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A search is performed for localized excesses in the low-mass dĳet invariant mass distribution,
targeting a hypothetical new particle decaying into two jets and produced in association with
either a high transverse momentum photon or a jet. The search uses the full Run 2 data sample
from LHC proton–proton collisions collected by the ATLAS experiment at a center-of-mass
energy of 13 TeV during 2015–2018. Two variants of the search are presented for each type of
initial-state radiation: one that makes no jet flavor requirements and one that requires both
of the jets to have been identified as containing 1-hadrons. No excess is observed relative to
the Standard Model prediction, and the data are used to set upper limits on the production
cross-section for a benchmark / ′ model and, separately, for generic, beyond the Standard
Model scenarios which might produce a Gaussian-shaped contribution to dĳet invariant mass
distributions. The results extend the current constraints on dĳet resonances to the mass range
between 200 and 650 GeV.
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1 Introduction

The Standard Model of particle physics (SM) successfully describes a wide range of phenomena across
many orders of magnitude of energy at colliders, astrophysical observatories, and other experiments [1].
Nevertheless it fails to account for many observed phenomena, such as the presence of dark matter (DM)
[2–4] and the imbalance of matter over antimatter in the observable universe [5]. While there are a wide
range of proposed models of physics beyond the SM (BSM) to explain these effects [6–17], this paper
focuses on a search for a hadronically decaying resonance.

/ ′ bosons are hypothetical spin-1 vector bosons that are singlets under electric and color charge [1],
predicted in a variety of BSM models as a potential mediator to dark matter particles [14, 17–22]. Direct
/ ′ searches have shown to be an effective way of constraining BSM models [19–21]. Searches at the Large
Hadron Collider (LHC) for / ′ decays into pairs of charged leptons set strong constraints [21, 23], but may
be eluded by choosing the couplings of the / ′ such that it is leptophobic, meaning it does not couple to SM
leptons. However, constraints from searches for hadronically decaying / ′ resonances cannot be avoided
in this way, since the same / ′-@-@ decay vertex would also be responsible for / ′ production at the LHC
for any kind of resonance or search for topologies with a single reconstructed object recoiling against a
large missing transverse energy. Additionally, the / ′-@-@ vertex would be necessary for the dark matter
self-annihilation cross-section that drives the relic-density for weakly interacting massive particles [2].

The ATLAS and CMS Collaborations at the LHC have published several searches that are sensitive to
hadronic / ′ production using a variety of strategies. Searches for excesses in the invariant mass of the
two jets with the highest transverse momentum (?T) in the event constrain / ′ production at high masses
[24–38]. The lower reach of these searches are limited by the bandwidth available to single- and multĳet
triggers, and so different strategies must be used to gain sensitivity to / ′ masses below around twice the ?T

threshold where these triggers become fully efficient, around 1 TeV. One strategy is to record only minimal
information, but at a higher rate than the standard triggers, enabling lower trigger thresholds [31, 39]. A
complementary approach, explored in this paper, relies on the production of high-?T initial-state-radiation
(ISR), such as a jet or a photon, which recoils against the / ′, enabling access to lower dĳet masses without
trigger bias. This type of search was performed by the ATLAS and CMS Collaborations in topologies
where the two / ′ decay products can be resolved as individual jets [40, 41] and the case where the decay
products are sufficiently boosted to be reconstructed into a single large-radius jet [42–46].

This paper explores the resolved case, where the resonance decay products are reconstructed into two jets,
covering a resonance mass range of 200 GeV to 650 GeV. In total, four different channels are studied,
based on the type of ISR particle and the flavor composition of the / ′ decay products. The first channel,
W 9 9 , selects events in which the ISR is a photon and applies an inclusive selection on the jets that form the
/ ′. The second channel, W11, focuses on the case where the ISR is a photon and both jets are identified
as containing 1-hadrons (1-tagged). The third and fourth channels focus on the case where the ISR is a
jet, both in the inclusive case ( 9 9 9), and the case where both jets from the candidate resonance decay are
1-tagged ( 9 11). While 1-tagging requirements impose assumptions on the / ′ decay products, they also
provide significant background suppression, resulting in a more powerful search for some models. The
cross-sections for the 9 9 9 and 9 11 processes are higher than for W 9 9 and W11. However, the 9 9 9 channel
has the additional challenge of identifying which jets might correspond to the / ′ decay products, and which
correspond to the ISR. Furthermore, different trigger thresholds apply for recorded events triggered by
a photon or a jet. Hence a different kinematic acceptance is imposed on the ISR object for the various
channels. The two channels where the ISR is a photon are collectively called the photon channels, while
the two where the ISR is a jet are referred to as the trĳet channels.
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In addition to the increased luminosity, this analysis features several improvements over the previous analysis
targetting the same signature [40], including a better 1-tagging algorithm that reduces the background and
the inclusion of the trĳet channels. The dominant backgrounds for this search are multĳet and single-photon
production, which are estimated from data using a functional form fit to the <jj distribution. For each
channel, estimates for background and signal are combined into a likelihood function, where the signal
yields are controlled by a free multiplicative parameter. The signal is interpreted as either a / ′ boson or a
generic narrow resonance producing a Gaussian-shaped bump in the measured mass spectrum.

The paper is organized as follows. The ATLAS detector at the LHC and the data and simulated samples
used in this search are described in Sections 2– 3. The object and event selection for the four channels are
summarized in Section 4. The methodology of the search is introduced in Section 5 and the systematic
uncertainties are discussed in Section 6. The results are presented in Section 7 and conclusions are drawn
in Section 8.

2 The ATLAS detector

The ATLAS detector [47] at the LHC covers nearly the entire solid angle around the collision point.1 It
consists of an inner tracking detector surrounded by a thin superconducting solenoid, electromagnetic and
hadron calorimeters, and a muon spectrometer incorporating three large superconducting air-core toroidal
magnets.

The inner-detector system is immersed in a 2 T axial magnetic field and provides charged-particle tracking
in the range of |[ | < 2.5. The high-granularity silicon pixel detector covers the vertex region and typically
provides four measurements per track, the first hit normally being in the insertable B-layer installed before
Run 2 [48, 49]. It is followed by the silicon microstrip tracker , which usually provides eight measurements
per track. These silicon detectors are complemented by the transition radiation tracker (TRT), which
enables radially extended track reconstruction up to |[ | = 2.0. The TRT also provides electron identification
information based on the fraction of hits (typically 30 in total) above a higher energy-deposit threshold
corresponding to transition radiation.

The calorimeter system covers the pseudorapidity range |[ | < 4.9. Within the region |[ | < 3.2,
electromagnetic calorimetry is provided by barrel and endcap high-granularity lead/liquid-argon (LAr)
calorimeters, with an additional thin LAr presampler covering |[ | < 1.8 to correct for energy loss in material
upstream of the calorimeters. Hadron calorimetry is provided by the steel/scintillator-tile calorimeter,
segmented into three barrel structures within |[ | < 1.7, and two copper/LAr hadron endcap calorimeters.
The solid angle coverage is completed with forward copper/LAr and tungsten/LAr calorimeter modules
optimized for electromagnetic and hadronic energy measurements respectively.

The muon spectrometer comprises separate trigger and high-precision tracking chambers measuring the
deflection of muons in a magnetic field generated by the superconducting air-core toroidal magnets. The
field integral of the toroids ranges between 2.0 and 6.0 T m across most of the detector. Three layers

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the
detector and the I-axis along the beam pipe. The G-axis points from the IP to the center of the LHC ring, and the H-axis
points upwards. Cylindrical coordinates (A, q) are used in the transverse plane, q being the azimuthal angle around the I-axis.
The pseudorapidity is defined in terms of the polar angle \ as [ = − ln tan(\/2). Angular distance is measured in units of

Δ' ≡
√

(ΔH)2 + (Δq)2, where H = (1/2) [(� + ?I)/(� − ?I)] is the object’s rapidity defined by its energy and longitudinal
momentum.
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of precision chambers, each consisting of layers of monitored drift tubes, cover the region |[ | < 2.7,
complemented by cathode-strip chambers in the forward region, where the background is highest. The
muon trigger system covers the range |[ | < 2.4 with resistive-plate chambers in the barrel, and thin-gap
chambers in the endcap regions.

Interesting events are selected by the first-level trigger system implemented in custom hardware, followed
by selections made by algorithms implemented in software in the high-level trigger [50]. The first-level
trigger accepts events from the 40 MHz bunch crossings at a rate below 100 kHz, which the high-level
trigger further reduces to record events to disk at about 1 kHz.

An extensive software suite [51] is used in data simulation, in the reconstruction and analysis of real and
simulated data, in detector operations, and in the trigger and data acquisition systems of the experiment.

3 Data and Monte Carlo simulated samples

This analysis is performed using data from proton–proton (??) collisions at
√
B = 13 TeV at the LHC,

collected during 2015–2018 with the ATLAS detector. The total integrated luminosity of this data sample
is 140 fb−1 [52], obtained using the LUCID-2 detector [53] for the primary luminosity measurements.
Due to the high instantaneous luminosity and the large total inelastic ?? cross-section, there are, on
average, 33.7 collisions in each bunch crossing. The additional collisions not selected as the hard-scatter
process are referred to as pileup collisions. Data in this analysis are required to satisfy standard quality
requirements [54].

Samples of Monte Carlo (MC) simulated signal and background events are used in this analysis for
optimization, estimate of possible signal contributions, and validation of background estimation strategies.

The main benchmark model is a simplified leptophobic / ′ axial-vector mediator signal, which is used
to test the sensitivity to potential resonant signals. The choice of this benchmark signal is motivated by
the role that dĳet resonance searches play in constraining possible interactions between dark matter and
SM particles. This simplified model considers an B-channel mediator with axial-vector interactions, as
described in Refs. [18, 55]. Two relevant parameters of this model in the dĳet search are the / ′ mass,
and the coupling of the / ′ to quarks (6@), which affect the intrinsic width of the resonance. The mass
of the dark matter fermion is set to be much heavier than the / ′ mass, such that the decay width into
dark matter is zero. In all channels, signal samples are generated for / ′ masses between 200 GeV and
650 GeV, with the coupling of the mediator to non-top-quarks set to 0.2, regardless of the quark flavor.
Such a choice for the coupling value is a benchmark model already used in other analyses [40]. Also, given
the / ′ intrinsic width for 6@ = 0.2 is much smaller than the experimental resolution, such a sample is
adequate to also model the shape of signals with slightly different or smaller 6@ values. Signal samples are
generated separately for a / ′ decaying into D,3,B and 2 quark flavors and / ′ decaying into 1-quarks, in
order to enhance the signal statistical precision for the 1-tagged channels.

The signal samples are simulated using the MadGraph generator [56] at leading-order (LO) in perturbative
quantum chromodynamics (QCD) with the NNPDF2.3lo parton distribution function (PDF) set [57]. The
events are interfaced to Pythia8.244 [58, 59] to model the parton shower, hadronization, and underlying
event, with parameter values set according to the A14 tune [60]. EvtGen [61] is used to model decays
of heavy flavor hadrons. To further increase statistical precision in the W 9 9 channel, a generator-level
filter is applied on the photon ?T. Two sets of samples are produced: one set with this filter defined to be
?T,W ≥ 130 GeV and a second with the filter at ?T,W ≥ 65 GeV. For the trĳet channels, a generator-level jet
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filter of 370 GeV is applied on the leading-?T ' = 0.4 jet, which is fully efficient for the reconstructed jet
?T threshold. The generator-level filters are chosen based on the triggers used in the two different analyses,
to ensure high statistical precision for each mass point without introducing kinematic biases.

While the final background estimate is performed using a data-driven approach, background multĳet and
photon-plus-jets samples are used to optimize the event selection and validate the background estimation
strategy. For the photon channels, prompt single-photon production is simulated with the Sherpa 2.2 [62]
generator. In this arrangement and thanks to the Comix [63] and OpenLoops [64–66] libraries, matrix
elements for up to two partons are calculated to next-to-leading-order (NLO) accuracy, while matrix
elements for up to four partons are calculated at LO in QCD. They are matched with the Sherpa parton
shower [67] using the MEPS@NLO prescription [68–71] with a dynamic merging scale cut [72] of 20 GeV.
Photons are required to be isolated according to a smooth-cone isolation criterion [73]. Samples are
simulated using the NNPDF3.0nnlo PDF set [74], along with the dedicated set of tuned parton-shower
parameters developed by the Sherpa authors.

For the trĳet channels, background samples of simulated multĳet processes are generated using Pythia 8.230
with the 2 → 2 matrix element, and additional jets are produced through the parton shower. Events are
simulated using the A14 tune [60], the Lund string hadronization model and the NNPDF2.3lo PDF set.
The Pythia parton shower algorithm uses a dipole-style ?T-ordered evolution, and its renormalisation
and factorisation scales are set to the geometric mean of the squared transverse masses of the outgoing
particles.

The generated background and signal events are passed through a detailed detector simulation [75] based
on Geant4 [76]. Additional minimum-bias interactions simulated using Pythia8 with the A3 tune [77]
and the NNPDF2.3lo PDF set [57] are overlayed to the backgrond and signal events, to model pileup
interactions. The distribution of the average number of pileup interactions in simulation is reweighted
during data analysis to match that observed in Run 2 data.

4 Event reconstruction and selection

4.1 Object reconstruction

While the four different channels use different combinations of objects, the object reconstruction is
standardized across all of the different channels. Three different objects are used: jets, 1-tagged jets, and
photons.

Selected events are required to contain a primary vertex with at least two associated tracks with transverse
momentum ?T > 0.5 GeV [78]. The vertex with the highest sum of ?2

T of the associated tracks is taken as
the primary vertex.

Jets in this analysis are reconstructed from particle flow objects [79] using the anti-:C algorithm [80] as
implemented in FastJet [81], using a jet radius parameter ' = 0.4. The ATLAS particle flow algorithm
combines measurements from the ATLAS inner detector and calorimeter systems [82] to improve the jet
energy resolution, reduce sensitivity to pileup effects, and improve jet reconstruction efficiency, especially
at low jet ?T. The jet energy scale of particle flow jets is calibrated with a combination of simulation-based
and in situ corrections [83]. Calibrated jets are required to have a ?T > 25 GeV and satisfy |[ | < 2.5. To
reduce the effects of pileup, jets with ?T < 60 GeV and |[ | < 2.4 are required to satisfy the “tight” working
point of the jet vertex tagger criteria [84], which selects jets originating from the selected primary vertex.
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A set of quality criteria is also applied to reject events containing at least one jet arising from non-collision
sources or detector noise [85].

Reconstructed jets are 1-tagged using the DL1r multivariate algorithm [86]. Jets are considered 1-tagged if
they satisfy the 77% 1-tag efficiency working point, as measured in inclusive CC̄ events. The corresponding
rejection factors for gluon/light-quark jets and charm-quark jets are approximately 200 and 5, respectively.
This working point was found to result in optimal signal sensitivity for both the W11 and 9 11 channels.

Photons are reconstructed from energy deposits in the electromagnetic calorimeter [87]. Reconstructed
photon candidates are required to have ?T > 25 GeV, and only central photons with |[ | < 2.5 are considered,
excluding the barrel/endcap calorimeter transition region (1.37 < |[ | < 1.52). Only photons that satisfy
the tight identification requirement are considered, and additional tight isolation requirements are imposed
to further suppress contamination from jets [87].

An overlap removal procedure is applied to avoid any double-counting between the reconstructed photons
and jets, by removing any jet with an angular distance

√

Δ[2 + Δq2 < 0.4 to any photon.

4.2 Photon channel selection

The two photon channels (W 9 9 and W11) are required to satisfy the singel-photon trigger [88] with the lowest
threshold where all events passing it are saved (unprescaled), and a single photon with ?T > 150 GeV is
required in order for the trigger selection to be fully efficient. In addition, the event is required to have two
reconstructed jets passing the selection in Section 4.1, and the two highest-?T (leading) jets are used to
reconstruct the resonance candidate. Several dĳet and W-jet kinematic variables were studied to enhance
the / ′ → @@̄ signal over the expected background, and the strongest discriminating variable was found to
be the asymmetry H∗ = |H1−H2 |

2 , where H1 and H2 are the rapidities of the two selected jets. It is expected
that a signal from / ′production produces isotropic jets while forward jets are more common in background
events, causing the signal to have smaller values of H∗ than the background. The shape of the H∗ variable
is found to be well described by the background simulation, with maximum differences of a few percent. A
cut of H∗ < 0.825 is applied to maximize the signal sensitivity across the different mass ranges. For the
W11 channel, in addition to satisfying the selection for the W 9 9 channel, the two leading jets in the event
are required to satisfy the 1-tagging requirements described in Section 4.1.

4.3 Trĳet channel selection

In both the 9 9 9 and 9 11 channels, events are required to have at least three reconstructed jets, where
the leading jet is required to be above 475 GeV to be fully efficient for the lowest unprescaled single jet
trigger [89]. When considering only the three leading-?T jets in a given event, there are three possible
choices to assign two jets as corresponding to the resonance decay product candidates.2 In the case where
the resonance decays into two 1-quarks, the combinatorial problem can be in principle trivially solved
by identifying the two 1-tagged-jets in the event. While possible, this causes challenges in background
modeling, and so this trivial solution is not used. To illustrate the combinatorial problem more clearly,
Figure 1 shows the particle-level dĳet mass spectrum of different jet pairs for three different / ′ signal
samples. Each jet is assigned a number based on its ?T ordering, e.g., <12 is the dĳet mass distribution

2 While a fourth jet can contribute, it is typically not the dominant contribution, and so it is not considered, to simplify the
combinatorics.
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where =( and =� are the number of signal and background events, respectively, and 5( (<jj) and 5� (<jj)
are their probability distribution functions. All the distributions entering the fit are binned finely in bins of
1 GeV width, to minimize the loss of information and the typical biases of binned likelihood fits [90].

5.1 Signal templates

The likelihood fit results are interpreted using model-independent and model-dependent strategies. For the
model-independent limits, the signal probability distribution functions are taken as Gaussian distributions,
with a mean equal to the resonance mass, with widths ranging from 5% to 15%. The upper end of the
template width is determined based on the results of the spurious signal test and signal injection test
described in Section 5.2.

For the model-dependent limits, the shape of the <jj distributions from simulated samples are used directly.
Signal samples are produced with a limited set of signal masses, and these templates are used as inputs to an
interpolation between mass points to provide a finer signal grid using the method described in Ref. [91].

5.2 Background estimate

The selected jets in non-resonant QCD processes, which constitute the SM background for this search, result
in dĳet systems with smoothly-falling invariant mass distributions. In order to estimate this background in
the search regions, a class of parametric functions is fit to the <jj distributions:

5� (G) = ?1(1 − G) ?2G?3+?4 ln(G )+?5 ln2 (G )+?6 ln3 (G ) ,

where G = < 9 9/
√
B, and ?1, ?2, ?3, ?4, ?5, and ?6 are the fitted parameters. For an #-parameter fit, only

the first # parameters are allowed to vary, while the higher-# terms are fixed to zero. Such functions were
successfully used by a wide variety of dĳet and multĳet resonance searches by the CDF, CMS, and ATLAS
Collaborations [25, 27, 32, 34, 92–97].

The data-driven background fitting procedure employs a 5-parameter function and was validated using
several cross-checks, including spurious signal tests and signal injection tests. These tests were performed
using simulated samples, with a subset of checks performed on a partial data sample.

The spurious signal test evaluates whether the fitting procedure is biased such that it produces a non-zero
extracted signal when fitting a data sample with no true signal. This test is performed using many
pseudodata distributions which are generated from background-only fits to the simulated <jj distribution
with a 6-parameter function, which has more flexibility than the final fit function. Each distribution is
tested by performing signal+background fits with a 5-parameter fit function and various signal hypotheses.
Gaussian-shaped signals with widths ranging from 5 to 15% of the signal mean are tested, as well as using
the signal templates from the / ′ simulated samples directly. For each pseudodata distribution and signal
hypothesis =( is determined, and the median value and standard deviation of the =( distribution are taken
to be (spur and fspur respectively. To satisfy the spurious signal requirements, (spur/fspur is required to
be less than 0.5 for every signal hypothesis mass point. This requirement is satisfied for all channels for
/ ′ masses between 250 GeV and 650 GeV. While the fits extend to <jj values beyond 650 GeV, higher
signal masses do not always satisfy the spurious signal tests, and are not considered further. In addition, for
the 9 9 9 channel, the signal shape degrades significantly at higher signal masses, since the selected jets
often do not correspond to the resonance decay products. Finally, the 9 11 channel passes this requirement
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for resonance masses down to 200 GeV, which is possible since the <jj spectrum in this channel is smooth
down to lower masses than the other channels.

The signal injection test is performed to ensure that the fit is able to extract a signal component with the
expected signal strength. Simulated signal models, with both Gaussian shapes and in a range of widths
and signal templates, are included in the fitted background distribution with a given signal cross-section
selected to be in the range 0 − 5f, where f = =(/

√
=� and the number of signal and background events

are determined using a 2f window around the injected signal peak in each test. The injected signals in this
study were extracted for pseudodata distributions, with the requirement that the median of the extracted
significances is within 0.5f of the injected significance, for all the signal hypotheses and mass points
individually. These tests were satisfied for all channels for the same range of resonance masses and widths
as with the spurious signal tests, while they failed for Gaussian-shaped signals with widths above 15%.

The fitted <jj region is determined separately for each channel. For the chosen range, the fit quality, spurious
signal, and signal injection tests are must be satisfied for the MC simulation. The fitted <jj region is chosen
to prioritize a fit that starts as low in <jj as possible while maintaining a wide enough fit range to study the
relevant signal models. The lowest part of the <jj spectrum does not have a smoothly falling shape because
of trigger inefficiency and analysis selection effects, such as the H∗ cut, and such a behavior cannot be fit by
the class of functions considered. The W 9 9 and W11 channels are found to have a smoohly falling behavior
starting from <jj = 200 GeV, while the 9 9 9 and 9 11 channels from <jj = 225 GeV and <jj = 160 GeV
respectively. The upper fit ranges are defined from the edges of bins defined by the <jj resolution, and are
taken to be the highest among those where the background fit functions to the simulated <jj distributions
have a j2?-value above 0.05. The procedure to determine the fit range is repeated on the measured data, to
ensure the fit ranges estimated from the MC simulation are adequate. If they are not, the upper limit of the
fit range is reduced by one <jj resolution bin, and all the tests are repeated.

For the W11 channel, the background estimate is further validated using an ABCD method with simulated
samples, following the strategy of Ref. [40]. Such method allows a test of the background estimate in the
W11 channel with a higher statistical precision than available in the existing simulated sample and also
serves as a test for potential biases in the <jj spectrum introduced by 1-tagging. The ABCD re-weighting
method defines different regions based on whether events satisfy or fail to meet the H∗ selection and the
1-tagging requirements, providing an estimate for the 1-tagged spectrum which is based on the un-tagged
distribution. The ABCD-reweighted <jj spectrum is found to be compatible with the one obtained by
applying the W11 event selection, within the statistical precision of the re-weighted and high-statistics
spectrum. Given the level of agreement, no uncertainty related to 1-tagging is considered to affect the
background fit. The resulting distribution is found to satisfy the spurious signal and signal injection
tests described above, providing further confirmation of the fit strategy. Since this method relies on the
H∗ selection, the technique cannot easily be applied to the 9 11 channel, but the conclusions on the possible
1-tagging biases from W11 apply to the 9 11 channel as well.

6 Systematic uncertainties

When interpreting the analysis in terms of candidate signal models, the impact of various experimental and
theoretical sources of uncertainty is considered.
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Luminosity. The uncertainty in the combined 2015–2018 integrated luminosity is 0.83% [52], obtained
using the LUCID-2 detector [53] for the primary luminosity measurements. It is treated as a single
normalization uncertainty applied as a scale factor to the signal models.

Jets. Systematic uncertainties in the ' = 0.4 jet energy scale and resolution are evaluated using a series
of in situ measurements and simulation-based techniques, thoroughly documented in Ref. [83]. The
most significant source of uncertainty in the JES originates from uncertainties on the flavor of the jet.
Uncertainties on the JVT are also included, but are negligible, since the uncertainties are applied only to
the signal. For the photon channels, these uncertainties have a negligible impact on the efficiency, and
around a 2% impact on the location of the / ′ mass. For the trĳet channels, the impact on the location of
the / ′ mass is around 1%, while the impact on the selection efficiency is around 3%.

Photons. The systematic uncertainties in the photon identification and isolation efficiencies are estimated
following the prescriptions in Ref. [87]. They are evaluated by varying the correction factors for photon
selection efficiencies in simulation by the corresponding uncertainties and affect the diphoton selection
efficiency. The experimental uncertainties in the photon energy scale and resolution are obtained from
Ref. [87], and are only applied to the W 9 9 and W11 channels. These systematic uncertainties primarily
impact the selection efficiency of the signal events, with a total impact on the efficiency of around 2%.

B-tagging. For final states with requirements on the number of 1-tagged jets, additional systematic
uncertainties are applied. The systematic uncertainty in the 1-tagging efficiency is measured using data
enriched in CC̄ events for jet ?T < 400 GeV and extrapolated to higher ?T regions using a method similar to
the one described in Ref. [98]. The impact of this systematic uncertainty in the efficiency of the event
selection of signal events ranges from 2–3%.

Parton distribution functions. The theoretical uncertainty envelope associated with the NNPDF2.3lo

PDF set is propagated through the analysis, where their impact is primarily on the normalisation of the
signal events. The change in analysis selection efficiency is recalculated for each provided PDF variation,
and the standard deviation of all such variations is taken as a measure of the systematic uncertainty due to
PDFs. This uncertainty affects signal samples and ranges from 1–5% across the different channels, with
larger effects on the photon channels than on the dĳet channels.

Background modeling A systematic uncertainty to cover potential biases in modeling the background
shape is accounted for using the spurious signal (modeling. The value of (modeling is determined as the
envelope of |(spur | over <jj and is considered to cover features of the <jj background spectrum which are
not modeled by the background parametrisation chosen. This is implemented in the likelihood fit as an
additional signal contribution, such that

#signal(</ ′) = f × � × �' × L + (modeling(</ ′)\modeling,

where #signal(</ ′) is the number of extracted signal events at a given </ ′ , f, �, �', and L are the signal
cross-section, acceptance, signal branching ratio, and integrated luminosity, respectively; and \modeling is a
nuisance parameter associated with the background modeling uncertainty. The signal acceptance is defined
as the fraction of simulated events at detector level that pass the analysis selection cuts.

The spurious signal uncertainty is found to be, together with the statistical uncertainty, the leading source
of uncertainty on the extracted number of signal events.
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Figure 4: Dĳet invariant mass distributions data compared to the fitted background estimates for the (a) W 9 9 , (b)
W11, (c) 9 9 9 , and (d) 9 11 channels. Bottom panel shows the fit residuals in terms of standard deviations (f). The
distributions are shown here with the <jj resolution binning.

7 Results

The dĳet invariant mass distributions in data, together with the corresponding fitted background estimates,
are shown in Figure 4 for all four channels. The data are well described by the 5-parameter fit function in
all channels, and the global j2 ?-value ranges from 0.10 to 0.42 for the different channels. Fit ranges are
chosen such that the fits satisfy the tests explained in Section 5.2. For the photon channels, the background
fit spans the <jj range of 200 GeV to 875 GeV for the W 9 9 channel and of 200 GeV to 854 GeV for the
W11 channel, while for the 9 9 9 and 9 11 channels, the fit spans 225 GeV to 1000 GeV and 160 GeV to
700 GeV respectively.

The BumpHunter [99, 100] algorithm, as implemented in pyBumpHunter [101, 102], is used to measure
the statistical significance of localized excesses of the measured data relative to the estimated background
in the <jj distributions, which could be due to the presence of resonant signals. This is done using mass
bins with a bin width determined by the mass resolution of <jj as a function of the mass, where the mass
resolution is determined using a Gaussian function fit to the <jj response distribution. Windows are allowed
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to have a width of up to three mass-resolution bins, hence corresponding to three times the <jj resolution,
and for each scanned window BumpHunter evaluates the statistical significance of the observed difference
between the data distribution and the background fit. The BumpHunter ?-value is defined as the smallest
observed probability for the data in a given window to deviate from the background prediction by the
observed amount due to a Poissonian fluctuation of the background, using pseudoexperiments generated
from the background prediction, and without considering systematic uncertainties. The most significant
localized excesses identified by the BumpHunter algorithm are found at 348 GeV with a local significance
of 1.9f for the W 9 9 channel, at 380 GeV with a local significance of 1.8f for the W11 channel, at 404 GeV
with a local significance of 1.8f for the 9 9 9 channel and at 522 GeV with a local significance of 1.5f for
the 9 11 channel.

As no significant deviation from the background expectation is observed, upper limits are set on the
signal production rate as a function of the hypothesized resonance mass. The numbers of signal and
background events are estimated from maximum-likelihood fits of the signal-plus-background models to the
corresponding <jj distributions. Systematic uncertainties described in Section 6 are included in the fits via
nuisance parameters constrained by Gaussian-distributed penalty terms. Systematic uncertainties affecting
the signal shape have only a small impact on the result, and the dominant uncertainties arise from the
statistical and spurious signal uncertainties. The ?-value is determined from a profile-likelihood-ratio-test
statistic [103]. The local ?-value for compatibility with the background-only hypothesis when testing a
given signal hypothesis (?0) is evaluated based on the asymptotic approximation [103]. Global significance
values are computed from background-only pseudo-experiments to account for the trial factors due to
scanning both the signal mass and the width hypotheses. The expected and observed 95% confidence
level (CL) exclusion limits on the product of the cross-section, branching ratio, and acceptance are
computed using a modified frequentist-approach [104], in an asymptotic approximation to the test-statistic
distribution [103].

Figure 5 shows the 95% CL upper limits on the f × � × BR of the / ′ axial-vector dark-matter mediator as
a function of its mass, derived using the signal templates. Results are interpolated linearly in the log of the
cross-section. Similar results are shown in Figure 6 for generic signals with Gaussian function shapes with
5%, 7%, 10%, 12%, and 15% signal widths.

Given the relation between couplings and cross-section, the limits on the / ′ cross-sections can be translated
to contraints on the 6@ coupling, by taking into account the values of the simulated sample cross-sections
and the analysis acceptance. A comparison of the limits on the 6@ coupling as a function of the / ′ mass
for all channels is shown in Figure 7. For the flavor-inclusive channels, the cross-section combines the
contributions from the signal samples where the / ′ decays are restricted to light flavors with the samples
where the / ′ decay products decay into 1-quarks. While the limits on f × � × BR are much stronger
for the W11 and 9 11 channels than for the W 9 9 and 9 9 9 channels, the cross-sections and branching ratios
are much lower, meaning that the limits on 6@ are more similar across channels. Overall, the 9 9 9 and
W 9 9 channels set the strongest limits on the 6@ coupling.

The limits on the 6@ coupling obtained from the W 9 9 and 9 9 9 channels are similar in value and there is only
a small overlap in the selected events across the two categories. Hence a combination of the two channels
can further strengthen the constraints on 6@ . No combination of the 1-tagged channel is considered, as the
constraints on 6@ from such channels are weaker than the flavor-inclusive ones.

Events passing both the W 9 9 and 9 9 9 selections are removed from the 9 9 9 channel, to have two statistically
independent measurements. Such double-counted events amount to 0.2% of all the 9 9 9-selected events and
their impact on the 9 9 9 channel fits were found to be negligible. A combined likelihood function, which
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8 Conclusion

Dĳet resonances with a width up to 15% of the mass, produced in association with a photon or jet, were
searched for in 140 fb−1 of LHC ?? collisions recorded by the ATLAS experiment at

√
B = 13 TeV. This

search expands on previous similar searches by using the full Run 2 data samples, and by including the
case where the initial-state radiation is a jet. It considers the cases where no flavor requirements are
placed on the resonance decay products, and the case where both of the decay products are required to
be 1-tagged, resulting in four channels, depending on the type of initial-state radiation and the flavor
requirements. In all four channels, the observed <jj distribution is well-described by a smooth functional
fit without contributions from such resonances. No significant excess of events beyond the Standard Model
expectation is observed, and so upper limits are set on two models: / ′ axial-vector dark-matter mediators
and Gaussian-shape signal contributions for resonant masses between 200 GeV and 650 GeV. Relative
to already published results using a similar analysis technique, this search improves the limits on the
/ ′-@-@ coupling 6@ by up to 50%, with the most stringent limits on 6@ set by the 9 9 9 channel for lower
/ ′ candidate masses and by the W 9 9 channel for higher / ′ masses. A further combination of the 9 9 9 and
W 9 9 channels is performed, which set limits on 6@ down to 0.05–0.07.
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