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A search for ) and . vector-like quarks produced in proton–proton collisions at a centre-of-

mass energy of 13 TeV and decaying into,1 in the fully hadronic final state is presented. The

search uses 139 fb−1 of data collected by the ATLAS detector at the LHC from 2015 to 2018.

The final state is characterised by a hadronically decaying, boson with large Lorentz boost

and a 1-tagged jet, which are used to reconstruct the invariant mass of the vector-like quark

candidate. The main background is QCD multĳet production, which is estimated using a

data-driven method. Upon finding no significant excess in data, mass limits at 95% confidence

level are obtained as a function of the global coupling parameter, ^. The observed lower limits

on the masses of . quarks with ^ = 0.5 and ^ = 0.7 are 2.0 TeV and 2.4 TeV, respectively. For

) quarks, the observed mass limits are 1.4 TeV for ^ = 0.5 and 1.9 TeV for ^ = 0.7.
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1 Introduction

The discovery of the Higgs boson [1, 2] at the Large Hadron Collider (LHC) and measurements of its

width, in combination with previous experimental results, have significantly constrained the possibility of

a fourth generation of chiral quarks within the Standard Model of particle physics (SM) [3]. Although

the SM has been tested to high precision, certain theoretical questions still persist. One of them, the

Higgs boson mass hierarchy problem, is related to the fact that the non-cancellable radiative corrections

to the Higgs boson mass are proportional to the square of the ‘cut-off’ in the SM (the Planck scale,

1019 GeV), whereas the observed Higgs boson mass is 125 GeV [4, 5]. The largest contributions to these

corrections originate from the loop interactions of the Higgs boson with the top quark. Various proposed

beyond-the-SM (BSM) theories solve this problem by cancelling out these corrections via interactions with

hypothetical particles. Vector-like quarks (VLQs) are one of those types of hypothetical spin-1/2 colour

triplets. Unlike SM chiral quarks, their left- and right-handed components transform similarly under SM

gauge transformations. Consequently, since VLQs do not acquire their mass via the Higgs mechanism,

Higgs boson measurements do not constrain the mass of these quarks. VLQs appear in BSM models such

as composite Higgs model [6] and little Higgs models [7–9]. Phenomenological renormalisable VLQ

models [10] predict the existence of VLQ multiplets with fractional charges. In these models [10–13],

VLQs couple primarily to the third-generation SM quarks via the SM gauge bosons. Most VLQ searches
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Figure 1: Leading-order Feynman diagram for the )/. → ,1 process.

in the current search programme at the LHC probe the @+ decay modes, where + = ,///� bosons and

@ = top (C) or bottom (1) quarks.

In this paper, a search for ) and . VLQs decaying into a,1 final state is performed using proton–proton

(??) collisions in which the probed signal is produced via,1 fusion. The ) VLQ has an electric charge

of +(2/3)4 and occurs in singlet, doublet, and triplet representations, whereas the . VLQ with an electric

charge of −(4/3)4 appears in doublet and triplet representations. In the final state studied here, the ,

boson decays hadronically. Whereas previous searches for ?? → )/. (→ ,1)@1 + - have used the

semileptonic final state, this is the first search using the hadronic (, → @@̄) decay mode. A typical

lowest-order Feynman diagram for this signal process is shown in Figure 1. In the mass range relevant for

this paper, the contribution from the C-channel diagram is negligible for this process [14].

The . quark decays solely into a,1 topology with a branching fraction (B) of 100%. The . quark appears

alongside the � VLQ, which has an electric charge of −(1/3)4, in the (�,. ) doublet and alongside both

the � and ) quarks in the (), �,. ) triplet. The ) singlet also decays via the /C and �C modes. The

relative branching fractions are mass dependent, but for quark masses greater than 1 TeV they have a ratio

of B(,1//C/�C) = 2 : 1 : 1 [10]. The cross-section for pair-production processes is higher at lower VLQ

masses; however, single-production processes start to dominate at higher masses, e.g. around 1 TeV for a

coupling of 0.5. Additionally, since the production cross-section is proportional to the global coupling

parameter ^, VLQ searches in the single-production mode can probe this coupling strength [12, 15]. The

width (Γ) of a VLQ signal is also affected by ^.

The ATLAS and CMS collaborations have conducted extensive VLQ searches targeting both the single-

and pair-production processes. The most stringent lower limits of 1.36 TeV on the mass of pair-produced

) singlets arise from a ))̄ → ,1 + - search performed using the 13 TeV ?? collision data collected

in 2015–2018 by the ATLAS Collaboration [16]. Similar single-production searches by ATLAS and

CMS [17–27] have set limits on both the mass of the VLQs and model-dependent parameters, e.g. coupling

strengths and mixing angles. The limits set on the mixing parameter sin \R (sin \R = 2 ·
√

2 · ^) in the

(�,. )-doublet interpretation in the )/. → ,1 search by ATLAS using 2015–2016 data are comparable

to limits from electroweak observables in the mass range between 0.9 TeV and 1.25 TeV [17]. In the same

search, the . quark was excluded for all masses less than 1.7 TeV for ^ = 0.35. In a recent result from the

ATLAS Collaboration with the 2015–2018 dataset, where a statistical combination of most ) → �C and

) → /C searches have been performed, ^ > 0.5 has been excluded for <) values up to 2.2 TeV [22]. The

various limits quoted in this section are at 95% confidence level (CL).
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This search for )/. → ,1 is based on the full Run 2 dataset of ?? collisions at a centre-of-mass energy√
B = 13 TeV collected with the ATLAS detector during 2015–2018, corresponding to an integrated

luminosity of 139 fb−1. The large integrated luminosity used allows probing a mass range for the ) and

. VLQs from 1.0 TeV to 2.7 TeV and values of ^ from 0.1 to 1. Due to the high masses probed in this

analysis, the, boson from the VLQ decay is produced with large Lorentz boost. The invariant mass of

the VLQ candidate is reconstructed using the hadronically decaying boosted, boson and 1-tagged jet

present in the final state. Compared to the previous ATLAS search for )/. → ,1 in the single-lepton

channel [17], this search uses almost four times more integrated luminosity, and exploits a different decay

mode, thus being complementary to it.

2 ATLAS detector

The ATLAS detector [28] at the LHC covers nearly the entire solid angle around the collision point.1 It

consists of an inner tracking detector surrounded by a thin superconducting solenoid, electromagnetic

and hadronic calorimeters, and a muon spectrometer incorporating three large superconducting air-core

toroidal magnets.

The inner-detector system (ID) is immersed in a 2 T axial magnetic field and provides charged-particle

tracking in the range |[ | < 2.5. The high-granularity silicon pixel detector covers the vertex region and

typically provides four measurements per track, the first hit generally being in the insertable B-layer (IBL)

installed before Run 2 [29, 30]. It is followed by the SemiConductor Tracker (SCT), which usually provides

eight measurements per track. These silicon detectors are complemented by the transition radiation tracker

(TRT), which enables radially extended track reconstruction up to |[ | = 2.0. The TRT also provides

electron identification information based on the fraction of hits (typically 30 in total) above a higher

energy-deposit threshold corresponding to transition radiation.

The calorimeter system covers the pseudorapidity range |[ | < 4.9. Within the region |[ | < 3.2,

electromagnetic calorimetry is provided by barrel and endcap high-granularity lead/liquid-argon (LAr)

calorimeters, with an additional thin LAr presampler covering |[ | < 1.8 to correct for energy loss in material

upstream of the calorimeters. Hadronic calorimetry is provided by the steel/scintillator-tile calorimeter,

segmented into three barrel structures within |[ | < 1.7, and two copper/LAr hadronic endcap calorimeters.

The solid angle coverage is completed with forward copper/LAr and tungsten/LAr calorimeter modules

optimised for electromagnetic and hadronic energy measurements respectively.

The muon spectrometer (MS) comprises separate trigger and high-precision tracking chambers measuring

the deflection of muons in a magnetic field generated by the superconducting air-core toroidal magnets.

The field integral of the toroids ranges between 2.0 and 6.0 T m across most of the detector. Three layers

of precision chambers, each consisting of layers of monitored drift tubes, cover the region |[ | < 2.7,

complemented by cathode-strip chambers in the forward region, where the background is highest. The

muon trigger system covers the range |[ | < 2.4 with resistive-plate chambers in the barrel, and thin-gap

chambers in the endcap regions.

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector

and the I-axis along the beam pipe. The G-axis points from the IP to the centre of the LHC ring, and the H-axis points upwards.

Polar coordinates (A, q) are used in the transverse plane, q being the azimuthal angle around the I-axis. The pseudorapidity is

defined in terms of the polar angle \ as [ = − ln tan(\/2) and is equal to the rapidity H = 1
2

ln
(

�+?I
�−?I

)

in the relativistic limit.

Angular distance is measured in units of Δ' ≡
√

(ΔH)2 + (Δq)2.
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The luminosity is measured mainly by the LUCID–2 [31] detector that records Cherenkov light produced

in the quartz windows of photomultipliers located close to the beampipe.

Events are selected by the first-level trigger system implemented in custom hardware, followed by selections

made by algorithms implemented in software in the high-level trigger [32]. The first-level trigger accepts

events from the 40 MHz bunch crossings at a rate below 100 kHz, which the high-level trigger further

reduces in order to record complete events to disk at about 1 kHz.

A software suite [33] is used in data simulation, in the reconstruction and analysis of real and simulated

data, in detector operations, and in the trigger and data acquisition systems of the experiment.

3 Event reconstruction

This paper describes a search for the process )/. → ,1 where the final state is characterised by a hadronic

decay of the boosted , boson. The )/. VLQ is reconstructed using its decay products: a large-radius

(large-') jet and a small-radius (small-') jet, both with high transverse momentum (?T).

Primary interaction vertices are reconstructed from at least two tracks with ?T > 0.5 GeV. For events with

multiple primary vertex candidates, the one where the corresponding tracks have largest sum of squared ?T

is chosen [34].

Large-' jets are reconstructed from three-dimensional topological clusters [35] of energy deposits in the

calorimeter using the anti-:C algorithm [36, 37] with radius parameter ' = 1.0. These jets are calibrated to

the hadronic energy scale with the local cluster weighting procedure [35]. The jets are then trimmed to

reduce contributions from multiple interactions in the same and neighbouring bunch crossings (pile-up) and

soft interactions by reclustering the constituents of the jet into ' = 0.2 subjets with the :C algorithm [38,

39] and removing constituents originating from subjets with ?T less than 5% of the ?T of the parent jet.

The four-momentum of the large-' jet is recomputed from the four-momenta of the remaining constituents

and corrected using Monte Carlo simulation and data [40]. The events used in this search were selected

by a set of triggers requiring at least one such large-' jet [41]. This search uses large-' jets with ?T >

500 GeV and |[ | < 2.0 and hence achieves maximum efficiency for these triggers.

Small-' jets are also reconstructed with the anti-:C algorithm, but using ' = 0.4 and input constituents

constructed by a particle-flow algorithm from calorimeter energy clusters and corresponding tracks in

the ID [42]. Jets are calibrated to the particle level using corrections derived from simulation and in situ

measurements [43]. In this analysis, both ‘central’ (|[ | < 2.5) and ‘forward’ (2.5 < |[ | < 4.5) small-' jets

are used. For the central small-' jets with ?T < 60 GeV, a jet-vertex tagging algorithm is employed to

mitigate pile-up by ensuring the jets match the primary collision vertex [44]. The jet-vertex tagging is also

performed for the forward jets [45]. The jet-vertex tagger’s efficiency, as measured in simulated events,

differs from that measured in data and thus the efficiency ratio is used as a per-event correction factor.

The large-' jet is identified as a, boson using a three-variable cut-based,-tagger [46] which is defined

using jet substructure variables. The tagger is optimised for two working points (WPs), which are chosen

to achieve signal efficiencies of 50% (tight) and 80% (loose), respectively [46]. Both WPs are used in this

analysis. Tagging scale factors which quantify the relative tagging-efficiency differences between data and

simulation are derived for both signal (,-tagged jets) and background jets (W+jets / multĳets) [47]. The

signal scale factors are evaluated using CC̄ events in the lepton-plus-jets final state.
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In each event, central small-' jets which contain 1-hadrons are identified using the DL1r tagging

algorithm [48]. This tagger is based on a deep neural network that utilises impact-parameter information

from tracks associated with the jet, as well as topological properties of their secondary and tertiary vertices.

A 70% efficiency working point for identifying true 1-jets in CC̄ events is utilised in this paper. Scale factors

are applied to account for remaining small tagging-efficiency discrepancies between data and simulation in

this analysis [49–51].

This analysis vetoes events containing charged leptons (electrons or muons). Electron candidates are

reconstructed from energy deposits in the EM calorimeter matched to charged-particle tracks in the inner

detector [52]. The electrons are required to have ?T > 25 GeV and |[ | < 2.47, excluding the transition

region between barrel and endcap calorimeters (1.37 < |[ | < 1.52), and pass the ‘tight’ identification

criteria [52]. Muon candidates are reconstructed from matching tracks in the ID and the MS [53]. The

muons are required to have ?T > 25 GeV and |[ | < 2.5, and satisfy the ‘medium’ identification and ‘tight’

isolation criteria [53].

4 Simulated event samples

Monte Carlo (MC) simulation events are employed to model signal and background distributions. They

undergo full ATLAS detector simulation using Geant4 [54] or a faster simulation with parameterised

calorimeter showers [55]. In-time and out-of-time pile-up effects were simulated by overlaying minimum-

bias interactions generated with Pythia 8.186 [56], adjusted to match observed pile-up conditions.

EvtGen [57] modelled heavy-flavour hadron decays, except for processes generated with Sherpa [58].

Simulated events undergo the same reconstruction and analysis as data events, with small corrections to

object selection efficiencies, energy scales, and resolutions are applied for better agreement with data. The

main simulation settings for the MC events are discussed in this section. Signal events were generated

using the faster simulation, while all SM background MC simulated events were generated with a detailed

Geant4 model of the ATLAS detector.

4.1 Simulated signal events

Signal events with single )-quark production were simulated at leading-order (LO) with the Mad-

Graph5_aMC@NLO 2.3.3 event generator [59] using the NNPDF2.3lo [60] parton distribution function

(PDF) set. The samples are normalised by multiplying the LO cross-section times branching fraction for

given assumed couplings by a correction factor to account for finite-width effects [61, 62], and by a  -factor

to correct the LO cross-section to the next-to-leading-order (NLO) prediction computed in the narrow-width

approximation [63]. The event generator was interfaced with Pythia 8.212 [64] to model parton showering,

hadronisation, and the underlying event with the NNPDF2.3lo [60] PDF set and the A14 [65] set of tuned

parameters (tune). The matrix-element calculations are based on the phenomenological model described

in Ref. [13], which includes all tree-level processes. It is assumed that the VLQs couple exclusively to

SM quarks of the third generation. Events were generated for ) (→ ,1)@1 processes at fixed values of ^

and the )-quark mass from 1.0 to 2.7 TeV. During the generation process, matrix-element-based event

weights [66] were calculated. These weights are subsequently used to reweight the events in each sample to

different mass (<) and ^ values, effectively creating a grid in the <−^ plane. The overall acceptance times

efficiency for )-quark signal events with a mass of 1.6 TeV and ^ = 0.5 is 1.7%, following the kinematic

cuts in the signal region described in Section 5. The Y-quark signals were not simulated separately, as the
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Y-quark distributions can be obtained by multiplying the )-quark yield by a factor of two, to account for

the larger branching fraction to,1.

4.2 Simulated background events

The main background in this search comes from QCD multĳet production. It is modelled using a data-driven

method, with MC-based corrections to account for possible correlations inherent in the method, as detailed

in Section 6. The other SM background contributions are estimated using MC simulations.

The modelling of CC̄ events utilised the next-to-leading-order (NLO) Powheg Box v2 [67–69] generator and

the NNPDF3.0nlo [70] PDF set. The events were then interfaced with Pythia 8.230, which employed

the NNPDF2.3lo PDF set and the A14 tune. To regulate the effects of high-?T radiation and achieve

appropriate matrix element to parton shower matching, the ℎdamp parameter in Powheg Box was set to

1.5<C [71], where <C = 172.5 GeV. Corrections were applied to the top-quark kinematics to account for

NLO electroweak effects and next-to-next-to leading-order (NNLO) QCD effects [72]. To ensure proper

normalisation, the events were scaled to the cross-section computed at NNLO in QCD, incorporating the

resummation of next-to-next-to-leading logarithmic soft gluon terms, using Top++ 2.0 [73–79].

The generation of single-top-quark events involving,C-, C-, and B-channel processes utilised Powheg Box v2

and the NNPDF3.0nlo PDF set. Parton showering, hadronisation, and the underlying event were modelled

by Pythia 8.230, using the NNPDF2.3lo PDF set and the A14 tune. To address interference between

the CC̄ and,C final states, the ‘diagram removal’ (DR) scheme [80, 81] was employed. Uncertainties in

modelling the interference are estimated by comparing this sample with an alternative sample generated

with the ‘diagram subtraction’ (DS) scheme [81, 82].

The Sherpa 2.2.8 generator [83] was used to model , //+jets events. The matrix-element calculation

incorporates up to two partons at NLO and up to four partons at LO. The merging of the matrix-element

calculation with the Sherpa parton shower was achieved using the MEPS@NLO prescription [84]. The

NNPDF3.0nnlo [70] PDF set was used for the matrix-element calculation. To estimate the modelling

uncertainty, an alternative ,+jets sample was generated using Sherpa 2.2.8, where the modelling of

hadronisation is based on the Lund string model [85, 86].

5 Analysis strategy

This analysis searches for )/. VLQs decaying into a, boson and a 1-quark, where the, boson decays

hadronically. Since the probed VLQs are in the TeV mass range, the, boson is boosted and thus its decay

products have low angular separation and are reconstructed as a single large-' jet. The main background

comes from QCD multĳet production and is estimated using a data-driven method. For this estimation,

four control regions, one validation region, and one signal region are defined. The reconstructed invariant

mass of the VLQ (<VLQ) is the discriminating variable for this analysis. For each event in the six analysis

regions, <VLQ is defined as the magnitude of the vector sum of the four momenta of the leading (highest-?T)

large-' jet and the leading small-' jet that has an angular separation of Δ' > 1 from the leading large-'

jet. This is motivated by the fact that a )/. VLQ with mass greater than 1 TeV would decay into two

objects with a large angular separation. The validation region is used to validate the data-driven estimate of

the multĳet background. Finally, the estimated multĳet background, and other SM backgrounds estimated
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using MC simulation, are used in a binned maximum-likelihood fit in the signal region to search for a )/.
signal in the <−^ plane.

5.1 Event preselection

Events of interest are required to have no charged leptons, as defined in Section 3, and at least one large-'

jet and at least one small-' jet that do not overlap with each other. The definition of <VLQ for each event

ensures an angular separation of Δ' > 1 for the leading small-' jet and the leading large-' jet. Signal

events are expected to be characterised by the presence of high-?T jets in the final state. The leading

large-' jet is required to have ?T > 500 GeV and the leading central small-' jet is required to have

?T > 350 GeV. Events are required to contain at least one forward jet with ?T > 40 GeV. This ensures

considerable suppression of the multĳet background. These kinematic cuts are henceforth referred to as

the ‘preselection’.

5.2 Event categorisation

Events passing the preselection are separated into six analysis regions: four control regions, one validation

region, and one signal region. The control and validation regions are defined for the sole purpose of

estimating the pre-fit multĳet background using the data-driven method as described in Section 6. The

control and validation regions are not used in the statistical fits.

The region categorisation is defined with two orthogonal kinematic variables, namely the 1-jet multiplicity

and the ,-tagging WPs of the three-variable ,-tagger, as shown in Figure 2. The 1-jet multiplicity is

calculated using 1-jets defined in Section 3. Although the variables are expected to be nearly orthogonal,

any departure from this ideal is accounted for in the analysis.
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Figure 2: A representation of the signal, validation, and control regions. Region A1 is the signal region; region A is

the validation region and the other four regions B, C, D, and D1 are the control regions.

Signal region Events in the signal region (SR) A1 in Figure 2 have at least one 1-jet and the leading

large-' jet is,-tagged using the tight WP (50% tagging efficiency). The strict requirement on the tagging

efficiency improves the suppression of light-flavour multĳet background events.

Validation region The validation region (VR) A is defined so as to be kinematically close to the signal

region, yet orthogonal to it. Events in region A similarly contain at least one 1-jet but the leading large-'

jet is required to be loosely but not tightly,-tagged, i.e. these events contain a leading large-' jet that is

,-tagged at the 80% WP but not at the 50% WP, thus making VR A orthogonal to SR A1.

Control regions The four control regions (CR) B, C, D, and D1 are used to constrain the shape and

normalisation of the <VLQ distribution of the background processes in the SR A1 and VR A. The CR B

contains only events which have at least one 1-jet and a leading large-' jet that is not ,-tagged by the

loose selection (80% WP). The three CRs C, D, and D1 contain only events that do not have any 1-jets.

These three regions are distinguished by their,-tagging WP requirements. The event yields in the four

regions are ranked in descending order as follows: C, B, D, and D1.

For two different )-quark signals, one with mass 1.1 TeV and ^ = 0.25 and the other with mass 1.5 TeV

and ^ = 0.45, the signal-to-background ratio is highest in the signal region and negligible in the validation

and control regions. The (/� and (/
√
� ratios for a 1.1 TeV signal with ^ = 0.25 are 2.6% and 3.9 in the

SR A1 and 0.5% and 1.8 in the VR A respectively. For a )-quark signal with mass 1.5 TeV and ^ = 0.45,

the (/� and (/
√
� ratios are 4.8% and 5.2 in the SR A1 and 0.8% and 2.5 in the VR A respectively. In all

four CRs, the (/� and (/
√
� ratios for these two simulated signals are less than 0.1% and 1 respectively.
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6 Data-driven estimation of the multĳet background

QCD multĳet production is the dominant source of background in this search. The shape and normalisation

of the <VLQ template for multĳet events in the SR A1 and VR A in Figure 2 are estimated using a

data-driven method similar to those used in Refs. [18, 87, 88]. In this method, two weakly correlated

variables are used to construct the control regions. The central assumption behind the success of this

method is that these control regions are pure in multĳet events and have negligible non-multĳet SM

background contamination. Here, the multĳet contribution in each bin of the <VLQ distribution in SR A1

(VR A) is estimated from the multĳet background in control regions B, C, and D1 (D). The projected

estimate of the multĳet background in a given bin 8 of the <VLQ distribution results from the subtraction of

SM MC backgrounds (CC̄, single-top-quark,,//+jets) from the observed data events in each corresponding

bin. Thus, the data-driven estimate for each bin 8 in SR A1 (VR A) can be written as

#
multĳet estimate

A/A1
[8] = 'corr [8] × (#Data

B [8] − #SM MC backgrounds

B
[8]) ×

(#Data
D/D1

[8] − #SM MC backgrounds

D/D1
[8])

(#Data
C

[8] − #SM MC backgrounds

C
[8])

.

The bin-by-bin correction factor 'corr [8] reflects the possible correlation between the two kinematic

variables, i.e. the 1-jet multiplicity and ,-tagging WP. The 'corr [8] for SR A1 are calculated from the

bin-by-bin ratios of simulated multĳet events in the <VLQ distributions for the regions specified below

in Eq. (1). The overall normalisation of the <VLQ distribution of the simulated multĳet events in each

of the four regions (A1, B, C, and D) is scaled to the estimated yield in data. This scaling is done using

two single-bin likelihood fits. In the first fit, the overall normalisation of the simulated multĳet events is

scaled to the data yields by fixing the normalisation of other SM backgrounds for the <VLQ distributions in

regions A1 and B simultaneously. Similarly, the second fit fixes the normalisation of those SM backgrounds

in regions C and D1 simultaneously. The normalisation scaling corrects for any mismodelling in the

simulated multĳet samples. The correction factor for the signal region A1 can be written as

'corr [8] =
#R

A1
[8]

#R
B
[8]

×
#R

C
[8]

#R
D1
[8]

. (1)

Here, #R
A1/B/C/D1

denotes the normalisation-scaled multĳet yields in the four regions that are used to

calculate 'corr. The corresponding 'corr [8] for VR A is calculated by replacing #R
A1

with #R
A

, and #R
D1

with #R
D

, in Eq. (1). For this calculation of 'corr for VR A, the overall normalisations of the simulated

multĳet events are scaled to data yields by fitting regions A and B together and regions C and D together.

These two single-bin fits are performed using the methodology described above for the corresponding fits

for 'corr [8] in SR A1. Thus in Eq. (1) the multĳet events in each bin 8 of regions A1 and B are scaled by

one normalisation factor, and another normalisation factor is applied bin-by-bin in regions C and D1.

The value of 'corr [8] impacts the final multĳet <VLQ distribution for both SR A1 and VR A. To mitigate

any statistical fluctuations in the 'corr distribution as a function of <VLQ, a third-degree polynomial fit

to the 'corr distribution is performed. A third-degree polynomial fit is chosen because it gives the best

agreement between the data and the estimated background. The uncertainties arising from this fit are

treated as systematic uncertainties. The uncertainty due to the choice of polynomial is smaller than the

leading uncertainties assigned to the data-driven estimate and is neglected. The values of 'corr used in the

final calculation of the multĳet event yields for the <VLQ distributions vary between 0.85 and 0.65 for SR

A1 and between 0.9 and 0.7 for VR A. The final estimated yields for the multĳet background in SR A1 and

VR A are shown in Table 1. The uncertainties include systematic and statistical contributions as detailed

in Section 7.
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Table 1: Summary of observed and predicted yields in SR A1 and VR A. For the non-multĳet SM backgrounds

the MC predicted yields are tabulated, while for the multĳet background the yields from the data-driven estimate

are shown. These yields are used as inputs to the statistical fits described in Section 8. The uncertainties include

systematic and statistical contributions as detailed in Section 7. The statistical and systematic uncertainties in the

non-multĳet SM have been propagated and assigned to the data-driven multĳet estimate.

SR A1 VR A

Single top 660± 570 400± 330

,+jets 770± 140 750± 130

CC̄ 381± 49 709± 81

/+jets 187± 33 277± 44

Data-driven multĳet estimate 11 220± 660 69 000± 14 000

Total background 13 220± 860 71 000± 14 000

Data 12 923 62 409

7 Systematic uncertainties

The modelling of kinematic variables such as <VLQ in the signal and simulated background processes

as described in Section 4 is affected by experimental uncertainties associated with the reconstruction

and calibration of the underlying physics objects. These uncertainties in the simulated backgrounds are

propagated to the data-driven multĳet background estimate. Additionally, uncertainties are assigned to the

multĳet background to account for variations in the 'corr values and in the statistical uncertainty propagation

methods. This includes the use of Gaussian uncertainty propagation and the statistical uncertainties

originating from the fits used in the estimation of the multĳet background. Cross-section uncertainties are

included for all the simulated backgrounds.

7.1 Experimental and theoretical uncertainties

The uncertainty in the integrated luminosity of the 2015–2018 ATLAS dataset is estimated to be 1.7% [89].

The uncertainty is derived from the baseline luminosity measurements made by the LUCID-2 detector [31].

For small-' and large-' jets, the uncertainties associated with the energy scale and resolution are evaluated

using a combination of simulated events and in situ methods applied to the collected data [40]. In addition,

a mass scale uncertainty is evaluated for the large-' jets with a forward-folding technique that uses fits to

the,-boson and top-quark mass peaks [90] in simulation and data. A jet mass resolution uncertainty of

20% is applied to large-' jets by smearing the energy of the jets. This uncertainty estimate has negligible

impact on the final result.

Uncertainties are assigned to correction factors for differences in 1-tagging and ,-tagging efficiencies

between simulated events and data events. Flavour-dependent tagging uncertainties are evaluated using

differences in tagging response for 1-jets, 2-jets, and light-flavour jets between simulation and data [49–51].

Since the high-?T region is probed in this search, an additional extrapolation uncertainty is used to account

for tagging inefficiencies in the range ?T > 400 GeV [49]. Uncertainties in the correction factors for

,-tagging arise from uncertainties related to the jet energy scale, as well as modelling uncertainties and

statistical uncertainties [46]. The correction factors are extrapolated into the high-?T region (?T > 600 GeV)

and hence the corresponding uncertainties are also propagated.
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7.2 Modelling uncertainties for simulated backgrounds

Modelling uncertainties are assigned to single-top-quark and ,+jets events as they are the irreducible

backgrounds secondary to the multĳet background. Uncertainties related to initial-state radiation (ISR),

final-state radiation (FSR), and the parton shower were assessed for the single-top samples. Due to

significant interference between the,C and CC̄ processes, two different schemas were employed to generate

the ,C MC event samples. The nominal sample uses the diagram removal method, while the variation

sample uses the diagram subtraction method. The difference between these two samples is used as the

uncertainty. The ISR/FSR uncertainty is determined similarly to the uncertainty estimation for CC̄ events.

For the,+jets events, an alternative sample where the modelling of hadronisation is based on the Lund

string model, is used. Theoretical cross-section uncertainties in the normalisation of the simulated SM

backgrounds are included. For the single-top-quark backgrounds an uncertainty of ±2.5% is included, for

CC̄ an uncertainty of +2.4%/−3.5% is assigned, while for,//+jets a ±6% uncertainty is applied.

7.3 Modelling uncertainties for data-driven background estimates

The uncertainties in the data-driven method used to estimate the multĳet background can be categorised

according to their source. First, experimental and theoretical uncertainties from the simulated SM

backgrounds are propagated through the method, and variations in these backgrounds are used to estimate

the uncertainties for the multĳet estimate. The variations of the simulated SM backgrounds are used in

calculating the corresponding multĳet event estimates for the <VLQ distributions. Differences between the

resulting <VLQ distributions of the multĳet background are used as corresponding uncertainties. Statistical

uncertainties arising from Gaussian propagation from the method’s arithmetic operations are assigned

as separate uncertainties. The shape of the 'corr distributions is a function of the Pythia 8 and Sherpa

dĳet MC distributions used in the respective calculations. Since the final data-driven estimate depends

on these distributions, uncertainties in the modelling of 'corr are evaluated by comparing the estimates

of 'corr obtained by using dĳet Monte Carlo samples from different generators, namely Pythia 8 and

Sherpa. The difference between the Pythia 8 estimate and the Sherpa estimate is used as an uncertainty.

This uncertainty is larger in the VR than in the SR, resulting in a larger fractional uncertainty in the VR

in Table 1. A third-degree polynomial is fitted to model 'corr for the multĳet estimate, based on the method

described in Section 6. The statistical uncertainty arising from the polynomial fitting is also considered as a

separate uncertainty. An additional non-closure uncertainty is introduced to account for shape discrepancies

between the data and fitted backgrounds in the validation region. The <VLQ distribution is fitted to data in

the validation region under the background-only hypothesis. The post-fit distribution from the fit is shown

in Figure 3. The shape of the non-closure between the data and the fitted backgrounds seen in the validation

region in Figure 3 is propagated as a shape uncertainty for the multĳet events in SR A1. This uncertainty is

introduced to account for a similar discrepancy that may arise in the fits to data in the SR. The systematic

uncertainty in the inclusive simulated SM background yield determined from the VLQ candidate invariant

mass distribution after the fit to the background-only hypothesis for the non-closure uncertainty is 5.2%,

and the uncertainty in the modelling of 'corr found by using Sherpa as the alternative MC generator is

2.2%. After injecting a nominal signal, it was checked that the distortion of the background shape is well

below the shape uncertainties considered, so the expected bias is minimal.
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Figure 3: The post-fit distribution for <VLQ in VR A after the fit to data under the background-only hypothesis. All

the uncertainties are included in this fit as nuisance parameters. The lower panel depicts the ratio of data to the fitted

background yields.

8 Statistical analysis and results

A binned maximum-likelihood fit is performed on the<VLQ distribution in the SR A1 using the RooStats [91]

framework to test the background-only hypothesis across the <−^ plane for the VLQ signals described

in Section 4. The background prediction used for all these fits is the aggregation of the data-driven multĳet

background and the simulated SM backgrounds. The systematic uncertainties described in Section 7

are incorporated into the likelihood as nuisance parameters \8 via multiplicative Gaussian constraints,

� (\8) [92]. The normalisation of the multĳet background, `multĳets, is included as an unconstrained

parameter of the fit.

In the fit to data under the background-only hypothesis, `multĳets is measured to be 0.94± 0.06. The post-fit

distribution of <VLQ in the SR A1 after the background-only fit to data is shown in Figure 4. The expected

signal from a . VLQ with mass 1.6 TeV and ^ = 0.5, normalised to the total post-fit background yield,

is overlaid. The post-fit yields for the backgrounds and data are listed in Table 2. The data agree with

the background-only hypothesis and no significant excess of events above the SM predictions is observed.

A fit to data under the signal-plus-background hypothesis found a significance of 1.1f for a )-singlet

signal with mass 1.6 TeV and ^ = 0.5. In the absence of any significant excess, 95% CL limits on the VLQ

production cross-section are calculated separately for each signal hypothesis in the <−^ plane using the

CLs method [93]. The mass limits for . → , (→ @@̄)1 with ^ = 0.5 and ^ = 0.7 are shown in Figure 5.

The limits depend on ^ because the total width of the <VLQ distribution varies with ^. For ^ = 0.5, both the

expected and observed mass limits for . quarks are 2.0 TeV, whereas for ^ = 0.7 the expected and observed

limits are 2.3 TeV and 2.4 TeV respectively. Figure 5 also shows the ) quark’s theoretical cross-section

times branching fraction (B() → ,1) = 0.5) as a function of its mass. The limits for the ) singlet are
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Figure 4: The post-fit distribution of <VLQ in the SR A1 after the fit to data under the background-only hypothesis.

All the uncertainties are included in this fit as nuisance parameters. The lower panel depicts the ratio of data to the

fitted background yields. The hatched area in the lower panel represents the total uncertainty in the background,

including the uncertainty in `multĳets. The overlaid dotted-line histogram in the upper panel shows the signal from a

simulated . VLQ with mass 1.6 TeV and ^ = 0.5, normalised to the total post-fit background yield.

Table 2: Post-fit background yields after the fit to data for the background-only hypothesis in the SR. The quoted

uncertainties in the yields include contributions from statistical and systematic sources, and are computed taking into

account correlations among nuisance parameters resulting from the fit to data.

SR A1

Single top 870 ± 570

,+jets 780 ± 140

/+jets 190 ± 32

CC̄ 388 ± 48

Multĳet 10 690 ± 530

Total background 12 920 ± 180

Data 12 923

weaker than those for . quarks in the (�,. )-doublet representation. The observed mass limits for )-singlet

quarks as shown in Figure 5 are 1.4 TeV for ^ = 0.5 and 1.9 TeV for ^ = 0.7. The limits in this search are

affected more by systematic uncertainties than by statistical ones. The two uncertainties with the highest

impact on the exclusion limits affect the modelling of the data-driven multĳet estimate, the first being the

non-closure uncertainty and the second being the uncertainty in the modelling of 'corr found by using

Sherpa as the alternative MC generator.

The results are also interpreted in a more generalised representation of the parameter space in Figure 6,
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Figure 5: Expected (dotted) and observed (solid) cross-section limits times branching fraction for a . VLQ in the

(�,. ) doublet as a function of <)/. . Limits are computed for signals with couplings (a) ^ = 0.5 and (b) ^ = 0.7.

The branching fraction B(. → ,1) is set to 1. The surrounding bands correspond to ±1 and ±2 standard deviations

around the expected limit. The )-singlet quark’s theoretical cross-section (corrected to NLO with the inclusion of

finite-width effects) times branching fraction (B() → ,1) = 0.5) as a function of the )/. mass is also shown

(dashed blue line). The mass limit for a ) singlet can then be obtained by computing the intersection of those

cross-section limits and the )-singlet theory cross-section curve. The limits depend on ^ because the natural width of

the )/. VLQ depends on ^.

showing the largest excluded mass at a given ^. Thus, for a coupling of ^ = 0.3, . -quark masses below

1.5 TeV are excluded. For width-to-mass ratios less than 50% in the <.−^ plane, the Γ./<. isolines are

displayed along with the two-dimensional limits.
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9 Conclusion

A search for ) and . vector-like quarks decaying into a,1 final state using proton–proton (??) collisions

at a centre-of-mass energy of
√
B = 13 TeV, is presented in this paper. The search uses 139 fb−1 of data

recorded from 2015 to 2018 by the ATLAS experiment at the LHC. Whereas previous ATLAS searches

using this topology focused on the leptonic decay mode of the , boson, this is the first search where

the hadronic decay mode of the, boson is probed. This analysis searches for VLQs with masses in the

TeV range. Consequently, the , boson has a large Lorentz boost, and is reconstructed using advanced

tagging algorithms that use substructure information from large-' jets. The main background comes

from QCD multĳet production. The shape and expected yield of this background are estimated using a

data-driven method. Upon finding no significant excess of events in data, mass limits as a function of

the global coupling parameter ^ are determined. The observed lower limits on the masses of . quarks

with ^ = 0.5 and ^ = 0.7 are 2.0 TeV and 2.4 TeV, respectively. For ) quarks, the observed mass limits

are 1.4 TeV for ^ = 0.5 and 1.9 TeV for ^ = 0.7. All coupling values ^ > 0.6 for . -quark masses up to

2.2 TeV in the (�,. ) doublet are excluded for narrow-width signals (Γ./<. < 50%). The mass limits on

the . quark in the (�,. )-doublet representation improve on those of the previous ATLAS search, obtained

using leptonic decays of the, boson, by 0.6 TeV for ^ = 0.5. Compared to the previous ATLAS search,

this paper extends the search region for . quarks from 2.0 TeV to 2.7 TeV. For the )-singlet case, with

) → ,1 decays, the search region is extended from 1.2 TeV to 2.7 TeV. Depending on the choice of ^, the

reported mass limits are the most stringent to date for this channel.
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