays such as 3π0 and π+π−γ occurring
above approximately 0.4 GeV. FASER can probe some unconstrained regions near the π0, η

mass where production rates are enhanced due to resonant mixing with these pseudo-scalars.
An interpretation of the signal region yield as limits in the parameter space of the U(1)B

models is shown in the left panel of figure 12, as a function of the new gauge boson mass and
the coupling, gB. At low masses, where mZB

< mπ0 , the ZB particle decays radiatively into
electrons. As the mass increases, the decay channel ZB → π0γ becomes accessible, resulting
in a final state with three photons. This decay mode remains dominant until mZB

reaches
approximately 600 MeV, at which point the decay channel into π0π+π− becomes possible.
From 600 MeV onward, the small region of sensitivity is due to the ω and ρ resonance, where
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Figure 10. Interpretation of the signal region yield as ALP-W exclusion limits. Limits are provided
at 90% confidence level in the ALP -W mass (ma) and coupling (gaW W ) plane.

the production rate of ZB is enhanced. The dashed lines represent exclusion limits from other
experiments assuming enhanced rare B and K decays (e.g. K → πZB ). They are referred to
as “anomaly models” [74] because new heavier fields are introduced to resolve divergences
such that meson decay rates increase, making the constraints qualitatively different from
FASER constraints where such an assumption is not made.

The exclusion limit for the up-philic model is shown in the right panel of figure 12 as
a function of the new scalar particle mass and its coupling, gu. For mS > 2mπ0 , higher
LHC energies and boost factors enhance the sensitivity to shorter-lived up-philic scalars,
particularly in the mass range 2mπ0 < mS < 2mπ+ . This range allows probing gu values
between the lower and upper constraints from previous searches. Previous searches sensitive
to S → π+π− decays did not constrain masses below this threshold, despite possible decays to
neutral pions. Estimations for FASER take into account both charged and neutral pion decays.

Finally, figure 13 shows the exclusion limits for the 2HDM models with a CP-even scalar
Higgs decaying to two photons, H → γγ. FASER can probe large values of tan β ∼ 1000
and masses of H up to B-hadron masses of approximately 4 GeV, extending significantly into
previously unconstrained regions. Larger luminosities can extend the reach to larger values of
tan β but the masses that can be probed are limited by the production mechanism, B → KH.

This analysis highlights the complementarity of FASER with other experiments, probing
regions of parameter space that were previously unexplored or poorly constrained. By search-
ing for multi-photon final states, FASER is able to set stringent limits across multiple models.
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Figure 11. Interpretation of the signal region yield as ALP-photon (left) and ALP-gluon (right)
exclusion limits at 90% confidence level.

Figure 12. Interpretation of the signal region yield as U(1)B gauge boson (left) and up-philic (right)
exclusion limits. Limits are provided at 90% confidence level. For the definition of “anomaly models”
for the U(1)B interpretation, see text. The yellow (expected limit) band is not visible in some regions,
such as the upper part of some exclusion curves and the vertical segment of the up-philic exclusion
limit, because it overlaps with the blue (observed limit) line, and its thickness is smaller than that of
the observed limit curve.

9 Conclusions

This paper presents FASER’s first search for new particles decaying into photons, marking
its first exploration of BSM physics predominantly produced in heavy-flavour decays. Data
collected by FASER in 2022 and 2023 from proton-proton collisions at the LHC with a center-
of-mass-energy of 13.6 TeV have been studied. Multiple ALP models and other multiphoton
signature models have been considered. SM background sources that can mimic a similar
detector signal as ALPs have been studied. The dominant background stems from neutrinos
crossing the FASER detector volume and interacting with its material. Other backgrounds
such as cosmic muons and beam-gas interactions have been studied and can be considered
negligible in the context of this analysis. One data event was observed in the signal region,
with a background expectation of 0.44 ± 0.39. Coupling strengths of the ALP to weak
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Figure 13. Interpretation of the signal region yield as 2HDM (type-I) exclusion limits at 90%
confidence level.

gauge bosons between 3 × 10−5 to 5 × 10−4 GeV−1 were excluded in previously-unprobed
parameter space with ALP masses between 100 and 250 MeV. ALPs as heavy as 300 MeV were
excluded for a coupling strength of 2 × 10−5 GeV−1. In addition, multi-photon models such
as the type-I 2HDM, U(1)B vector boson, and up-philic scalar were investigated, excluding
previously unprobed parameter space.
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Figure 14. Interpretation of the signal region yield as dark photon exclusion limits at 90% confidence
level in the (mA′ , ϵ) plane, where mA′ is the dark photon mass and ϵ is the kinetic mixing parameter.
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A Additional reinterpretation: dark photon model

Dark photons, A′, with masses between 2me and 2mµ are expected to decay predominantly
into electron pairs, with other decay channels being negligible. A reinterpretation of the
results of this paper in terms of dark photon models where electron-positron pairs from A′

decays are identified as EM deposits with no tracking requirements, is therefore possible. In
the case of the A′, it must decay after the timing scintillator and before the PS, giving an
effective decay volume of approximately 2.6m. This differs from ALPs, which can also decay
before the timing scintillator, as their decay does not involve charged particles. This is shown
in figure 14, where the results are also compared to those previously published by FASER
using 27 fb−1 of data in a dedicated analysis requiring reconstructed tracks associated to
the charged particles. The region excluded in the mA′ vs. kinetic mixing parameter space is
extended up to approximately 100 MeV in dark photon mass. The larger signal acceptance of
the presented analysis is extending the sensitivity at large kinetic mixing values, whereas at
lower kinetic mixings the higher energy requirement is reducing the sensitivity. This shows
how an approach utilising a combination of selections with and without tracking requirements
can significantly boost the sensitivity to dark photon models.
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B Overview of signal model production and decays

In figure 15, the production mechanisms and branching ratios for the signal models discussed
in section 2 are given. Mass ranges relevant for FASER sensitivity are selected. Central
production rate predictions are shown as solid lines and uncertainty bands include flux
uncertainties. The given predictions include the expectation within θ < 0.2 mrad of the LOS
and a minimum energy of the long-lived particles of 100 GeV. The central prediction is taken
from EPOS-LHC and the variation is calculated from the other generators discussed in section 4.

C Parametrised signal efficiencies

To evaluate parametrised signal efficiencies, the following decay final states have been
considered: γγ, π0γ, π0π0, π0π0π0, ee, π+π−γ and π+π−π0. Dedicated high-statistics
simulation samples with a flat energy distribution were used to calculate the efficiency of
a long-lived particle (LLP) to pass all analysis selections as a function of the LLP energy.
The result is shown in figure 16.

For the γγ, π0γ, π0π0, π0π0π0 and ee final states, the efficiency is well described by a
tanh-like function: it turns on sharply at an LLP energy of 1.5 TeV, corresponding to the
calorimeter energy cut, and approaches a constant value at high energies, whose value is
set by the preshower selections. Low photon multiplicity final states (like γγ) have a mildly
higher efficiency at high energies than the high photon multiplicity final states (like 3π0 → 6γ)
since the large number of photons is more likely to saturate the preshower and hence reduce
the preshower ratio below the selection value of 4.5. The di-electron channel has a lower
efficiency, since only events after the timing station pass the analysis selections. For the
two charged pion channels, the efficiency increases much more slowly with energy. This is
because the measured calorimeter energy is typically much lower than the LLP energy. In
practice, the sum of two tanh-like functions provide a good fit.

D FASER limits in relation to previous experiments

Figure 17(a) shows the observed ALP-W limit. Existing constraints are also shown from
BaBar [75], E137 [76], LEP [77–79], E949 [80], KOTO [81], KTeV [82] and CDF [83, 84].

Figure 17(b) shows the observed ALP-photon limit. Existing constraints from LEP [85],
PrimEx [86, 87], NA64 [88], NuCal [89, 90] and E137 [76] are shown.

The ALP-gluon limits in comparison with results from NA62 [91–93], BaBar [75], flavour
constraints [20], NuCal [20, 94], CHARM [95], NA48 [96, 97], E949 [80, 98, 99] and from the
total decay width of the kaon [97] are shown in figure 17(c).

Figure 18(a) displays the existing constraints for the U(1)B model in comparison to the
FASER limit presented. Here limits from NuCal [90, 94], CHARM [95], KLOE [100, 101],
E137 [76], LHCb [102] and LSND [103, 104] are considered. Additionally, limits from
anomalous currents are included [74].
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Figure 15. Production rates and branching ratio overview for signal models described in section 2.
The central prediction as solid lines and uncertainty bands including flux uncertainties are shown. In
this case, differently to footnote 1, θ is the polar angle with respect to the LOS.
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Figure 16. Parametrised signal efficiencies for long-lived particles decaying inside of the FASER
decay volume.
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Figure 17. Interpretation of the signal region yields for different exclusion limits.
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Figure 18. Interpretation of the signal region yields for different exclusion limits.

The existing constraints for the up-philic model are shown in figure 18(b). Here considered
are MAMI [105], BES3 [106], E137 [76], KLOE [107], CHARM [95], and from the number
of effective degrees of freedom that could affect the Big Bang Nucleosynthesis (BBN) [27,
108, 109].

The FASER limit interpreted within the 2HDM in comparison with results from LEP [110–
112], NA62 [92], CHARM [95, 113], LHCb [114] and K → πHH [92] are shown in figure 18(c).

An interpretation of the results in a dark photon model are given in figure 19. This
includes the initial sensitivity of FASER with a track-based analysis [9] as discussed in
appendix A. Additionally, search results from NA62 [115], NA64 [116], NuCal [94, 117] and
E141 [118, 119] are shown.

E Event display

The data event, here named the ALPtrino event, observed in the signal region is visualised
through its detector signature in figure 20.
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Figure 19. Interpretation of the signal region yields as dark photon exclusion limit.
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Figure 20. Event display of the ALPtrino event recorded by FASER on 13 October 2022 with
13.6 TeV stable beams. The waveforms for signals in the scintillators and calorimeter modules are
shown in blue, fitted to a Crystal Ball function. The timing and veto scintillator charge deposits are
below the thresholds considered for the signal region definition. A clear charge deposit in the second
preshower layer can be seen. The event has been triggered by the calorimeter modules, with an overall
reconstructed energy of 1.6 TeV. The ATLAS interaction point is 480 m to the left of the detector
shown. In the title of the waveform plots, left and right is defined facing the downstream direction.
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Figure 21. Calorimeter energy distribution in the “preshower” and signal regions, showing the
neutrino background composition separated according to neutrino production mechanism. The last
high-energy bin above 1.5 TeV, highlighted with a green arrow, presents the signal region and includes
overflows.

Figure 22. Calorimeter energy distributions in the “calorimeter” (left) and “magnet” (right) region
broken by production modes. The uncertainty band includes MC statistical uncertainties, experimental
uncertainties, and uncertainties on the neutrino background flux. The last bin contains all events
above 1.5 TeV.

F Neutrino compositions by production mechanism

A breakdown by neutrino production mechanism composition of the neutrino background
in the signal region, as well as in the “calorimeter”, “magnet”, “Other” and “preshower”
regions, is given in table 7 and table 8. Figure 22 shows the energy distribution in the
“calorimeter” and “magnet” region. Figure 21 shows the energy distribution in the “preshower”
and signal regions.
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“Magnet” region
Light 33.7+6.7

−3.4 (flux) ± 4.3 (exp.) ± 0.4 (stat.)
Charm 9.9+16.2

−4.6 (flux) ± 0.9 (exp.) ± 0.2 (stat.)
Total 43.6 ± 18.3 (41.9%)
Data 34
“Other” region
Light 17.9+1.3

−0.8 (flux) ± 2.5 (exp.) ± 0.3 (stat.)
Charm 4.0+6.2

−1.9 (flux) ± 0.5 (exp.) ± 0.2 (stat.)
Total 21.9 ± 7.0(32.1%)
Data 17
“Calorimeter” region
Light 51.8+2.0

−3.4 (flux) ± 3.1 (exp.) ± 0.5 (stat.)
Charm 11.1+19.1

−5.1 (flux) ± 0.5 (exp.) ± 0.3 (stat.)
Total 62.9 ± 19.7 (31.4%)
Data 74
“Preshower” region
Light 15.5+0.9

−1.2 (flux) ± 2.0 (exp.) ± 0.3 (stat.)
Charm 3.1+4.7

−1.5 (flux) ± 0.4 (exp.) ± 0.1 (stat.)
Total 18.7 ± 5.4 (29.1%)
Data 15

Table 7. Breakdown of the neutrino composition and data yields in the “magnet”, “other”, “calorime-
ter” and “preshower” regions (excluding events passing signal region selections). Listed are data and
neutrino yields as predicted from MC in 57.7 fb−1, also split in light and charm production components.
Uncertainties on the flux as well as experimental uncertainties further discussed in section 7 are
also given.

> 1.5 TeV signal region
Light 0.23+0.01

−0.11 (flux) ± 0.11 (exp.) ± 0.04 (stat.)
Charm 0.20+0.34

−0.09 (flux) ± 0.06 (exp.) ± 0.03 (stat.)
Total 0.44 ± 0.39 (88.6%)

Table 8. Summary of the MC estimate of the neutrino background broken by production mechanism
in the signal region. Uncertainties on the flux, as well as experimental uncertainties further discussed in
section 7, are also given. The MC events are normalised to 57.7 fb−1 and MC statistical uncertainties
are given.
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