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This paper introduces a structure-inspired ansatz for addressing quadratic unconstrained binary
optimization problems with the Variational Quantum Eigensolver. We propose a novel warm start
technique that is based on imaginary time evolution, and allows for determining a set of initial
parameters prioritizing lower energy states in a resource-efficient way. Using classical simulations,
we demonstrate that this warm start method significantly improves the success rate and reduces
the number of iterations required for the convergence of Variational Quantum Eigensolver. The
numerical results also indicate that the warm start approach effectively mitigates statistical errors
arising from a finite number of measurements, and to a certain extent alleviates the effect of barren
plateaus.

I. INTRODUCTION

The Variational Quantum Eigensolver (VQE) is a
classical-quantum hybrid algorithm which relies on suit-
able circuit ansätze [1, 2]. Therefore, such approaches
do not require deep quantum circuits which makes them
suitable for noisy intermediate-scale quantum (NISQ) de-
vices. VQE can be applied to many different scenar-
ios, such as eigenvalue problems from physics and chem-
istry [3, 4], as well as to combinatorial optimization prob-
lems [5–9]. However, in order to be employed in prac-
tically useful applications, VQE needs to overcome a
number of significant challenges, for example, the stat-
ical error due to the finite shots [10] and the presence
of the barren plateaus [11]. These problems can pre-
vent the optimization of VQE from converging to the
global minimal efficiently. Thus, the choice of an appro-
priate ansatz and initial parameters for VQE is a way to
help the optimization process. In this work, we inves-
tigate the quadratic unconstrained binary optimization
(QUBO) problem to evaluate a structure-inspired ansatz

(SIA), and develop a novel warm start approach corre-
sponding to this ansatz. This approach leverages con-
cepts from imaginary time evolution to emphasize lower
energy states at initialization, potentially offering a more
effective starting point than the typical universal super-
position or random states. Our numerical simulation re-
sults indicate that VQE with the warm start is able to
result in a higher success rate in finding the optimal solu-
tion with fewer iterations. Besides, the warm start shows
a potential to mitigate the problems of statistical error
and the barren plateaus.

The paper is organized as follows. Section II outlines
the QUBO problem and the simulation setup. Subse-
quently, the structure-inspired ansatz inspired by imagi-
nary time evolution is introduced in Sec. III. Moreover,

its performance compared to a generic hardware-efficient
ansatz (HEA) is assessed. Finally, we introduce a novel
warm start approach in Sec. IV, as well as low-cost sim-
plification thereof in Sec.V, which allows for determining
the initial set of parameters classically. The improvement
in performance of these methods is demonstrated using
numerical simulation. Section VI shows the potential of
the warm start to mitigate statistical errors and to al-
leviate the effect of barren plateaus. Finally, Sec. VII
concludes with a summary and prospects for future re-
search.

II. QUBO AND CVAR-VQE

In this paper we focus on the CVaR-VQE, a variant of
the VQE proposed for combinatorial optimization prob-
lems [12], and apply it to QUBO problems, both of which
we review below. The QUBO problem is defined by a vec-
tor of N binary variables x = {x0, xi, · · ·xN−1} and the
symmetric coefficient matrix Q ∈ R

N×N as well as a cost
function [13]

f(x) = x
TQx =

N−1
∑

i=0

N−1
∑

j=0

xi ·Qij · xj . (1)

The objective is to find the assignment of binary variables
which minimizes the cost function for a given Q. A wide
range of combinatorial optimization problems can be ex-
pressed in this mathematical framework, among them the
optimal flight to gate assignment at an airport, particle
tracking, job scheduling, and many others [5–8]. Every
QUBO problem can be associated with a graph by in-
terpreting the matrix Q as the adjacency matrix of a
weighted, undirected graph G(V,E). V corresponds the
set of vertices of size |V | = N , and E represents the set of
edges between vertex pairs (i, j) for which Qij = Qji 6= 0.

ar
X

iv
:2

4
0
7
.0

2
5
6
9
v
1
  
[q

u
an

t-
p
h
] 

 2
 J

u
l 

2
0
2
4



2

QUBO problems can be straightforwardly represented
as (quantum) Hamiltonians on N qubits which are poly-
nomials of Pauli-Z operators [14]. In particular, the
corresponding Hamiltonian for f(x) can be obtained by
substituting the binary variables xi with the operator
(1− σz

i ) /2, where 1 denotes the identity operator and σz
i

represents the Pauli-Z operator acting on the i-th qubit.
Using this substitution one finds for the Hamiltonian up
to a constant

H =
∑

i∈V

hi · σz
i +

∑

(i,j)∈E

Jij · σz
i σ

z
j , (2)

where the coefficients hi, Jij are related to the original
QUBO problem’s Qij . Note that the above Hamiltonian
only contains Pauli-Z operators, which renders it diag-
onal in the computational basis, and its eigenstates are
the computational basis states. This is a general prop-
erty of boolean functions, as they can all be represented
as diagonal matrices in the computational basis [14]. For
the purpose of this study, we consider random QUBOs
and sample the coefficients hi, Jij uniformly in the range
[−1, 1] with four-digit precision.
For combinatorial optimization problems, the condi-

tional value at risk (CVaR) [15] has been proposed as
a cost function for the VQE, and it was been shown
to significantly enhance VQE’s performance [5, 12, 16].
Specifically, taking S measurements in the computational
basis and arranging the corresponding eigenvalues asso-
ciated with the basis states sampled in ascending order,
{E1 ≤ E2 ≤ · · · ≤ ES}, the CVaR corresponds to the
average of the fraction α of the lowest energies

CVaRα =
1

⌈αS⌉

⌈αS⌉
∑

k=1

Ek. (3)

Note that in the limit α = 1, the CVaRα as nothing but
the usual sample mean for estimating the energy with S
measurements used in regular VQE. In the opposite limit,
α → 0, CVaRα does nothing but selecting the measure-
ment which resulted in the lowest energy. For 0 < α < 1,
the CVaRα cost function can be understood as trying
to push more weight in the low-energy tail of the mea-
surements, thereby enhancing computational basis states
corresponding low-energy solutions in the wave function.
In this paper we focus CVaR0.01 unless stated otherwise.
For the rest of the paper, we use the VQE with CVaRα

as a cost function as a test bed for the ansatz and the
warm start procedures we develop in the following sec-
tions. To have a consistent set of test cases, we create
a 100 random QUBO instances corresponding to com-
plete graphs for each problem size N , where N takes
even numbers ranging from 12 to 24, that we use for all
our numerical experiments. Throughout a VQE run, we
monitor the fidelity of the final wave function with the
exact solution, i.e., the probability of the optimal solu-
tions in the quantum state. A problem solution for a
particular instance is deemed as successful if the maxi-
mum fidelity throughout all iterations is larger than 1%.

As a metric to judge the performance of the VQE, we use
the success rate, i.e. the fraction of instances that were
successful.

III. STRUCTURE-INSPIRED ANSATZ FOR

QUBO PROBLEMS

In this section, we review our the structure-inspired

ansätze we propose for the CVaR-VQE. The ansatz struc-
ture is inspired by imaginary time evolution and we out-
line the connection of our ansatz circuits with imaginary
time evolution.

A. Imaginary time evolution and

structure-inspired ansatz

Given a Hamiltonian, H, a low-energy state can be ob-
tained by evolving a given initial state |ψ0〉 in imaginary
time. In particular, the state tends to be the ground
state, |E0〉, in the limit

|E0〉 = lim
τ→∞

exp(−τH) |ψ0〉
√

〈ψ0|exp(−2τH)|ψ0〉
, (4)

provided the initial state |ψ0〉 has nonvanishing overlap
with |E0〉. Note that the imaginary time evolution op-
erator, exp(−τH), is nonunitary and does not preserve
the norm, thus we explicitly include the norm factor in
the expression above. Moreover, it cannot be directly
implemented on a quantum device due the lack of uni-
tary, although there exist techniques for realizing imagi-
nary time evolution on quantum computers in an indirect
way [17–20].
For combinatorial optimization problems, where the

eigenstates are given by computational basis states, a
suitable choice of initial state is the uniform superpo-

sition of all computational basis states, |ψ0〉 = |+〉⊗N
,

where |+〉 = (|0〉+ |1〉) /
√
2. Moreover, the terms of the

Hamiltonian in Eq. (2) commute with each other, thus
the corresponding imaginary time evolution can be de-
composed exactly as

e−τH =
∏

(i,j)∈E

e−τJijσ
z
i σ

z
j ×

∏

i∈V

e−τhiσ
z
i . (5)

Utilizing the above decomposition, we can understand
the effect of the imaginary time evolution on the initial
state step-by-step. Considering the second term, i.e. the
single-body terms, we see that

e−τhiσ
z
i |+〉 = 1√

2

(

e−τhi |0〉+ eτhi |1〉
)

. (6)

Up to normalization, the resulting state on the right hand
side can also be generated by applying the unitary rota-
tion gate Ry(θi) = exp(−iθiσy

i /2) to |+〉, with appropri-
ately chosen angle θi = 2arctan (− exp(−2τhi)) + π/2.



3

Hence, up to normalization we find

|ψ1〉 =
∏

i∈V

e−τhiσ
z
i |+〉⊗N

=
∏

i∈V

Ry(θi) |+〉⊗N
. (7)

For the two-body terms of the imaginary time evolu-
tion operator, we can proceed similarly. Starting from
|ψ1〉, the effect of the different e−τJijσ

z
i σ

z
j in Eq. (5) can

again be described by a unitary Uij up to normalization

|ψk+1〉 = e−τ ·Jij ·σ
z
i σ

z
j |ψk〉 = Uij |ψk〉 , k ≥ 1. (8)

Inspired by the ITE, we suggest the following vari-
ational ansatz for addressing the QUBO problem with
CVarR-VQE

∣

∣ψ(V,E)(θ)
〉

:=
∏

(i,j)∈E

Uij(θij)×
∏

i∈V

Ry(θi) |+〉⊗N
, (9)

where Uij(θij) is a parametric unitary operation acting
on qubits i and j, and θij and θi are now variational
parameters that can be optimized during the VQE. The
expression above incorporates the graph structure of the
QUBO problem, as there are single-qubit Ry rotation
gates acting on each vertex and two-qubit unitaries act-
ing on each pair of vertices (i, j) connected by an edge.
Hence, we refer to the ansatz in Eq. (9) as SIA.
So far, we have not fixed the structure of the two-qubit

unitaries Uij . Below, we suggest different choices for the
parametric two-qubit unitaries. Guided by the fact that
the two-body operations in the imaginary time-evolution
operator are real, one possible choice is

Uij = e−i(θij,5·σ
x
i σ

y

j
+θij,4·σ

y

i
σx
j )/2

× e−i(θij,3·σ
z
i σ

y

j
+θij,2·σ

y

i
σz
j )/2 × e−i(θij,1·σ

y

i
+θij,0·σ

y

j
)/2,
(10)

where we consider only combinations of Pauli operators
in the exponent with a single σy, to ensure the unitary
transformation does not introduce complex phase fac-
tors [17, 19]. Based on the analysis in the Appendix A,
the parameters θij,5 and θij,4 corresponding to the terms
σx
i σ

y
j , σ

y
i σ

x
j should be zero for the ansatz being able to

mimic the effect of ITE, these terms can be excluded.
Thus we can define a simplified ansatz named as “SIA-
YZ-Y” by choosing

Uij(θij)
Y Z−Y =e−i(θij,3·σ

z
i σ

y

j
+θij,2·σ

y

i
σz
j )/2

× e−i(θij,1·σ
y

i
+θij,0·σ

y

j
)/2.

(11)

Furthermore, since the SIA is already equipped with Ry

rotations, we also consider a further reduced version of
Uij where the single-qubit rotations gates are dropped
and we only have two variational parameters:

Uij(θij)
Y Z = e−i(θij,1·σ

z
i σ

y

j
+θij,0·σ

y

i
σz
j )/2, (12)

the corresponding ansätze is name as “SIA-YZ”. Similar
ansätze can also be derived from the principles of op-
timal state transfer [21], although these involve only a

single parameter. Reference [22] derives a similar ansatz
based on the approximation of the counter-diabatic (CD)
term but does not account for the problem’s structure.
Besides, from the perspective of the imaginary time evo-
lution, the ansatz in Eq (12) is able to find a set of good
initial parameters to serve as a warm start for the VQE,
which will be discussed in Sec. IV and Sec. V. Before in-
troducing the warm start, we will benchmark the perfor-
mance of this ansatz with the hardware-efficient ansatz
to determine if we can gain benefits from this problem-
specific ansatz itself.

B. Numerical performance benchmarks of the

ansatz

In order to assess the performance of the above intro-
duced two SIA ansatz variants, we carry out numerical
simulations for QUBO instances with an even number
of qubits ranging from 12 to 24. For each problem size,
we generate 100 random QUBO instances as explained
above, each one corresponding to a complete graph. The
classical minimization is performed with constrained op-
timization by linear approximation (COBYLA) [23], with
the maximum number of iterations set to 50×N , to pro-
vide a benchmark with a number of cost function evalu-
ations realistic on current quantum hardware. Figure 1,
shows the success rate of the two variants of the SIA in-
troduced above compared to various ansätze that haven
been widely used in the literature. In particular, we com-
pare the SIA variants to HEAs with linear CNOT en-
tanglement, parallel CZ entanglement and a single-qubit
rotation ansatz that produces only product states (see
Appendix B, Figs. 11(a) - 11(c) for details). For a fair
comparison, all the ansätze were applied to the same ini-

tials state, the uniform superposition state |+〉⊗N
, with

the same number of parameters N2 and all parameters
set to zero initially, as detailed in Appendix. B. Note
that we have not introduced the warm start for SIA yet.
Focusing on the results obtained from the exact simu-
lation in Fig. 1(a), corresponding to a perfect noise-free
quantum computer with an infinite number of measure-
ments, the SIA ansätz shows a slightly higher success
rate than the other ansätze, in particular for large prob-
lem sizes. The HEA ansatze with linear CNOT entan-
gling layers performs only better than the single-qubit
rotation ansatz without any entanglement for the prob-
lems with less than 18 qubits. From there on they are
worse (HEA with linear CNOT entangling layers) or on
par (HEA with parallel CZ entangling layers) with the
single-qubit rotation ansatz.
Incorporating the fact that actual quantum devices

only allow for a finite number of measurements changes
the picture significantly, as Fig. 1(b) reveals. Despite
using a relatively large number of 10000 measurements
per iteration, the statistical noise leads to a significant
drop in performance of the SIA ansätze. In particular,
they lose their advantage over the single-qubit rotation
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uating the trade-off between the cost for obtaining good
warm start parameters and the resulting performance en-
hancement in the subsequent VQE will be an interesting
aspect for further subsequent studies.

Moreover, in our simulations considered an ideal quan-
tum device performing a finite number of measurement.
For the future it would be interesting to realize the sim-
ulation on current noisy quantum hardware and to in-
vestigate if the warm start shows a similar performance
improvement in the presence of noise and in combination
with state of the art error mitigation methods [25–29].
In addition, it is an interesting question different kinds
of hardware noise affect the warm start procedure and
how these could possibly be mitigated.
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Appendix A: Details of the warm start procedures

For the warm start by measuring approach, we have to maximize the expectation value in Eq. (13) by choosing

appropriate variational parameters for the two-qubit gate acting on qubits i and j. Utilizing the identities e−aP̂ =

cosh(a) − sinh(a)P̂ and e−iaP̂ = cos(a) − i sin(a)P̂ , for a real coefficient a and P̂ denoting one of the the Pauli

operators, P̂ ∈ {I, σx, σy, σz}⊗2, we can rewrite the overlap fk as follows

fτ,k(θij,0, θij,1)

= 〈ψk−1| e−τ ·Jij ·σ
z
i σ

z
j · e−i(θij,1·σ

z
i σ

y

j
+θij,0·σ

y

i
σz
j )/2 |ψk−1〉

= cos

(

θij,1
2

)

cos

(

θij,0
2

)

(

cosh (τ̃ij)− sinh (τ̃ij) · 〈σz
i σ

z
j 〉
)

− i cos

(

θij,1
2

)

sin

(

θij,0
2

)

(

cosh (τ̃ij) 〈σy
i σ

z
j 〉+ i sinh (τ̃ij) · 〈σx

i 〉
)

− i sin

(

θij,1
2

)

cos

(

θij,0
2

)

(

cosh(τ̃ij)〈σz
i σ

y
j 〉+ i sinh (τ̃ij) · 〈σx

j 〉
)

− sin

(

θij,1
2

)

sin

(

θij,0
2

)

(

cosh (τ̃ij) 〈σx
i σ

x
j 〉+ sinh (τ̃ij) · 〈σy

i σ
y
j 〉
)

.

(A1)

In the above expression, we have used the short-hand notations τ̃ij = τJij and 〈P̂ 〉 = 〈ψk−1| P̂ |ψk−1〉. Notice that
〈σz

i σ
y
j 〉 = 0 = 〈σy

i σ
z
j 〉, because these two operators are imaginary and hermitian, resulting in a vanishing expectation

in a real state.

A similar calculation can be performed for the operators σx
i σ

y
j , σ

y
i σ

x
j in the ansatz, the corresponding overlap will

be given by

f ′τ,k(θij,0, θij,1)

= 〈ψk−1| e−τ ·Jij ·σ
z
i σ

z
j · e−i(θij,1·σ

x
i σ

y

j
+θij,0·σ

y

i
σx
j )/2 |ψk−1〉

= e−τ̃ij ·
(

cos

(

θij,1
2

)

cos

(

θij,0
2

)

− sin

(

θij,1
2

)

sin

(

θij,0
2

)

· 〈σz
i σ

z
j 〉
)

.

(A2)

This expression is maximized when θij,0 = 0 = θij,1, which explains why we did not include the operator σx
i σ

y
j , σ

y
i σ

x
j

in our ansatz.

Considering the expectation of the Pauli operators in Eq. (A1), with operator P̂ = σx
i , σ

x
j , σ

x
i σ

x
j , σ

y
i σ

y
j , σ

z
i σ

z
j , the
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expectation 〈P̂ 〉 can be expanded by using the definition of |ψk−1〉 from Eq. (8)

〈P̂ 〉 = 〈ψk−1| P̂ |ψk−1〉
= 〈ψk−2| ei(θpq,1·σ

z
pσ

y
q+θpq,0·σ

y
pσ

z
q )/2 · P̂ · e−i(θpq,1·σ

z
pσ

y
q+θpq,0·σ

y
pσ

z
q )/2 |ψk−2〉

= 〈ψk−2| P̂ |ψk−2〉+ 〈ψk−2| i
[

σz
pσ

y
q + σy

pσ
z
q , P

]

|ψk−2〉 · O(τ) +O(τ2),

= N⊗ 〈+| P̂ |+〉⊗N
+





∑

i∈V

N⊗ 〈+| i [σy
i , P ] |+〉⊗N

+
∑

pq∈E′

N⊗ 〈+| i
[

σz
pσ

y
q + σy

pσ
z
q , P

]

|+〉⊗N



 · O(τ) +O(τ2)

= N⊗ 〈+| P̂ |+〉⊗N
+O(τ2).

(A3)
In the second line of the above equation, qubits indexed by p, q refer to the gate applied at step k − 1. The Baker-

Campbell-Hausdorff formula, eÂ · P̂ · e−Â = P̂ + [Â, P̂ ] + 1
2 [Â, [Â, P̂ ]] · · · , was used for the expansion on the third

line. Besides, it is assumed that the parameters θpq,0 and θpq,1 are of the same order as τ . Finally, all gates
existing in the circuit before step k are expanded in a similar procedure. E′ represents the pairs of two-qubit gates
that were previously applied in the circuit, with (p, q) ∈ E′ being different from (i, j), such that the commutator
[

σz
pσ

y
q + σy

pσ
z
q , P

]

will be zero or contain σz or σy operator, resulting in a zero expectation in state |+〉⊗N
, similar to

the terms [σy
i , P ]. Therefore, the expectation 〈P̂ 〉 can be estimated in the product state with the error O(τ2) .

Appendix B: Circuits for different ansätze

The circuit for the SIA-YZ ansatz includes two-qubit gates for all possible qubit pairs. In general, current hardware
platforms only offer limited qubit connectivity, and we need additional SWAP gates to realize all-to-all connectivity.
Following the strategy in Ref. [30], we take 6 qubits as an example and show the resulting circuit assuming linear
qubit connectivity in Fig. 10. Full connectivity is reached after N−2 SWAP layers, and the SWAP gate is compressed
with the operator Uij(θij)

Y Z in Eq. (12), thus they can be implemented with 3 CNOT gates (purple box in Fig. 10).
Additionally, the first and final layers are only gates Uij(θij)

Y Z ∈ SO(4) that can be decomposed by using 2 CNOT
gates [31] (green box in Fig. 10). Consequently, the overall structure requires 3N − 2 CNOT layers and O(1.5N2)
CNOT gates. Alternatively, if the quantum device has all-to-all connectivity, no additional SWAP gates are necessary
and the circuit only consists of the gates Uij(θij)

Y Z and single-qubit rotation gates. In this case the circuit depth is
reduced to 2N CNOT layers and O(N2) CNOT gates.

θi,j
= e−i(θij,1⋅σ

z
i σy

j +θij,0⋅σ
y
i σz

j )/2
θi,j

= e−i(θij,1⋅σ
z
i σy

j +θij,0⋅σ
y
i σz

j )/2 ⋅ SWAP(i, j)

| + ⟩0

| + ⟩2

| + ⟩1

| + ⟩3

| + ⟩4

| + ⟩5

θ3,4

θ1,2

θ3,5θ0,1

θ2,3

θ4,5

0

1

3

2

5

4

θ0,3

θ2,5

1

3

0

5

2

4

θ1,3

θ0,5

θ2,4

3

1

0

5

2

4

θ1,5

θ0,4

3

5

1

0

4

2

θ1,4

θ0,2

 Ry(θ0)

 Ry(θ1)

 Ry(θ2)

 Ry(θ3)

 Ry(θ4)

 Ry(θ5)

FIG. 10. SIA circuit for 6 qubits. The yellow number indicates the qubit index after the SWAP operation.

In addition to the SIA, we consider three alternative ansätze often used in the literature for comparison, which are
illustrated in Fig. 11. For a fair comparison, all ansätze have the same number of parameters, utilizing N2 parameters
equivalent to those of a single-layer SIA, thereby necessitating N layers for the ansatz depicted in Fig. 11. Moreover,
Table I shows the number of two-qubit gates required for each ansatz, maintaining the same parameter count as the
1-layer SIA.

Appendix C: Performance of the warm start approach for more than a single layer

This appendix shows results for the performance of the warm start across different number of layers, L = 1, 2, 3, 4, 5.
Figure 12 shows the data for 20 qubits as an example and compares the fidelity between the warm start by measuring
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