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We establish a simple yet general parameterization of Higgs-muon interactions within the effective
field theory frameworks, including both the Higgs Effective Field Theory (HEFT) and the Standard
Model Effective Field Theory (SMEFT). We investigate the potential of a muon collider, operating
at center-of-mass energies of 3 and 10 TeV, to probe Higgs-muon interactions. All possible
processes involving the direct production of multiple electroweak bosons (𝑊 , 𝑍 , and 𝐻) with up
to five final-state particles are considered. Our findings indicate that a muon collider can achieve
greater sensitivity than the high-luminosity LHC, especially considering the independence of the
Higgs decay branching fraction to muons. Notably, a 10 TeV muon collider offers exceptional
sensitivity to muon-Higgs interactions, surpassing the 3 TeV option. In particular, searches based
on multi-Higgs production prove highly effective for probing these couplings.
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1. Introduction

As the Higgs boson is believed to be special in the Standard Model (SM) of particle physics and
also a portal to possible new physics beyond the Standard Model (BSM), precise measurements
on its interactions with other SM particles are critical. While the Yukawa couplings of the third-
generation fermions (𝑡, 𝑏, and 𝜏) have been measured to be consistent with the SM predictions,
probing the interactions of the second-generation fermions with the Higgs boson remains a priority.
Evidence for the Higgs-muon coupling has already emerged from Large Hadron Collider (LHC)
measurements of the 𝐻 → 𝜇+𝜇− decay channel [1, 2], and the High-Luminosity LHC (HL-LHC)
is expected to improve this measurement with higher precision. However, these measurements
depend on the assumption of the Higgs boson’s total decay to be the SM value. Meanwhile,
as a promising next-generation lepton collider, a multi-TeV muon collider [3, 4] combines the
advantages of high-energy hadron colliders and 𝑒+𝑒− colliders [5–7]. In our previous work [8, 9],
we demonstrated that multi-boson production offers a valuable opportunity to measure the 𝐻𝜇̄𝜇

vertex. In this proceeding, we summarize our recent study of the comprehensive parameterization
within the effective field theory (EFT) framework and include multi-Higgs production processes in
the analysis [10].

2. Model Parameterization

To provide a simple yet general parameterization of Higgs-muon interactions, we introduce the
form factors 𝛼𝑖 and 𝛽 𝑗 to describe the couplings of 𝜇̄𝜇𝐻𝑖 and 𝐻 𝑗 interactions, respectively. In the
unitary gauge, the Lagrangian is expressed as:

L ⊃ −
𝑚2

𝐻

2
𝐻2 − 𝑚𝜇 𝜇̄𝜇 −

∞∑︁
𝑛=3

𝛽𝑛
𝜆

𝑣𝑛−4 𝐻
𝑛 −

∞∑︁
𝑛=1

𝛼𝑛

𝑚𝜇

𝑣𝑛
𝜇̄𝜇𝐻𝑛. (1)

The above Lagrangian aligns with the Higgs Effective Field Theory (HEFT), where the relations
𝑦𝜇,𝑛 =

√
2𝑚𝜇𝛼𝑛/𝑣 and 𝑓𝑉,𝑛 = 𝛽𝑛𝜆 hold [8]. By adopting {𝛼1 = 1, 𝛼𝑛>1} = {1, 0} for muon-Higgs

interactions and {𝛽3, 𝛽4, 𝛽𝑛>4} = {1, 1/4, 0} for Higgs self-interactions, the Lagrangian in Eq. (1)
reduces to the SM one. Focusing on the Yukawa sector, the form factors 𝛼𝑛 can be related to the
Standard Model Effective Field Theory (SMEFT) parameters 𝑐 (𝑛)

ℓ𝜑
as follows:

𝛼1 = 1 + 𝑣3
√

2𝑚𝜇

𝑐
(6)
ℓ𝜑

Λ2 + 𝑣5
√

2𝑚𝜇

𝑐
(8)
ℓ𝜑

Λ4 + 3𝑣7

4
√

2𝑚𝜇

𝑐
(10)
ℓ𝜑

Λ6 ,

𝛼2 =
3𝑣3

2
√

2𝑚𝜇

𝑐
(6)
ℓ𝜑

Λ2 + 5𝑣5

2
√

2𝑚𝜇

𝑐
(8)
ℓ𝜑

Λ4 + 21𝑣7

8
√

2𝑚𝜇

𝑐
(10)
ℓ𝜑

Λ6 ,

𝛼3 =
𝑣3

2
√

2𝑚𝜇

𝑐
(6)
ℓ𝜑

Λ2 + 5𝑣5

2
√

2𝑚𝜇

𝑐
(8)
ℓ𝜑

Λ4 + 35𝑣7

8
√

2𝑚𝜇

𝑐
(10)
ℓ𝜑

Λ6 ,

𝛼4 =
5𝑣5

4
√

2𝑚𝜇

𝑐
(8)
ℓ𝜑

Λ4 + 35𝑣7

8
√

2𝑚𝜇
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√
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(8)
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Λ4 + 21𝑣7

8
√

2𝑚𝜇

𝑐
(10)
ℓ𝜑

Λ6 ,

(2)

where we stop up to dimension ten for the SMEFT operators. Specially, in the dim-6 SMEFT
scenario, the relations Δ𝛼1 ≡ 𝛼1 − 1 = 2

3𝛼2 = 2𝛼3 and 𝛼4 = 𝛼5 = 0 hold.
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3. Phenomenology

We consider possible high-energy muon colliders with collision energies 3 TeV (10 TeV) with
luminosities 1 ab−1 (10 ab−1) [3, 4], respectively. The signal is defined as the set of direct muon-
annihilation processes into multiple bosons 𝜇+𝜇− → 𝑚𝑉 + 𝑛𝐻 up to 𝑚 + 𝑛 = 5, where 𝑉 = 𝑊, 𝑍

and 𝐻 is the Higgs boson. As suggested in Ref. [8, 9], we apply the kinematic cuts on the final-state
bosons

𝜃𝑖𝐵 > 10◦, Δ𝑅𝐵𝐵 > 0.4, 𝑀𝐹 > 0.8
√
𝑠, (3)

where 𝜃𝑖𝐵 is the smallest angle between any final-state boson 𝐵 (𝐵 = 𝐻,𝑊, 𝑍) and the beam
axis, Δ𝑅𝐵𝐵 =

√︁
Δ𝜂2 + Δ𝜙2 is the separation distance between any two bosons, and 𝑀𝐹 is the

invariant mass of all final-state bosons. The invariant mass cut is sufficient to suppress the vector
boson fusion (VBF) backgrounds and to reconcile the initial state radiation (ISR). The numerical
results are obtained using the general-purpose generators MadGraph5_aMC@NLO [11, 12] and
Whizard [13]. Other relevant effects from the experimental simulation (e.g., vector-boson tagging
efficiency) and theorical consideration (e.g., PDF effects [6, 7] or NLO EW corrections [14, 15])
are reserved for a future study, which is not expected to change our conclusions dramatically.

3.1 Multi-Higgs production

Due to the smallness of the SM 𝜇̄𝜇𝐻 coupling, the tree-level contribution to the multi-Higgs
production cross section 𝜎LO

SM is highly suppressed and the dominant contribution originates from
the square of one-loop diagrams (𝜎loop

SM ). In practice, we have considered 𝜎
loop
SM for only the di-

Higgs and tri-Higgs production, and the beyond is expect to be suppressed as well. We present
the sensitivities of 𝜎BSM on the 𝛼𝑖 and 𝛽 𝑗 parameters in Figure 1, showing that the multi-Higgs
production processes enable unique measurements on the 𝜇̄𝜇𝐻𝑛 vertices. The upper bounds of
𝛼𝑛 and the corresponding signal strength are summarized in Table 1. Keeping only the dim-6
operators, we obtain a translation

|Δ𝛼1 | ≲ 0.3 ⇐⇒
���𝑐 (6)
ℓ𝜑

/Λ2
��� ≲ 3 × 10−9 GeV−2 at 3 TeV , (4)

|Δ𝛼1 | ≲ 0.1 ⇐⇒
���𝑐 (6)
ℓ𝜑

/Λ2
��� ≲ 1 × 10−9 GeV−2 at 10 TeV , (5)

via measuring the 2𝐻 production, while from the measurement of 3𝐻 production we have

|Δ𝛼1 | ≲ 0.7 ⇐⇒
���𝑐 (6)
ℓ𝜑

/Λ2
��� ≲ 7 × 10−9 GeV−2 at 3 TeV , (6)

|Δ𝛼1 | ≲ 0.05 ⇐⇒
���𝑐 (6)
ℓ𝜑

/Λ2
��� ≲ 5 × 10−10 GeV−2 at 10 TeV . (7)

3.2 Higgs-associated gauge boson production and multi-gauge boson production

While the 𝑍𝐻 and 3𝑉 production processes depend solely on 𝛼1 [10], their sensitivities are too
weak to give meaningful constraints. The dependence on 𝛼𝑛>1 emerges in processes with higher
multiplicities, summarized as follows.
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Figure 1: The cross sections of 𝜇+𝜇− → 𝑛𝐻 as functions of the parameters 𝛼𝑖 and 𝛽 𝑗 at 3 TeV. The green
curves are for 𝛼1 = 1 + Δ𝛼1 in the dim-6 SMEFT scenario. Solid lines refer to the configuration with no
cuts, dashed lines to the case with |𝜃𝑖𝐵 | > 10◦ cuts applied and dotted lines to the case with all cuts applied.
Adapted from Ref. [10].

√
𝑠 3 TeV 10 TeV
𝑛 bound on |𝛼𝑛 | 𝑆/𝐵 S bound on |𝛼𝑛 | 𝑆/𝐵 S
2 0.42 1.49 2.05 0.15 1.16 2.12
3 0.33 – – 2.6 · 10−2 3.23 2.03
4 0.46 – – 1.4 · 10−2 1.31 2.00
5 0.87 – – 9.0 · 10−3 0.757 2.03

Table 1: Bounds on the signal strength of 𝛼𝑛 from the 𝜇+𝜇− → 𝑛𝐻 processes. For 𝑛𝐻 (𝑛 ≥ 3) production
at the 3 TeV muon collider, the SM background gives ∼ 0 event and the bound on |𝛼𝑛 | are taken from 𝑆 = 3.

• All the 3-boson final states and 𝑉3𝐻 productions are dependent on 𝛼1 and 𝛼2, with the cor-
responding measurements probing these two parameters simultaneously, shown in Figure 2.
As a reference, we also show the dim-6 SMEFT scenario 𝛼1 = 1 + 2

3𝛼2 as a black solid line.

• At a 10 TeV muon collider, the 𝜇+𝜇− → 4𝑉 and 𝜇+𝜇− → 5𝑉 processes are also sensitive
to 𝛼1 and 𝛼2 as shown in Figure 3. Combining these processes could help to improve the
constraints on 𝛼1 and 𝛼2.

• Other processes, such as 𝑉2𝐻2, 𝑉4𝐻, 𝑍𝐻3, 𝑉3𝐻2 production, are sensitive also on 𝛼3.
Assuming 𝛼3 = 0, the constraints on 𝛼1 and 𝛼2 can be further improved. In Figure 4, we
combine all the processes to show the constraints on 𝛼1 and 𝛼2 at 3 and 10 TeV muon colliders,
where the solid curves include the assumption 𝛼3 = 0 and the dashed ones do not.

As shown in Figure 4, the 10 TeV muon collider provides a unique sensitivity to the 𝜇̄𝜇𝐻 vertex,
significantly better than the 3 TeV option. As can be seen, we obtain the following 95% confidence-
level bounds at a 3 TeV muon collider

|Δ𝛼1 | ≲ 0.75 , |𝛼2 | ≲ 0.4 with no assumptions on 𝛼3 , (8)
|Δ𝛼1 | ≲ 0.7 , |𝛼2 | ≲ 0.4 assuming 𝛼3 = 0 , (9)

and at a 10 TeV muon collider

|Δ𝛼1 | ≲ 0.1 , |𝛼2 | ≲ 0.15 with no assumptions on 𝛼3 , (10)
|Δ𝛼1 | ≲ 0.1 , |𝛼2 | ≲ 0.1 assuming 𝛼3 = 0 . (11)

Also, we notice that these multi-boson production processes provide a chance to determine the sign
of the 𝛼1, which is not possible in multi-Higgs production and 𝐻 → 𝜇+𝜇− decay.
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Figure 2: Contour-plots displaying the constraints in the (𝛼1, 𝛼2) plane from Higgs-associated gauge boson
production processes for three-boson final states (left) and 𝜇+𝜇− → 𝑉3𝐻 (middle), and the combined signal
significance (right) at a 3 TeV muon collider (dashed curves) and a 10 TeV muon collider (solid curves),
respectively. The red, green, and blue curves represent the S = 2, 3, 5 significances, respectively. The black
solid line corresponds to the dim-6 SMEFT scenario. Adapted from Ref. [10].
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Figure 3: Same as Figure 2 for 𝜇+𝜇− → 4𝑉 (left) and 𝜇+𝜇− → 5𝑉 (middle) production at a 10 TeV muon
collider. The right plot shows the combined constraints. Adapted from Ref. [10].
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Figure 4: Combined constraints on (𝛼1, 𝛼2) from combining the processes at a 3 TeV muon collider (left) and
a 10 TeV muon collider (right), respectively. The dashed curves are for the constraints with no assumptions
and the solid curves includes also the processes with assumption 𝛼3 = 0. The red, green, and blue curves
represent S = 2, 3, 5 significances, respectively. The black solid line corresponds to the dim-6 SMEFT
scenario. Adapted from Ref. [10].

4. Summary

In this work, we studied the anomalous 𝜇̄𝜇𝐻𝑛 interactions within the EFT framework at a multi-TeV
muon collider. We considered all possible processes involving the direct production of electroweak
bosons (𝑊 , 𝑍 , and 𝐻) with up to five final-state particles. Our results demonstrate that multi-Higgs
production processes offer a unique opportunity to measure the 𝜇̄𝜇𝐻𝑛 vertex. Furthermore, by
combining Higgs-associated gauge boson production with multi-gauge boson production processes,
a 10 TeV muon collider can precisely constrain the parameters 𝛼1 and 𝛼2, simultaneously.
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