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Abstract

We study the correlators of bulk and defect half-BPS operators in N = 4 super Yang-

Mills theory with a Maldacena-Wilson line defect, focusing on the case involving one bulk

and two defect local operators. We analyze the non-perturbative constraints on these

correlators, which include a topological sector, pinching and splitting limits, as well as

a compatibility with expanding in superconformal blocks. Using these constraints, we

compute a variety of bulk-defect-defect correlators up to next-to-leading order at weak

coupling, and observe that transcendental terms cancel. Additionally, we study the two

leading terms in the strong-coupling regime, and present partial results for the next-to-

next-to-leading order.
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1 Introduction

Defects are central to a broad range of physical theories, from condensed-matter systems to

high-energy physics. Despite the presence of a defect, the local structure of a theory remains

intact, preserving key features that allow for instance the application of non-perturbative

techniques. In critical systems, conformal defects retain a significant portion of the under-

lying conformal symmetry, enabling the use of modern tools like the conformal bootstrap

to formulate constraints on observables. Although numerical studies face challenges due to

the absence of positivity, substantial progress has been made on the analytic side, inspired

by the development of Lorentzian inversion formulas and dispersion relations in conformal

field theories (CFTs) without defects[1, 2]. In recent years, a wide variety of defect CFTs

has been investigated, with Wilson lines emerging as crucial probes in both the AdS/CFT

correspondence [3, 4] and the study of quark confinement [5, 6].

In this context, the configuration involving a Maldacena-Wilson line in four-dimensional

N = 4 super Yang-Mills (SYM) theory holds a particularly prominent position. This setup

retains many key features of its parent theory, including one-dimensional conformal sym-

metry, supersymmetry and integrability. Recent studies have focused on two canonical

configurations: the two-point functions of bulk operators in the presence of the Wilson

line and multipoint correlators of defect operators. For the two-point functions, correlators

involving half-BPS operators have been studied at weak and strong coupling, employing an-

alytical bootstrap methods [7–10], perturbative techniques [11], and exact results obtained

through localization in a specific kinematic regime known as topological [12–16]. In the con-

text of multipoint correlators, extensive work has been conducted on four-point functions

of defect half-BPS operators using modern approaches that combine numerical conformal

bootstrap and integrability [17–20]. Strong-coupling results have also been derived through

direct computations [21, 22] or with the analytical bootstrap [23–27]. Exact results have

also been obtained with localization techniques [28]. Additionally, studies of higher-point

functions at weak coupling have led to conjectures about superconformal Ward identities

[29, 30], which have been confirmed and expanded upon [31, 32], leading to new results for

five- and six-point functions [33–36].

The configurations discussed above are generally considered the simplest correlators

with non-trivial kinematics in defect CFTs. However, there is another canonical setup that

has so far received little attention: correlators of one bulk and two defect operators. This

configuration is particularly interesting in the context of the Wilson-line defect CFT, as

it depends on just one spacetime cross-ratio and one R-symmetry variable for half-BPS

operators. In contrast, two-point functions of bulk operators rely on two spacetime cross-

ratios and one R-symmetry variable, while four-point functions of defect operators depend

on one spacetime cross-ratio and two R-symmetry variables. To date, bulk-defect-defect

correlators have been explored primarily in scalar theories with line defects [37], with some

insights drawn from locality constraints [38, 39] and conformal block expansion [40, 41].1 In

the context of the Wilson-line defect CFT, the localization machinery has been developed

1See also [42] for an analysis involving boundaries.
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Figure 1: Illustration of a bulk-defect-defect correlator 〈O1Ô2Ô3 〉. The two defect oper-

ators Ô2,3 are representations of the one-dimensional CFT preserved by the line, while the

bulk operator O1 on the right lives in the four-dimensional space of N = 4 SYM.

in [43] for calculating these correlators exactly in a special kinematic limit. This setup is

represented in Figure 1.

In this paper, we initiate the study of bulk-defect-defect correlators in the Wilson-line

defect CFT, focusing on the simplest case where both the bulk and defect operators are

half-BPS. Through a heuristic approach, we derive differential constraints (that we interpret

as superconformal Ward identities), and demonstrate their equivalence to the existence of

a topological sector. These constraints prove useful in systematically eliminating one R-

symmetry channel. We also examine specific limits of these correlators, where they reduce

either to bulk-defect two-point functions or to the product of bulk one-point and defect

two-point functions. We extend the study of the kinematic limit presented in [43] to NLO,

introducing its use in this context as a tool to fix constants and to perform checks.

We then study the weak and strong coupling expansions of bulk-defect-defect correlators.

At weak coupling, we show that the number of R-symmetry channels increases order by

order in perturbation theory. At next-to-leading order, we fully determine the correlators

by focusing on the simplest R-symmetry channel, which avoids bulk vertices. Notably, the

results contain no transcendental functions, despite their potential presence in individual

diagrams. At strong coupling, we focus on one particular correlator and study it up to

partial next-to-next-to-leading order results by using a combination of superconformal and

analyticity constraints in the spirit of [38]

The structure of the paper is as follows. In Section 2, we establish the foundational ele-

ments necessary for the computations in this work. Section 3 compiles the non-perturbative

constraints that govern the correlators. Perturbative results in the weak and strong cou-

pling regimes are presented in Section 4. In Section 5, we summarize the main findings

and explore potential future directions. Appendix A provides the integrals required for the

computations discussed in the main text. In Appendix B we perform a check of our results

through direct Feynman diagrams calculations.
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2 Preliminaries

This section reviews the Wilson-line defect CFT and the correlators of local operators in

the presence of a defect. We begin by presenting the theory both with and without defects,

outlining the Feynman rules and discussing special representations of the symmetry group,

known as half-BPS operators. Next, we provide a concise overview of the correlators involv-

ing bulk and defect half-BPS operators, first treating them separately, and then considering

them together.

2.1 The Wilson-line defect CFT

We start by outlining the key aspects of N = 4 SYM and the Maldacena-Wilson line.

This includes presenting the action, its symmetries, and the corresponding bulk and defect

Feynman rules. We then review the special role played by half-BPS operators within this

defect CFT.

2.1.1 The action

We consider as a bulk action N = 4 SYM in four dimensions. The theory consists of six

scalar fields φI=1,...,6, four Weyl fermions and one gauge field. The action is given by [44]

S =
1

g2
tr

∫

d4x

(

1

2
FµνFµν +Dµφ

IDµφ
I − 1

2
[φI , φJ ][φI , φJ ]

+ i ψ̄ /Dψ + ψ̄ΓI [φI , ψ] + ∂µc̄Dµc+ ξ(∂µAµ)
2

)

,

(2.1)

where the Weyl fermions have been compactly written in the form of a single 16-component

Majorana fermion. The repeated indices are contracted with the flat Euclidean metric

δµν . N = 4 SYM is conformal at the quantum level, and its supersymmetry algebra is

psu(2, 2|4). In the following, we focus on the large N limit of the su(N) gauge group, and

study the perturbative expansions for the coupling

λ = g2N . (2.2)

At small λ, N = 4 SYM is conjectured to be dual to a strongly-coupled string theory in

five dimensions [3].

The symmetries of N = 4 SYM are broken when a line defect is included. Here, we

choose the defect to be the Maldacena-Wilson line, defined as [4]

Wℓ =
1

N
trP exp

∫ ∞

−∞
dτ (iẋµAµ(τ) + |ẋ| θ · φ(τ)) , (2.3)

with the spacetime orientation determined by

ẋµ = (1, 0, 0, 0) , (2.4)

and where we choose the R-symmetry vector θ to be

θ = (0, 0, 0, 0, 0, 1) . (2.5)
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These choices are arbitrary. Eq.(2.5) simply defines which scalar fields couple to the line.

The Maldacena-Wilson line is an extended half-BPS operator, which has the protected

expectation value [45]

〈Wℓ 〉 = 1 . (2.6)

This operator breaks the conformal algebra in the following manner:

so(5, 1) → so(2, 1)× so(3) , (2.7)

where the first term on the right-hand side corresponds to the one-dimensional CFT pre-

served along the line, while the second one refers to rotations around the defect. We

associate to so(2, 1) the quantum number ∆̂, which should be understood as the scaling

dimension of the defect operators. For so(3), the quantum number is s, which we call

transverse spin. On the left-hand side, bulk operators will be determined by their quantum

numbers ∆ (the 4d scaling dimension) and ℓ (the spin). As we explain in more detail in

Section 2.1.3, the representations of su(N) are distinguished through their trace structure.

The R-symmetry algebra is also broken by the presence of the defect:

soR(6) → soR(5) . (2.8)

We associate the quantum numbers k and k̂ to so(6)R and to so(5)R, respectively. All in

all, the supersymmetry algebra psu(2, 2|4) breaks into the defect algebra osp(4∗|4).

2.1.2 Feynman rules

In this section, we list the Feynman rules of the N = 4 SYM theory and of the Wilson-line

defect CFT, generated by the action (2.1) together with the extended operator (2.3).

Bulk Feynman rules. The free propagators of the N = 4 SYM fields are given by

Scalars:
I, a

1

J, b

2

= g2δIJδab I12 ,

Gluons:
µ, a

1

ν, b

2

= g2δµνδ
ab I12 ,

Fermions:
a

1

b

2

= ig2δab/∂1I12 ,

Ghosts:
a

1

b

2

= g2δabI12 ,

(2.9)

where we defined the four-dimensional scalar propagator as

Iij =
1

4π2x2ij
. (2.10)
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In this work, we make explicit use of the following vertices, whose Feynman rules in the

form of insertion rules have been given in [45]:

I, a
1

J, b
2

µ, c

3

= −g4fabcδIJ(∂1 − ∂2)µY123 , (2.11)

I, a
1

J, b
2

K, c
3

L, d
4

= −g6
{

fabef cde
(

δIKδJL − δILδJK
)

+ facef bde
(

δIJδKL − δILδJK
)

+fadef bce
(

δIJδKL − δIKδJL
)

}

X1234 , (2.12)

while, for completion, we simply mention the other ones:

a
1

b
2

I, c

3

. (2.13)

In our case, these are only relevant for self-energy calculations, which we give here in the

form of an insertion rule. For instance, the scalar self-energy is given by [45]

= + + +

= −2g4NδabδIJ Y112 .

(2.14)

Further insertion rules can be found, e.g., in the appendix of [29]

Defect Feynman rules. The Maldacena-Wilson line introduces new Feynman rules in

the theory, in particular in the form of integrated vertices coupling the line to the allowed

fields. These rules are given by

I 1

2 3
∼ δI6

∫ τ3

τ2

dτ4 I14 , (2.15)

µ 1

2 3

∼ iδµ0
∫ τ3

τ2

dτ4 I14 , (2.16)

where the contribution from the gauge group depends on the number of insertions.

2.1.3 Half-BPS operators

We now consider a special case of representations of N = 4 SYM, with and without the

defect. These operators preserve half of the supersymmetry and are called half-BPS oper-

ators.
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Bulk operators. We consider in this work correlation functions that involve scalar single-

trace half-BPS operators, which can be defined as

O∆(u, x) =
1√
n∆

tr (u · φ(x))∆ . (2.17)

where the representation is made symmetric and traceless through the condition

u2 = 0 . (2.18)

These operators are protected and have integer scaling dimensions ∆ = k. The normaliza-

tion constants can be evaluated to be [46]

n∆ =
∆λ∆

23∆π2∆
, (2.19)

Note that the restriction to single-trace operators is here purely technical. All the techniques

presented in this paper can be applied to higher-trace operators as well, the only limitation

being that the CFT data is in general not known.

Defect operators. We can define defect half-BPS operators in a similar manner. The

analog of the single-trace operators (2.17) take the following explicit form:

Ô∆̂(û, τ) =
1

√

n̂∆̂
Wℓ[(û · φ(τ))∆̂] , (2.20)

with the half-BPS conditions

û2 = 0 and û · θ = 0 . (2.21)

Here we defined insertions on the Wilson line Wℓ[. . .] as

Wℓ[Ô] =
1

N
trP[ Ô exp

∫

dτ (iA0(τ) + φ6(τ))] . (2.22)

The normalization constants can be evaluated explicitly through localization techniques

[28]. To the best of our knowledge, there exists no general closed form, but they can be

found case by case. For instance, we have

n̂1 =

√
λ

2π2
I1

I2
, (2.23)

n̂2 =
1

4π4
(3λ− (I1 − 2)(I1 + 10)) , (2.24)

n̂3 =
3

8π6

(

(5λ+ 72)I1I2√
λ

− λ(26I1 + 3λ− 32) + 288(I1 − 1)

I1 − 2

)

, (2.25)

where we have defined the help function

Ia =

√
λ I0(

√
λ)

Ia(
√
λ)

. (2.26)
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We can construct operators with a higher number of traces. In fact, they are expected

to appear in the bulk-to-defect OPE.2 For n traces on top of the one of the Wilson line,

they take the form

Ô(h|k)(û, τ) = Wℓ[(û · φ)k] tr(û · φ)k1 . . . tr(û · φ)kn , (2.27)

with k = (k1 , . . . , kn) and ∆̂(h|k) = h +
∑

kj . We use the notation Ô instead of Ô
to emphasize that, as they stand, these operators do not form a good basis of operators

since they are not orthogonal to the single-trace ones. This can be achieved by defining

new operators following a Gram-Schmidt procedure. The OPE coefficients that appear

in a block expansion give correspond to such an orthonormal basis, for which we use the

notation Ô.

2.2 Correlators of half-BPS operators

We now consider correlation functions of the half-BPS operators introduced in Section 2.1.3.

Since we consider mixed correlators of bulk and defect scalar operators, we use for the rest

of this paper the shorthand notation

〈∆1 . . .∆m∆̂1 . . . ∆̂n 〉 = 〈O∆1(u1, x1) . . .O∆m(um, xm)Wℓ[Ô∆̂1
(û1, τ1) . . . Ô∆̂n

(ûn, τn)] 〉 .
(2.28)

2.2.1 Bulk correlators

We begin by discussing the correlators of bulk operators, i.e., without the line defect.

Two-point functions. Two-point functions are fixed by the 4d conformal symmetry to

be

〈∆1∆2 〉 = δ∆1∆2(12)
∆1 , (2.29)

where we use the superpropagator

(ij) =
ui · uj
x2ij

. (2.30)

Three-point functions. Three-point functions are also fixed kinematically, and for scalar

operators they read

〈∆1∆2∆3 〉 = λ∆1∆2∆3(12)
∆123(23)∆231(31)∆312 , (2.31)

where we have defined

∆ijk =
1

2
(∆i +∆j −∆k) . (2.32)

In the large N limit, three-point functions of single-trace operators are known to be exactly

given by [47]

λ∆1∆2∆3 =

√
∆1∆2∆3

N
. (2.33)

The higher-point functions are not fixed kinematically anymore. They depend on n(n−3)/2

spacetime cross-ratios. They have been studied at weak and strong-coupling using a variety

of techniques [48–50].

2See [43] as well as [7] for a detailed explanation.
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2.2.2 Defect correlators

We now consider the case of correlators that involve defect operators only.

Two-point functions. Similarly to (2.29), defect two-point functions are fixed by the

one-dimensional conformal symmetry to be

〈 ∆̂1∆̂2 〉 = δ∆̂1∆̂2
(1̂2̂)∆̂1 , (2.34)

where we used the notation

(̂iĵ) =
ûi · ûj
τ2ij

. (2.35)

Three-point functions. The three-point functions of defect scalar operators are once

again fixed by conformal symmetry and they are given by

〈 ∆̂1∆̂2∆̂3 〉 = λ̂∆̂1∆̂2∆̂3
(1̂2̂)∆̂123(2̂3̂)∆̂231(3̂1̂)∆̂312 , (2.36)

with ∆̂ijk defined in the same way as in (2.32).

As opposed to the bulk case, the OPE coefficients λ̂∆̂1∆̂2∆̂3
are not currently known in

an analytical form, even in the large N limit. They can however be calculated case by case

using the integrability techniques of [28]. We give explicitly here the expression for λ̂1̂1̂2̂, as

it is useful for our calculations:

λ̂1̂1̂2̂ =
−2

√
λI1(7 + I1)I2I3 − (−32 + 14I1 + I

2
1)I

2
2I3 + λ(3I1I

2
2 − I

2
1I3 + 9I22I3)

4I1
√

λ(3λ− (−2 + I1)(10 + I1))I2I3
, (2.37)

with Ik defined in (2.26).

Higher-point functions. Higher-point defect correlators take the general form

〈 ∆̂1 . . . ∆̂n 〉 = K∆̂1...∆̂n
A∆̂1...∆̂n

({x; r, s, t}) , (2.38)

where K∆̂1...∆̂n
is a (super)conformal prefactor. In general, these correlators depend on

n− 3 spacetime cross-ratios and n(n− 3)/2 R-symmetry variables.

2.2.3 Correlators of bulk and defect operators

This section is dedicated to correlators that involve both bulk and defect operators.

Bulk-defect two-point functions. Two-point bulk-defect correlators are fixed kinemat-

ically by conformal symmetry.

〈∆1∆̂2 〉 = b∆1∆̂2
(12̂)∆̂2(1θ)∆1−∆̂2 (2.39)

where we use the superpropagators

(iĵ) =
ui · ûj
x2ij

. (iθ) =
ui · θ
|~xi|

. (2.40)
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The normalization of the operators is now fixed and it does not leave the possibility of

fixing the coefficients b∆∆̂ to unity. The bulk-defect coefficients are indeed an additional

set of conformal data, and at weak coupling they can be expressed as

b∆∆̂ =

√
∆

(∆− ∆̂)!

λ(∆−∆̂)/2

23(∆−∆̂)/2N

(

1 +
λ

48

2− 5(∆− ∆̂)

2 + ∆− ∆̂
+O(λ2)

)

. (2.41)

Note that we consider ∆ ≥ ∆̂ in this formula. Correlators with ∆ < ∆̂ vanish.

In principle these OPE coefficients can be calculated exactly using either localization

techniques [43] or microbootstrap. The latter was used in [35, 51] to efficiently produce a

large number of expressions, and to find a closed form for relevant special cases:

b∆1̂ =

√
λ∆3

2∆+1N2

I1I2

I
2
∆

, (2.42)

b∆2̂ = −
√
λ∆

2∆N2

I1I2I5

(√
λ I∆−1(I3I∆ − I1I∆+2) + 2(∆− 1)I3I∆I∆+2

)2

I
2
∆−1I

2
∆I

2
∆+2

(√
λ I2

(

I1I5 − I
2
3

)

− 4I23I5

) . (2.43)

When the defect operator is the identity, the two-point coefficients become the one-point

coefficients of the bulk operators:

b∆1 = a∆ =

√
λ
√
∆

2∆/2+1N

I1

I∆
. (2.44)

Bulk-defect-defect three-point functions. We now move to the observables that are

the central focal point of this work: correlators with one bulk and two defect half-BPS

operators. They can be expressed as

〈∆1∆̂2∆̂3 〉 = K∆1∆̂2∆̂3
A∆1∆̂2∆̂3

(ζ;x) , (2.45)

where A∆1∆̂2∆̂3
(ζ;x) is a reduced correlator, and K∆1∆̂2∆̂3

is a superconformal prefactor.

The prefactor is chosen such that the leading order at weak coupling comes without a factor

ζ. For instance, in the case ∆1 ≥ ∆̂2 + ∆̂3, this results in

K∆1∆̂2∆̂3
=

(12̂)∆̂2(13̂)∆̂3

(1θ)2∆231
. (2.46)

The conformal cross-ratios are defined as

x =
|~x|21τ223

(~x21 + τ212)(~x
2
1 + τ213)

, (2.47)

for the spacetime variables, and

ζ = −1

2

(u1 · θ)2(û2 · û3)
(u1 · û2)(u1 · û3)

. (2.48)

The −1/2 factor in our definition of ζ is chosen such that the kinematic limit studied in

[43], which is known as topological sector, corresponds to the sum of all the R symmetry

channels defined in the next paragraph.

9



O∆1

Ô∆̂2
Ô∆̂3

=
∑

∆̂

λ̂∆̂2∆̂3∆̂

O∆1

Ô∆̂

Figure 2: Illustration of the operator product expansion for the bulk-defect-defect correla-

tors. The result is an expansion in conformal blocks, with the OPE coefficients being given

by the product of defect three-point functions and bulk-defect coefficients.

In our conventions, the reduced correlator is a polynomial in the R-symmetry variable

ζ. Concretely,

A∆1∆̂2∆̂3
(ζ;x) =

r
∑

j=1

(

ζ

x

)j−1

Fj(x) . (2.49)

We call the functions Fj R-symmetry channels. The dependency on x in the prefactors is

chosen such that they become 1 in the topological limit of [43]. The number of channels

r = r(∆1, ∆̂2, ∆̂3) for a specific configuration is given by

r =
⌊

∆13̂2̂

⌋

+ 1 , (2.50)

for ∆1 < ∆̂2 + ∆̂3 and

r = ∆̂3 + 1 , (2.51)

for ∆1 ≥ ∆̂2 + ∆̂3.
3

The operator product expansion (OPE) can be used to expand the correlator into

conformal blocks. One can either start with an OPE of the two defect operators Ô∆̂2
×Ô∆̂3

,

or with the OPE of the bulk operator with the line defect, O∆1 ×Wℓ. In fact, these two

operations lead to the same expression, resulting in the absence of a crossing relation. The

conformal block expansion reads

Fj(x) = x−∆1
∑

∆̂ prim.

b
(j)

∆1∆̂
λ̂
(j)

∆̂2∆̂3∆̂
g∆̂(x) , (2.52)

where the sum runs over all the primaries, including superdescendants. Although not

specified explicitly here to avoid cluttering the notation, the blocks g∆̂(x) depend on the

scaling dimensions ∆̂2 and ∆̂3 (but not ∆1). They have been determined in [40, 41] to be

g∆̂(x) = x∆̂/2
2F1

(

(∆̂ + ∆̂2 − ∆̂3)/2, (∆̂− ∆̂2 + ∆̂3)/2; ∆̂ + 1/2;x
)

. (2.53)

The OPE is illustrated in Figure 2. In order for the sum in (2.52) to be over superpri-

maries instead of primaries, we should determine superconformal blocks. We provide the

superblock expansion for the case 〈 21̂1̂ 〉 in Section 3.2. Finally, note that an alternative

expansion in terms of local blocks was derived in [38, 39].

3We always assume ∆̂2 ≥ ∆̂3 without loss of generality.
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3 Non-perturbative constraints

We now discuss the non-perturbative constraints of the bulk-defect-defect correlators of

half-BPS operators. We start by showing how superconformal symmetry can be used to

trade a function of the spacetime cross-ratio for a constant. This constant, called the

topological sector, can be evaluated using localization techniques. From the symmetry we

are also able to derive superconformal blocks for the case 〈 21̂1̂ 〉, which will be extensively

studied in Section 4. Finally, we discuss pinching and splitting limits, that relate parts of

the bulk-defect-defect correlators to lower-point functions.

3.1 Superconformal symmetry

Superconformal symmetry can typically be encoded in the form of superconformal Ward

identities (SCWI). Thye have been shown to be powerful tools for constraining correlators

of half-BPS operators, both in N = 4 SYM [52–54] and in the Wilson-line defect CFT

[23, 24, 29, 31, 32]. To the best of our knowledge, SCWI are not known for the setup (2.45).

We conjecture in this section that they are fully encoded by the topological sector.

3.1.1 Topological sector and superconformal Ward identity

Our starting point is the topological sector calculated in [43]. In our conventions, it can be

expressed as the sum of the R-symmetry channels of (2.49):

r
∑

j=1

Fj(x) = F∆1∆̂2∆̂3
. (3.1)

The right-hand side F∆1∆̂2∆̂3
is a constant, in the sense that it depends neither on spacetime

nor R-symmetry variables. It is however a function of the coupling λ. Equation (3.1) can

readily be used to eliminate one R-symmetry channel:

Fr(x) = F∆1∆̂2∆̂3
−

r−1
∑

j=1

Fj(x) . (3.2)

In fact, we formulated an Ansatz for the Ward identities based on known examples and used

the results of Section 4 to constraint the numerical coefficients. We found the differential

constraint
(

∂x + ∂ζ
)

A∆1∆̂2∆̂3
(ζ;x)

∣

∣

∣

ζ=x
= 0 . (3.3)

Unfortunately, this equation can be shown not to encode more constraints than (3.1). It

is plausible that the fact that the correlator depends on only one spacetime and one R-

symmetry cross-ratio does not leave much room for supersymmetry to constrain its form

any further. It is also possible that differential constraints not taking the form (3.3) are

being missed by this strategy. For instance, in five-point functions of half-BPS operators

in N = 4 SYM, this Ansatz approach proved unsuccessful, although it is known that

differential constraints exist. For the time being, we use the constraint (3.2) to study the

correlators at leading and next-to-leading orders in Section 4.
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∆̂2 + ∆̂3 −∆1 even) we find

F
(1)

∆1∆̂2∆̂3
=− 2−1+3∆2̂3̂1

√
∆1∆2̂3̂1λ

a/2

N

[

i2∆2̂3̂1

22∆2̂3̂1Γ(4 + a)
Θ(∆2̂3̂1)

+
1

Γ(3− 2∆2̂3̂1)

[

1−Θ(∆2̂3̂1)
]

]

− 1

12
F
(0)

∆1∆̂2∆̂3
,

(3.7)

where the Heaviside step function is defined as in (3.6).

Strong coupling. The strong-coupling limit of the topological sector can be evaluated

using the already mentioned tools of [43]. We focus ourselves here on the case 〈 21̂1̂ 〉, since

it is the only one that we consider at strong coupling. It reads

F21̂1̂ =
1

N

(

9

2
√
2
−

√
λ√
2
+ ...

)

+ . . . . (3.8)

The topological sector at weak and strong coupling is plotted in Figure 3 for 〈 21̂1̂ 〉. Note

that an exact expression is also provided in (3.25).

3.2 Superblock expansion

The constraints from superconformal symmetry discussed above can be used for deriving

an expansion in superconformal blocks for the bulk-defect-defect correlators. Generically,

the expansion in superconformal blocks (or superblocks) take the form

A∆1∆̂2∆̂3
(ζ;x) =

∑

Ô

b∆1Ôλ̂∆̂1∆̂2ÔGÔ(ζ;x) , (3.9)

where Ô designates the superprimary operators appearing in the OPE Ô∆̂2
×Ô∆̂3

. For the

case of the Wilson-line CFT, this OPE is given, e.g., in [26] and reads

Ô∆̂2
× Ô∆̂3

−→
∆̂2+∆̂3
∑

m=∆̂23 step 2

Bm +

∆̂2−1
∑

i=0

i
∑

j=0

∑

∆̂>2i+∆̂23+1

L∆̂
[2i−2j,2j+∆̂23],0

. (3.10)

In the case ∆̂2 = ∆̂3, the leading contribution corresponds to the identity through the

identification B0 = 1̂. The operators L∆̂
[a,b],0 have unprotected scaling dimensions. The

lowest-lying operator, both at weak and strong coupling, is φ6, which has dimension [17,

55, 56]

∆φ6
λ∼0
= 1 +

λ

4π2
+ . . . , (3.11)

∆φ6
λ≫1
= 2− 5√

λ
+ . . . . (3.12)

For 〈 21̂1̂ 〉, the content of the OPE is

Ô1 × Ô1 −→ 1̂+ B2 +
∑

∆̂

L∆̂
[0,0],0 . (3.13)

In a perturbative setting, operators can become degenerate. The degeneracy grows with

the tree-level scaling dimension ∆(0). The large N limit helps to reduce the degeneracy,

but there are still many operators with the same tree-level scaling dimensions.4

4A counting of the number of operators can be found in [26].
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From (3.13), we can read the expansion of 〈 21̂1̂ 〉 in superblocks:

A21̂1̂(ζ;x) = a2G1̂(ζ;x) + b22̂λ̂1̂1̂2̂G2̂(ζ;x) +
∑

∆̂

b2∆̂λ̂1̂1̂∆̂G∆̂(ζ;x) , (3.14)

where ∆̂ in the last sum refers to the operators of L∆̂
[0,0],0.

We now discuss how to derive the explicit form of the superblocks. They can be

decomposed into a R-symmetry and a spacetime part through the following sum over the

Dynkyn labels of the R-symmetry and the scaling dimensions, here labelled as h:

GÔ(ζ;x) =
∑

a,b,h

α[a,b],hh[a,b](ζ)gh(x) , (3.15)

where g∆̂(x) refers to the bosonic blocks already introduced in (2.53). The range of the

sums is determined by considering the content of the supermultiplets. This analysis was

done in [26] for the case of the Wilson-line defect CFT. We then apply the SCWI (3.3)

on the blocks in order to fix the open coefficients α[a,b],h. This amounts to requiring that

individual blocks satisfy the symmetries of the correlator.

The identity block is simply given by

G
1̂
(ζ;x) = −2ζ

x
, (3.16)

where the factor 2 is there to account for the one present in the definition (2.48).

For the operator Ô2, we see in (B.4) of [26] that the block should take the form

G2̂(ζ;x) = α[0,2],2h[0,2](ζ)x
−1g2(x) + α[2,0],3h[2,0](ζ)x

−1g3(x) + α[0,0],4h[0,0](ζ)x
−1g4(x) .

(3.17)

Note that we have selected scalar contributions in the supermultiplet. Generically, R-

symmetry blocks depend on the external operators, and for 〈 21̂1̂ 〉 they are expected to

take the form

h[a,b](ζ) = β
(0)
[a,b] + β

(1)
[a,b]ζ , (3.18)

where the coefficients β
(0)
[a,b] are so far unfixed. Applying the SCWI (3.3) and choosing the

normalization according to the highest-weight channel, we finally obtain

G2̂(ζ;x) =

(

1− 2

5
ζ

)

x−1g2(x)−
12

175

ζ

x
g4(x) , (3.19)

The same method can be applied for the superblocks of the long operators, yielding

G∆̂(ζ;x) = − ζ
x
g∆̂(x) +

(

1− 2
(

∆2 + 3∆+ 1
)

ζ

4∆2 + 12∆ + 5

)

x−1g∆̂+2(x)

− (∆ + 2)2(∆ + 3)2

(2∆ + 3)(2∆ + 5)2(2∆ + 7)

ζ

x
g∆̂+4(x) .

(3.20)

The expansion in superblocks can be expanded in the coupling constant, through

∆ = ∆(0) + λγ
(1)

∆(0) + . . . , (3.21)
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and similarly for OPE coefficients. This allows a perturbative analysis, which will play

an important role in Section 4. It is important however to notice that, as mentioned

above, OPE coefficients and scaling dimensions become degenerate in a perturbative setting.

Instead of individual coefficients, we are therefore forced to consider their average only. For

instance,

〈 b(ℓ)
2∆̂
λ̂
(ℓ)

1̂1̂∆̂
〉 =

∑

deg

b
(ℓ)

2∆̂
λ̂
(ℓ)

1̂1̂∆̂
, (3.22)

where the sum is over all the operators that have the same tree-level scaling dimension

∆(0). Note that we are using here the notation of [26]. Moreover, the same analysis can be

performed at strong coupling, and it is known that in this regime the degeneracy is being

lifted slower than at weak coupling [24, 25].

The superblock expansion can be studied in the topological sector as well. It is well-

known that only half-BPS contributions survive in this kinematic limit. For the case of

〈 21̂1̂ 〉, we have

F21̂1̂ = −a2 + 〈 b22̂λ̂1̂1̂2̂ 〉 . (3.23)

This provides an exact formula for the topological sector discussed in Section 3.1.2. The

average in the following sum corresponds to the contributions from the two operators Ô2 and

Ô(0|2). This degeneracy is in fact absent, as it can be seen in the following way. Following

the Gram-Schmidt procedure mentioned in above, the good operator Ô(0|2) takes the form

Ô(0|2) ∼
(

Ô(0|2) − 〈 Ô2Ô(0|2) 〉Ô2

)

. (3.24)

The corresponding OPE coefficient b2(0|2) is of order O(N0). However the three-point

function λ̂1̂1̂(0|2̂) vanishes as a consequence of (3.24). The topological sector is therefore

simply given by

F21̂1̂ = −a2 + b22̂λ̂1̂1̂2̂ . (3.25)

This expression is plotted in Figure 3 from weak to strong coupling, using the analytic

results (2.44), (2.43) and (2.37), and is shown to agree well with the perturbative results of

[43].

To conclude this section, let us make some remarks on the analytic structure of the

conformal blocks. As noted in [38, 39], conformal blocks are discontinuous at x ≥ 1, which

means that they do not satisfy locality on their own. This is shown in Figure 3. As a

consequence, the (infinite) sum of superblocks should produce a function that is free of this

discontinuity. This imposes strong constraints on the CFT data, which were studied in

[38, 39] and formulated as sum rules.

3.3 Pinching and splitting limits

In this section, we present two kinematic limits corresponding to the reduction of some bulk-

defect-defect correlators to simple functions, in particular to two-point bulk-defect functions

(pinching limit) and products of one-point bulk correlators and two-point defect correlators

(splitting limit). In our framework, lower-point functions serve as further non-perturbative

information constraining the correlators under study.
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3.3.1 Pinching limit

The pinching of the two defect operators into one having scaling dimension being the sum

of the original two, i.e., the limit of the correlator τ3 → τ2 and û3 → û2, results in the OPE

coefficient b∆1∆̂
after accounting for the different normalization constants:

〈∆1∆̂ 〉 =

√

n̂∆̂2
n̂∆̂3

√

n̂∆̂
lim
3→2

〈∆1∆̂2∆̂3 〉 = b∆1∆̂
(12)∆̂(1θ)∆1−∆̂ , (3.26)

with ∆̂ = ∆̂2+∆̂3. This provides a valuable limit of the bulk-defect-defect correlator, since

the coefficients b∆1∆̂
can be evaluated (see (2.41)). If one inserts the expansion in channels

(2.49) in (3.26), only the channel F0 computed at x = 0 survives:

〈∆1∆̂ 〉 = (12)∆̂2+∆̂3(1θ)−2∆2̂3̂1

(

F
(0)
0 (0) + λ

(

F
(1)
0 (0)− F

(0))
0 (0)

48

)

+O(λ2)

)

, (3.27)

from which it is possible to extract the pinching constraints at leading and next-to-leading

orders:

F
(0)
1 (0) =

√
∆1

(−2∆2̂3̂1)!

λ−∆2̂3̂1

2−3∆2̂3̂1N
, (3.28)

F
(1)
1 (0) =

√
∆1

(−2∆2̂3̂1)!

λ−∆2̂3̂1

23(−2∆2̂3̂1+
4
3
)/2N

(1 + 2∆2̂3̂1)

3(2 +−2∆2̂3̂1)
. (3.29)

It might be tempting to consider another pinching limit, which consists in bringing

the bulk operator in a third position on the line in order to generate a double-trace defect

operator. This operator would however be of the form (2.27) and not orthonormal to the

single-trace operators, as discussed in Section 3.1.2. Therefore, the fact that this pinching

limit gives a non-vanishing result for 〈 21̂1̂ 〉 is not an inconsistency with respect to (3.24),

as this limit appears to be misleading at best.

3.3.2 Splitting limit

A different limit comes from considering a large separation between the bulk operator and

the defect ones, i.e., |~x1| → ∞. In the correlator expressed in R−symmetry channels

(2.49), this corresponds to the limit x → 0 of the whole correlator without setting ζ = 0

(which would instead correspond to the previous pinching). In this case, the bulk-defect-

defect correlator factorizes into a product of a two-point defect correlator and a one-point

function of a bulk operator:

lim
χ→0

〈∆1∆̂2∆̂3 〉 = 〈∆1 〉〈 ∆̂2∆̂3 〉 , (3.30)

from which (2.49) simplifies to

lim
x→0

〈∆1∆̂2∆̂3 〉 = a∆1K∆1∆̂2∆̂3

(

ζ

x

)∆̂2

δ∆̂2∆̂3
, (3.31)
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where the coefficient a∆1 is given in (2.44). This can serve as a constraint or consistency

check for the case ∆̂2 = ∆̂3: Equation (3.31) combined with (2.49) gives

F∆̂2+1(0) = (−1)∆̂2 a∆1δ∆̂2∆̂3
, (3.32)

which is valid non-perturbatively.

4 Perturbative results

In this section, we present explicit results for the bulk-defect-defect correlators introduced

in Section 2.2.3, and for which we listed non-perturbative constraints in Section 3. We

begin by calculating correlators up to next-to-leading order at weak coupling. The results

are obtained by combining the constraints mentioned above with simple calculations of

Feynman diagrams that do not involve bulk vertices. For the case of 〈 21̂1̂ 〉, we determine

the CFT data using the superblocks presented in Section 3.2. We observe that transcenden-

tal terms are systematically absent at this order, which results into relations for the OPE

coefficients. We then consider the strong-coupling limit. We determine the contributions

to the correlator 〈 21̂1̂ 〉 up to next-to-leading order, and extract the corresponding CFT

data. Finally, we present partial results for the next-to-next-to-leading order, for which one

rational function remains unfixed but is shown to be strongly constrained by a collection

of sum rules.

4.1 Weak coupling

4.1.1 Perturbative structure

At weak coupling, the bulk-defect-defect correlator 〈 21̂1̂ 〉 has the following perturbative

structure at large N :

A21̂1̂(ζ;x) =
1

N

(

A(0)

21̂1̂
(ζ;x) + λA(1)

21̂1̂
(ζ;x) + . . .

)

+ . . . , (4.1)

where the . . . inside the brackets refer to higher powers of λ, while the . . . at the end of the

expression refer to corrections in N . We focus mainly on this correlator in this section for

ease of readability, before generalizing the expressions for arbitrary external dimensions in

Section 4.1.4. As explained in (2.49), 〈 21̂1̂ 〉 consists of two R-symmetry channels:

A(ℓ)

21̂1̂
(ζ;x) = F

(ℓ)
1 (x) +

ζ

x
F

(ℓ)
2 (x) . (4.2)

4.1.2 Leading order

Correlator. As a warm-up, let us determine the leading order for the case 〈 21̂1̂ 〉. This

correlator consists of a single Feynman diagram, which can be represented as

A(0)

21̂1̂
(ζ;x) = , (4.3)
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Table 1: Feynman diagrams contributing to the correlator 〈 21̂1̂ 〉 at next-to-leading order.

F
(1)
1 (x)

F
(1)
2 (x)

and only consists of the free propagators defined in (2.9). It is easy to see that the R-

symmetry channels take the form

F
(0)
1 (x) = c0 , F

(0)
2 (x) = 0 , (4.4)

where c0 is a constant that can be fixed either through direct calculation, the pinching

constraint of (3.28) or the topological sector (3.5). At this order, we find

c0 = b
(0)

22̂
λ̂
(0)

1̂1̂2̂
=

√
2 . (4.5)

Note that the identity does not contribute at this order, i.e., we have

a
(0)
2 = 0 . (4.6)

CFT data. It is a trivial task to extract the CFT data for these results using the su-

perblock expansion (3.14). For the long operators labelled as L∆̂
[0,0],0, we find the following

closed form:

〈 b(0)
2∆̂
λ̂
(0)

1̂1̂∆̂
〉 =







0 , if ∆̂(0) odd ,

(−1)∆̂/2√πΓ(∆̂+2)

2∆̂+1/2Γ(∆̂+3/2)
, if ∆̂(0) even .

(4.7)

This is the supersymmetric version of the formula given in [38, 39], and corresponding to

an expansion in bosonic blocks.

4.1.3 Next-to-leading order

We now consider the next-to-leading order.

Correlator. The Feynman diagrams corresponding to the correlator are listed in Table 1.

Thanks to the non-perturbative constraints, we do not have to calculate all the diagrams.

In particular, we can focus on the diagrams that do not contain bulk vertices. They are
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following closed form for their average:

〈 b(1)
2∆̂
λ̂
(1)

1̂1̂∆̂
〉∆̂ odd

=
(−1)∆̂/2iΓ(∆̂ + 2)

2∆̂+5/2
√
πΓ(∆̂ + 3/2)

H∆̂+1 , (4.15)

with Hn the harmonic numbers defined through

Hn =

n
∑

k=1

1

k
. (4.16)

The lowest operator described by (4.15) corresponds to φ6 and is not degenerate. Its

corresponding OPE coefficient is given by

b
(1)
2φ6 λ̂

(1)

1̂1̂φ6 = − 1

2
√
2π

. (4.17)

Long operators with an even tree-level scaling dimension receive corrections to their

tree-level value given in (4.7). It is difficult to find an analytic closed form, however they

can be expressed in the form of a recursion relation:

〈 b(1)
2∆̂
λ̂
(1)

1̂1̂∆̂
〉∆̂ even

= −
(1)∆̂/2

12
√
2(5/2)∆̂/2

(

1− 4

π

(∆̂ + 1)(∆̂ + 3)

∆̂2

)

− ∆̂/2 + 1

Γ(−∆̂/2)

∆̂−2
∑

h=2 step 2

ihΓ(h+ 5/2)Γ((h− ∆̂)/2)

Γ2(h/2 + 1)Γ((h+ ∆̂ + 5)/2)
〈 b(1)

2∆̂
λ̂
(1)

1̂1̂∆̂
〉 .

(4.18)

Although this is not a closed form, note that recursion relations are extremely efficient,

even for high ∆̂. In the formula above, we used the Pochhammer symbols, defined through

(a)n =
a!

(a− n)!
. (4.19)

4.1.4 Generalization to arbitrary ∆1, ∆̂2, ∆̂3

We now repeat the analysis of the correlators presented above for the general case 〈∆1∆̂2∆̂3 〉.
We do not extract the CFT data, although we note that it is in principle possible to do it

case by case in the same way as in Sections 4.1.2 and 4.1.3.

General Feynman diagrams. We have seen in (4.3) and (4.8)-(4.9) that the correlator

〈 21̂1̂ 〉 is fixed up to next-to-leading order by Feynman diagrams that do not contain bulk

vertices. This observation holds for the general case 〈∆1∆̂2∆̂3 〉. We are therefore interested

in diagrams of the form

. . .
. . .

. . .

a1 a2

a3

a4

. (4.20)
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Here, the thick solid lines designate ak free propagators. The coefficients ak=1,...,4 refer

to the possible allowed contractions without involving a bulk vertex. They satisfy the

consistency relations

a1 + a2 + a4 = ∆1 ,

a1 + a3 = ∆̂2 ,

a2 + a3 = ∆̂3 .

(4.21)

Perturbative structure. The Feynman diagrams (4.20) can be used to understand the

perturbative structure of the bulk-defect-defect correlators. It is not hard to see that general

correlators have to take the following form:

A∆1∆̂2∆̂3
(ζ;x) =

λa/2

N

(

A(0)

∆1∆̂2∆̂3
(ζ;x) + λA(1)

∆1∆̂2∆̂3
(ζ;x) + . . .

)

+ . . . , (4.22)

where we defined a = min(a4), i.e., the lowest number of propagators that can connect the

bulk operators and the line defect for a given configuration characterized by ∆1, ∆̂2, ∆̂3,

while still satisfying (4.21). The number of R-symmetry channels can grow arbitrarily high,

as can be seen in (2.50). However, at low orders, most of the R-symmetry channels are

suppressed for a given configuration. Concretely,

A(0)

∆1∆̂2∆̂3
= F

(0)
1 (x) , (4.23)

A(1)

∆1∆̂2∆̂3
= F

(1)
1 (x) +

ζ

x
F

(1)
2 (x) , (4.24)

... (4.25)

A new channel appears at each order until the full number of channels has been reached.

In the following we study the correlators up to next-to-leading order, in which only two

R-symmetry channels contribute.

Leading order. The leading order is given by the topological sector, since only one

channel contributes and it is constant. To see that this is the case, consider the Feynman

diagrams (4.20) for the distinct cases ∆̂2− ∆̂3 ≤ ∆1 < ∆̂2+∆̂3 and ∆1 ≥ ∆̂2+∆̂3. In the

first case, there is no propagator connecting to the defect when minimizing a4, and thus the

leading R-symmetry channel is constant. The second configuration leads to considering to

nested defect integrals. Using the identity (A.14), we can rewrite them in terms of a single

master defect integral:

〈∆1∆̂2∆̂3 〉(0) = c0(∆1, ∆̂2, ∆̂3)

(
∫ ∞

−∞
dτ4 I14

)−2∆2̂3̂1

. (4.26)

This integral is elementary and its solution is given by the sum of (A.15) and (A.16).

The coefficient c0(∆1, ∆̂2, ∆̂3) encodes the symmetry factors and the contributions from

the traces. It is given by the topological sector (3.5), or the pinching limit (3.29) when

applicable.
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Next-to-leading order. At next-to-leading order, we can use the supersymmetry con-

straint (3.2) and focus on calculating the channel F2 only:

F
(1)
1 (x) = F

(1)

∆1∆̂2∆̂3
− F

(1)
2 (x) . (4.27)

We only need to solve the generalized version of (4.8)-(4.9) in order to obtain all the

correlators.

We can group the correlators into two different groups:

• ∆̂2 − ∆̂3 ≤ ∆1 ≤ ∆̂2 − ∆̂3 + 1: These configurations are the ones where only one

R-symmetry channel exists. In this case, the correlator is topological and A∆1∆̂2∆̂3

is equal to the topological sector F∆1∆̂2∆̂3
.

• ∆̂2 − ∆̂3 + 1 < ∆1: In the conformal frame τ3 → ∞, the only surviving diagrams

are the ones depicted in (4.20), for which the value of a4 is now raised by 2. The

correlator can then be determined from the function

F
(1)
2 (x) = c1(∆1, ∆̂2, ∆̂3)

∑

±

(

π ± 2arctan

(

√

1− x

x

))a+2

, (4.28)

which is the obvious generalization of (4.8)-(4.9). The sum over the signs means the

presence of two summands with opposite signs. The constant c1 is then fixed by the

topological sector and pinching/splitting limits of Section 3.3.

4.1.5 On the absence of transcendental functions

We now comment on the absence of transcendental functions observed at next-to-leading

order. In this setup, supersymmetry forces the combination of the Feynman diagrams

gathered in Appendix B to form a rational function. It is unclear at present whether we

should expect this property to appear in other theories. We provide in this section a few

hints about this curious cancellation.

The first thing to notice is that, since we are dealing with OPE coefficients at leading

order, we can restrict our operators to effective ones, i.e., operators that have spin s = 0

and non-vanishing bulk-defect and three-point functions. Such operators are of the form

Ôeff

∆̂
∼ T

i1...i∆Wℓ[φ
i1 . . . φi∆(φ6)∆] + . . . , (4.29)

with T
i1...i∆ a tensor structure This is required for the tree-level three-point functions to be

potentially non-vanishing. The terms hidden in the . . . might contribute however to b∆1∆̂
.

Example ∆̂ = 2 for 〈 21̂1̂ 〉. Let us illustrate Equation (4.14) for the OPE coefficient

〈 b(0)
2∆̂
λ̂
(0)

1̂1̂∆̂
〉|∆̂=2, to convince ourselves that it is not a trivial relation. From the correlator

〈 21̂1̂ 〉, we expect through (4.7) that

〈 b(0)
2∆̂
λ̂
(0)

1̂1̂∆̂
γ
(1)

∆̂
〉∆̂(0)=2 = 0 . (4.30)

At ∆̂(0) = 2, there are two operators contributing in the OPE Ô1×Ô1 which have the form

(4.29). At one loop, they are defined as [57]

Ô±(x) = φiφi ±
√
5φ6φ6 . (4.31)
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through orthogonalization of the anomalous dimension matrix. The one-loop anomalous

dimensions are given by

γ
(1)
± =

5±
√
5

16π2
. (4.32)

From our results at leading order (see (4.7), we observe that

〈 b(0)
2∆̂
λ̂
(0)

1̂1̂∆̂
〉∆̂(0)=2 = b

(0)
2+λ̂

(0)

1̂1̂+
+ b

(0)
2−λ̂

(0)

1̂1̂− = −2
√
2

5
, (4.33)

from which we conclude that

b
(0)
2±λ̂

(0)

1̂1̂± 6= 0 . (4.34)

Moreover, we have argued in (4.29) that the two three-point function coefficients are equal.

The equation (4.30) can then be written as

b
(0)
2+γ

(1)
+ + b

(0)
2−γ

(1)
− = 0 , (4.35)

from which we can extract the disentangled data

b
(0)
2±λ̂

(0)

1̂1̂± =

√
2

5
(1±

√
5) . (4.36)

It would be interesting to understand how this expression generalizes for higher-length

operators, and if it persists for models without supersymmetry. We discuss this possibility

further in Section 5.

4.2 Strong coupling

We now consider the bulk-defect-defect correlators in the strong-coupling regime. We pro-

vide the leading and next-to-leading orders with the corresponding CFT data for 〈 21̂1̂ 〉.
At next-to-next-to-leading order, we determine through an Ansatz the transcendental part

of the correlator, while the rational part is constrained by sum rules arising from locality.

4.2.1 Perturbative structure

We study the strong-coupling regime through a perturbative expansion at large N of the

form

A21̂1̂(ζ;x) =

√
λ

N

(

A(0)

21̂1̂
(ζ;x) +

1√
λ
A(1)

21̂1̂
(ζ;x) +

1

λ
A(2)

21̂1̂
(ζ;x) + . . .

)

+ . . . . (4.37)

For simplicity, we focus on 〈 21̂1̂ 〉. As in (4.1), the . . . refer to corrections in λ inside the

brackets and in N outside the brackets. The relevant Witten diagrams are listed in Table

2, following the conventions of Figure 6, although we mostly use them as guides.
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AdS5

AdS2

∂AdS5

∂AdS2

O∆1

Ô∆̂2

Ô∆̂3

Figure 6: Illustration of the Witten diagrams for the bulk-defect-defect correlators at strong

coupling. As labelled on the figure, the inside of the circle represents the AdS5 spacetime,

while its boundary corresponds to the dual CFT4 (in this case, N = 4 SYM). The bold red

line represents the string worldsheet that is dual holographically to the Wilson line. The

worldsheet and the boundary CFT coincide on a line, which is the Maldacena-Wilson line

(2.3). The bulk operator O∆1 lives in the CFT4, while the operators Ô∆̂2
and Ô∆̂3

are

representations of the CFT1 dual to the AdS2 surface. Note that the fact that the worldsheet

and the CFT4 coincide on two points only on the figure is an artefact of the representation.

4.2.2 Leading order

At leading order, there is only one disconnected Witten diagram, which corresponds to the

contribution of the identity operator. We have seen in Section 3.2 that the identity only

appears in F2 (in the form of a constant), and thus we have

F
(0)
2 (x) = −2a

(0)
2 = − 1√

2
, F

(0)
1 = 0 . (4.38)

The CFT data for the long operators is obviously

〈 b(0)
2∆̂
λ̂
(0)

1̂1̂∆̂
〉 = 0 . (4.39)

This expression is conservative, and in fact it is easy to convince oneself that individual

operators have vanishing OPE coefficients:

b
(0)

2∆̂
λ̂
(0)

1̂1̂∆̂
= 0 . (4.40)

4.2.3 Next-to-leading order

Witten diagram. At next-to-leading order, there are two Witten diagrams contributing

to the correlator, namely the second and third ones in Table 2. The first contribution is

disconnected and corresponds to a
(1)
2 .5 The second one is the leading connected term, which

consists only of free propagators. We therefore expect again the R-symmetry channels to

5Note that the disconnected part can be evaluated at all orders in λ using the protected CFT data.
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Table 2: Witten diagrams contributing to the bulk-defect-defect correlators in the strong-

coupling limit (on the CFT side). The first two diagrams are disconnected and correspond

to the factorized limit 〈∆1 〉〈 ∆̂2∆̂3 〉, if non-vanishing. The third one is connected and was

considered in [38]. In our setup, it describes the pinching limit 〈∆1(∆̂2+∆̂3) 〉. The fourth

diagram is non-trivial and starts contributing at order O(
√
λ/N). Note that other diagrams

that we do not show certainly also contribute at this order.

〈∆1∆̂2∆̂3 〉 = + + + + . . .

be constant. Moreover, this diagram corresponds, up to a prefactor, to the leading term of

the bulk-defect correlator 〈 22̂ 〉. This results in

F
(1)
2 (x) = b22̂λ

(1)

1̂1̂2̂
=

3

2
√
2
. (4.41)

Meanwhile, the disconnected term gives

F
(1)
1 (x) =

3√
2
. (4.42)

CFT data. We can easily extract the CFT data from this correlator. We first observe

that the spectrum consists of defect operators with even scaling dimensions at tree level.

This is in agreement with expectations from the AdS/CFT correspondence. For instance,

the operator φ6 flows from ∆̂ = 1 at weak coupling to a two-particle state ∆̂ = 2 at strong

coupling [55]. Although the interpretation differs from weak coupling, the CFT data at

leading order takes the same form up to an overall constant:

〈 b(1)
2∆̂
λ̂
(1)

1̂1̂∆̂
〉 = (−1)∆̂/23

√
πΓ(∆̂ + 2)

2∆̂+3/2Γ(∆̂ + 3/2)
. (4.43)

4.2.4 Partial results at next-to-next-to-leading order

We now discuss partial results for the next-to-next-to-leading order, in which we expect

several Witten diagrams to appear. One example is the fourth diagram of Table 2. We give

here the transcendental part of the 〈 21̂1̂ 〉 correlator, as well as strong constraints on the

remaining CFT data, in the form of sum rules.

Ansatz. We start by formulating an Ansatz based on the expected structure of the cor-

relator. In the strong-coupling regime, the transcendentality weight typically increases in

steps of 1 with powers of 1/
√
λ. Moreover, since we are dealing with a function of a single

spacetime cross-ratio, this means that the correlator takes the following form at transcen-

dentality one:

A(2)

21̂1̂
(ζ;x) = r0(ζ;x) + r1(ζ;x) log x , (4.44)
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is orthogonal to Ô2, we set at the same time λ̂1̂1̂(0̂|2̂) = 0, similarly to (3.24). To summarize,

only single-trace operators appear in the left-hand side of (4.46). We believe this to be true

at all orders in the coupling constant.7

Anomalous dimensions for the long operators ÔL∆̂
[0,0],0

are given by the quadratic Casimir

eigenvalue for singlets of R-symmetry and transverse spin:

γ
(1)

∆̂
= −∆̂(∆̂ + 3)

2
. (4.49)

Plugging these values inside the superblock expansion and comparing to the Ansatz (4.44),

we find that the rational function corresponding to the log terms is given by

r1(ζ;x) =
3√
2
(x− ζ) . (4.50)

Topological sector. We can further constrain the correlator by using the superconformal

Ward identity. From the expression (3.2), we eliminate one of the two remaining rational

functions through

s
(0)
1 (x) =

21

8
√
2

1

x
− s

(0)
0 (x)

x
. (4.51)

The correlator at next-to-next-to-leading order is now fully fixed up to the rational function

s
(0)
0 (x).

Sum rules. We conclude this section by mentioning that the remaining rational function

can in principle be further constrained from consistency conditions. The open rational

function follows the superblock expansion

s
(0)
0 (x) = − 9

4
√
2
+

(

〈 b(2)
2∆̂
λ̂
(2)

1̂1̂∆̂
〉∆̂(0)=2 −

9

10
√
2

)

x

+

(

〈 b(2)
2∆̂
λ̂
(2)

1̂1̂∆̂
〉∆̂(0)=4 +

8

9
〈 b(2)

2∆̂
λ̂
(2)

1̂1̂∆̂
〉∆̂(0)=2 +

457
√
2

945

)

x2 + . . . . (4.52)

Strong constraints on these OPE coefficients can be derived by demanding locality, as it

was shown in [38]. Since we are interested only in the rational terms, and that the log

terms are local, the coefficients of a corresponding bosonic block expansion are constrained

by the sum rules

cm+n +

m
∑

k=0

ck θ
1+m
n (2 + 2k) = 0 , (4.53)

where θmn (∆) is defined in Equation (3.27) of [38]. Here, m is a positive integer assumed

to be small but unknown. The sum rules alone are however insufficient for fixing all the

coefficients if m > 0. Perhaps an input from the Witten diagram side can help to make

the sum rules useful for fixing s
(0)
0 (x). We will not do this here, but mention interesting

directions that can be followed with the sum rules in Section 5.
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to study the integrals encountered at next-to-next-to-leading order using the variable

φ = arccosx, and see if it leads to simplifications. A valuable tool to further constrain

the result once understood the space of functions can be locality, in the spirit of the

discontinuity analysis presented in [38]. As Fig. 5 shows, the functions appearing

as the result of individual Feynman diagrams can have non-physical branch cuts: if

the space of functions is known, applying locality constraints can partially fix the

contribution from other diagrams, as non-physical discontinuities must cancel;

• We observe a surprising cancellation of the transcendental terms at next-to-leading

order. Although this can be explained through relations between the OPE coefficients,

it would be valuable to gain a deeper insight into the reasons that prevent logarithms

to appear, in particular to see if supersymmetry is responsible for this cancellation.

One idea is to consider the bulk-defect-defect correlator of the lowest-lying operators

in the O(N) model, using the ε-expansion at the Wilson-Fisher fixed point (see [58–63]

for related works). At next-to-leading order, a single diagram contributes:

〈φ2(x1)φ̂(τ2)φ̂(τ3) 〉 = ∼ π2 − 4 arccos
(√
x
)

(5.1)

We observe in this case as well an absence of transcendental terms, which might hint

at a more universal mechanism that does not involve supersymmetry. This can be

investigated systematically by considering different models (e.g. fishnet field theory

in presence of a defect [64, 65] or fermionic defect CFT [62, 66, 67]) and different

external operators;

• The sum rules presented in [38] are amenable to a numerical study, especially in this

case where the spectrum is known through integrability throughout the conformal

manifold [17–19]. Typical bootstrap strategies are however suffering from the fact

that the OPE coefficients are not positive, as it is the case for four-point functions

of identical operators. An alternative method would be to truncate the sum à la

Gliozzi [68] and use an adapted version of the Tauberian theorem to estimate the tail,

similarly to what was done in thermal cases [69–71]. It would also be interesting to see

a full-fledged bootstrap study of a defect CFT that involves the four-point functions of

defect operators 〈 ∆̂1∆̂2∆̂3∆̂4 〉, the two-point functions of bulk operators (in presence

of the defect) 〈∆1∆2 〉, together with the bulk-defect-defect correlators 〈∆1∆̂2∆̂3 〉.
This should result in intertwining relations that might provide interesting relations

for lifting degeneracies in perturbative settings. A good candidate of an observable to

study numerically and that appears in 〈 21̂1̂ 〉 is the combination b2φ6 λ̂1̂1̂φ6 (see Figure

8). The three-point function λ̂1̂1̂φ6 has been studied extensively and is known precisely

from weak to strong coupling, up to a sign, while presently very little is known

about b1̂φ6 . The numerical approach would also profit from integrated correlator

relations, such as the ones derived for N = 4 SYM in [72, 73] and for line defects in

[18, 19, 74, 75].
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A Integrals

A.1 Bulk integrals

We gather here the bulk integrals used throughout this work. We often encounter the

well-known X-integral, for which the definition and the solution are

X1234 = =

∫

d4x5 I15I25I35I45 =
I12I34
16π2

zz̄ D(z, z̄) , (A.1)

where we have used the Bloch-Wigner function [76], defined as

D(z, z̄) =
1

z − z̄

(

2Li2(z)− 2Li2(z̄) + log zz̄ log
1− z

1− z̄

)

. (A.2)

Here the cross-ratios z and z̄ are related to the coordinates of the external points in the

standard way:

zz̄ =
x212x

2
34

x213x
2
24

. (1− z)(1− z̄) =
x214x

2
23

x213x
2
24

. (A.3)

Note that the Bloch-Wigner function is crossing symmetric:

D(z, z̄) = D(1− z , 1− z̄) . (A.4)

If two external points are coincident, the X-integral becomes divergent. It can be expressed

in the following way:

X1233 = =
1

2
(I13Y223 + I23Y113)−

I13I23
32π2

log
I13I23
I212

, (A.5)

where the integral Yiij is given in (A.8).

We also encounter the Y-integral, which can be obtained through the limit τ4 → ∞ of

the X-integral:

Y123 = =

∫

d4x4 I14I24I34

= lim
τ4→∞

I−1
34 X1234 =

I12
16π2

zz̄ D(z, z̄) . (A.6)
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The cross-ratios z, z̄ are now defined as

zz̄ =
I13
I12

, (1− z)(1− z̄) =
I13
I23

. (A.7)

The Y-integral is log-divergent in the limit where two external points are coincident. The

corresponding expression is given by

Y112 = Y122 = = − I12
16π2

(

log
I12
I11

− 2

)

. (A.8)

Note that we use point-splitting regularization. The Y-integral is often encountered with

derivatives. The following identities are useful for manipulating the integrals:

∂1µY123 = −(∂2µ + ∂3µ)Y123 ,

∂21 Y123 = −I12I13 ,

(∂1 · ∂2)Y123 =
1

2
(I12I13 + I12I23 − I13I23) ,

(A.9)

where we have use the scalar Green’s equation

∂21I12 = −δ(4)(x12) . (A.10)

It is useful to define the following integral:

F12,34 =
∂12 · ∂34
I12I34

H12,34 , (A.11)

where we have introduced the shorthand notation ∂µij := ∂µi − ∂µj . This integral is encoun-

tered in Feynman diagrams with two gluon vertices. It can be expressed in terms of X- and

Y-integrals [77]:

F12,34 =
X1234

I13I24
− X1234

I14I23
+

(

1

I14
− 1

I13

)

Y134 +

(

1

I23
− 1

I24

)

Y234

+

(

1

I23
− 1

I13

)

Y123 +

(

1

I14
− 1

I24

)

Y124 .

(A.12)

The F-integral is also log-divergent in the coincident limit:

F13,23 = =
1

2

(

Y113
I13

+
Y223
I23

)

+ Y123

(

1

I13
+

1

I23
− 2

I12

)

+
1

32π2
log

I13I23
I212

.

(A.13)

A.2 Defect integrals

We present here explicitly the defect integrals necessary to compute the bulk-defect-defect

correlators at NLO. The diagrams appearing in the channel F2(x) do not have bulk vertices,

therefore the integrals arise from the coupling of φ6 with the Wilson line

I(a) =

∫ a

−∞
dτ1I1τ1 ...

∫ τn−1

−∞
dτ∆1−(∆̂2+∆̂3)

I1τ∆1−(∆̂2+∆̂3)
=

1

n!

(
∫ a

−∞
dτI1τ

)n

, (A.14)
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and similar from a point a to +∞. Equation (A.14) implies that the only integrals deter-

mining bulk-defect-defect correlators as next-to-leading order are

∫ a

−∞
dτI1τ =

π + 2arctan
(

a
|x⊥|

)

2|x⊥|
, (A.15)

and
∫ +∞

a
dτI1τ =

π − 2 arctan
(

a
|x⊥|

)

2|x⊥|
. (A.16)

B Check through Feynman diagrams

We present here the results for the Feynman diagrams of Table 1 that contribute to the

channel F1 of the correlator 〈 21̂1̂ 〉. The results are obtained using the Feynman rules of

Section 2.1.2 and the integrals of Appendix A.

B.1 Self-energy diagrams

We begin by the self-energy diagrams. Using the insertion rule (2.14), it is easy to find that

=
log(x) + 2 log(ǫ)− 2

4
√
2π2

, (B.1)

while

=
− log (τ3) + log(ǫ)− 1

2
√
2π2

. (B.2)

Note that these results are given in the conformal limit τ3 → ∞. In other words, each

diagram contains corrections in 1/τ3, however since we know that the correlator depends

on a single cross-ratio x, they are expected to cancel once added up. As visible in the final

result (4.12), we observe indeed a cancellation of the log τ3 terms.

B.2 Diagrams with bulk vertices

There are two diagrams that involve bulk vertices but no integration along the Wilson line.

The first one contains the X-integral defined in (A.1), and pinched to (A.5). Taking into

account all the prefactors, it reads

= − log(x) + 2 log(ǫ)− 2

8
√
2π2

, (B.3)

The second diagram involves the F-integral (A.11). Using (A.13), we obtain

= −− log (τ3) + log(ǫ)− 1

4
√
2π2

. (B.4)
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B.3 Boundary diagrams

Finally, there are two diagrams that involve an integral along the Wilson line, as well as a

bulk vertex. These integrals are more challenging but can be performed analytically in the

conformal frame τ3 → ∞. The first one gives

= −
3 log(x)− 12

[

arctan
(
√

1
x − 1

)]2

+ 6 log(ǫ) + π2 − 6

24
√
2π2

, (B.5)

where it should be understood that the gluon propagator can connect to each orange dot

on the line. The second one yields

= −−3 log (τ3) + 3 log(ǫ) + π2 − 3

12
√
2π2

. (B.6)

When adding all the diagrams, we find that the divergences cancel as well as the log τ3
terms. The result is in perfect agreement with 4.12.
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