
EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

Submitted to: Phys. Rev. Lett. CERN-EP-2024-086

25th March 2024

Search for light long-lived particles in p p collisions
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A search for long-lived particles (LLPs) using 140 fb−1 of ?? collision data with
√
B = 13 TeV

recorded by the ATLAS experiment at the LHC is presented. The search targets LLPs
with masses between 5 and 55 GeV that decay hadronically in the ATLAS inner detector.
Benchmark models with LLP pair production from exotic decays of the Higgs boson and
models featuring long-lived axion-like particles (ALPs) are considered. No significant excess
above the expected background is observed. Upper limits are placed on the branching ratio of
the Higgs boson to pairs of LLPs, the cross-section for ALPs produced in association with a
vector boson, and, for the first time, on the branching ratio of the top quark to an ALP and a
D/2 quark.
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The majority of experimental searches for dark matter (DM) have concentrated on weakly interacting
massive particles (WIMPs) that interact directly with Standard Model (SM) particles with a strength
comparable to that of the weak interaction. However, constraints on WIMP-like DM from both direct [1–9]
and indirect detection experiments [10] are becoming increasingly stringent. One compelling alternative
to the WIMP paradigm is that DM particles belong to a “dark sector” (DS) that is neutral under the SM
gauge group and interacts with the SM only via one or more beyond the SM mediator particles [11–15]. If
decays of the mediator to DS particles are kinematically forbidden, its decay back into SM particles will be
suppressed by the small coupling between the SM and the mediator, giving rise to potentially macroscopic
proper decay lengths (2g & 100 `m). These so-called long-lived particles (LLPs) are also predicted in
scenarios in which the mediator particle couples to the SM via a higher-dimensional operator, such as in
models featuring axion-like particles (ALPs) [16, 17].

This Letter presents a search for neutral LLPs that decay hadronically, giving a distinct signature of one or
more hadronic jets originating at a significantly displaced position from the proton–proton (??) collision
point, referred to as a displaced vertex (DV). Three benchmark models are explored, motivated by different
interactions between the SM and DS states. The first benchmark considers the “Higgs Portal”, in which
the SM Higgs boson mediates interactions with the DS through its coupling to a neutral spin-0 boson,
B [18, 19]. This benchmark gives rise to exotic decays of the Higgs boson to a pair of long-lived B particles
that decay back to SM particles with Yukawa-ordered branching ratios. The search targets Higgs boson
production in association with a vector boson (,//) and via the vector boson fusion (VBF) process. The
second benchmark considers extending the SM with an ALP, 0, which couples to gluons and ,// bosons,
while couplings to photons are suppressed [20]. This gives rise to the production of 0 in association with a
vector boson (,//) and its subsequent decay exclusively into gluons. The third benchmark considers an
ALP, 0, which couples to up-type quarks [21, 22], giving rise to exotic decays of the top quark C → 02/0D
in CC events. In this model the 0 boson decays into charm quark pairs or gluons, with branching ratios of
approximately 75% and 25% for <0 > 40 GeV, respectively. Diagrams of the three benchmark processes
can be found in Appendix A.

This search is performed with 140 fb−1 of 13 TeV ?? collision data collected by the ATLAS experiment at
the Large Hadron Collider (LHC) [23] from 2015 to 2018. Several previous searches for Higgs boson
decays to LLPs have been performed that in combination exclude branching ratios BR(� → BB) > 10% for
B masses above 40 GeV and proper decay lengths between 10−3 m and 10 m [24–32]. However, for masses
below 40 GeV, Higgs boson decays to LLPs with proper decay lengths below 100 mm are unconstrained
beyond the limit of 12% on the branching ratio of the Higgs boson to undetected states [33]. A limiting factor
in probing this region of phase space with the ATLAS experiment has been the reconstruction of displaced
tracks in the inner tracking detector (ID). In 2022, an improved version of the track reconstruction pass for
large-impact parameter tracks was deployed in ATLAS [34]. This upgrade significantly reduced the rate of
reconstructing so-called fake tracks due to random hit combinations, thereby enhancing computational
efficiency and enabling the application of this reconstruction to every recorded data event. This Letter
reports the first direct application of this new track reconstruction, which significantly expands the reach of
this search with respect to previous ATLAS results and allows for sensitivity to previously unexplored
phase space. Notably, this is the first search for Higgs boson decays to hadronically decaying LLPs in
the ID to probe the VBF topology, and the first search to probe hadronically decaying long-lived ALPs
produced in association with a vector boson and via exotic decays of the top quark.

The ATLAS detector [35, 36] is a cylindrical detector with forward–backward symmetry and nearly 4c
solid-angle coverage.1 An extensive software suite [37] is used in data simulation, in the reconstruction and

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector
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analysis of real and simulated data, in detector operations, and in the trigger and data acquisition systems
of the experiment.

A primary charged particle (track) reconstruction pass is used to reconstruct charged-particle trajectories
with transverse impact parameter (30) with respect to the ?? interaction point (IP) of |30 | < 5 mm. A
large-impact parameter pass, using left-over hits from the primary pass, is used to increase tracking
acceptance up to |30 | < 300 mm [34]. The ?? interaction vertex with the highest sum of squared transverse
momenta of associated tracks is taken as the primary interaction vertex (PV). Hadronic jets are reconstructed
from topological clusters of energy deposits in the calorimeters [38] using the anti-:C algorithm [39, 40]
with a radius parameter of ' = 0.4. The matching of tracks with the calorimeter-based jets is performed
via the ghost-association technique [41]. Jets with transverse momentum ?T > 20 GeV are considered in
the analysis.

Electron candidates are reconstructed from energy deposits in the calorimeters associated to an ID track,
and are required to be within the fiducial region |[ | < 2.47, and outside of 1.37 < |[ | < 1.52. Muons
are reconstructed by combining tracks reconstructed in the ID with tracks or track segments found in the
muon spectrometer (MS) and are required to have |[ | < 2.5. Electrons and muons are required to have
?T > 10 GeV and satisfy the Medium identification criterion [42, 43]. To ensure that the selected electrons
(muons) originate from the PV, they must satisfy | 30

f (30 ) | < 5 (3), and | (I0 − IPV) sin \ | < 0.5 mm, where
I0 is the track’s longitudinal impact parameter and IPV is the I coordinate of the PV. Photon candidates
are reconstructed from clustered energy deposits in the electromagnetic calorimeter either without any
matching ID track or with a matching photon conversion vertex in the ID material. The Loose identification
criterion is required [42]. The missing transverse momentum (�miss

T ) is defined as the magnitude of
the negative vector sum of the transverse momenta of all reconstructed and calibrated electrons, muons,
photons, jets, and remaining unclustered energy. The latter is estimated from low-?T tracks associated with
the PV but not assigned to a reconstructed object [44].

Samples of Monte Carlo (MC) simulated events are used to study the three benchmark scenarios. In the
Higgs portal benchmark, the decays of the B particles are simulated assuming a 100% branching ratio to
the heaviest quark–antiquark pair that is kinematically allowed. To quantify the dependence of the analysis
on the flavor of the final state quarks, additional samples are generated assuming a 100% branching ratio to
DD. Signal samples were generated assuming proper decay lengths of the LLP (either 0 or B) of 1, 10, 100,
and 1000 mm, and masses in the range 5 ≤ <B ≤ 55 GeV and 40 ≤ <0 ≤ 55 GeV for the Higgs portal and
ALP benchmarks, respectively. In all samples, the LLP is taken to be a pseudoscalar, although the analysis
does not explicitly exploit the �% properties of the LLPs. Samples of simulated CC̄ and ++jets background
events are used to optimize the event selections and evaluate systematic uncertainties. Details about the
event simulation configurations used can be found in Appendix A.

Events are categorized into three search regions, each targeting a different Higgs boson or ALP production
mode. The 1-lepton region is defined by the presence of exactly one lepton (4/`) with ?) > 27 GeV
and �miss

T > 30 GeV. These criteria target signal processes containing a leptonically decaying , boson
including ,�, ,0, and CC, C → 02/0D production. The 2-lepton region is defined by the presence of
exactly two leptons, with the same flavor and opposite charge. The highest ?T lepton is required to have
?) > 27 GeV, and the invariant mass of the dilepton system is required to fall between 76 and 106 GeV.
These criteria target signal events containing a leptonically decaying / boson, including /� and /0

and the I-axis along the beam pipe. The G-axis points from the IP to the center of the LHC ring, and the H-axis points upward.
Polar coordinates (A, q) are used in the transverse plane, q being the azimuthal angle around the I-axis. The pseudorapidity is

defined in terms of the polar angle \ as [ = − ln tan(\/2). Angular distance is measured in units of Δ' =

√

Δ[2 + Δq2.
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production. Events in the 1- and 2-lepton regions are collected with a combination of single and dilepton
triggers [45–47]. In both regions, events are required to have at least two jets with |[ | < 2.5. The VBF

enriched region targets events with the VBF topology. Events are collected with an inclusive VBF trigger
enabled during the 2018 data-taking period that is designed to select events with a pair of jets consistent
with the VBF process [48]. The data collected with this trigger correspond to a total integrated luminosity
of 37.5 fb−1. The VBF enriched region is defined by the absence of any lepton, and the presence of
a pair of jets with invariant mass < 9 9 > 1200 GeV and angular separation |Δ[ 9 9 | > 4 and |Δq 9 9 | < 2.
The leading (subleading) jet in this pair is required to have transverse momentum ?T > 100 (80) GeV
and |[ | < 3.2 (4.9). These selections ensure that the trigger selection efficiency is approximately 100%.
In addition to the pair of jets used to select the VBF topology, events are required to have at least two
additional jets with |[ | < 2.5.

The jets emerging from the decay products of an LLP, referred to as displaced jets, exhibit a distinct
topology compared to prompt jets that originate from a ?? interaction vertex. To distinguish displaced jets
from prompt jets, a per-jet boosted decision tree (BDT) is trained using the XGBoost framework [49].
The output of this classifier is a displaced jet BDT score between zero and one, where a higher score
indicates that the jet is more likely to have originated from a displaced decay. This BDT is trained on five
jet-level features that discriminate between displaced and prompt jets. The first feature is the fraction of the
total jet ?T carried by tracks with |30 | < 0.5 mm, which is expected to be smaller for displaced jets than
for prompt jets. Similarly, the fraction of the total jet ?T carried by tracks with |30 | > 0.5 mm is used,
which provides additional information about the contribution from displaced charged particles to the total
jet momentum. Third, the fractional value of jet track ?T originating from tracks with |30 | < 0.5 mm
and | (I0 − Ivertex) sin \ | < 0.3 mm is calculated for each reconstructed ?? interaction vertex, and the
maximum value of this set is taken. Finally, the maximum |30 | among tracks in the jet, and the median
of the logarithmic transverse impact parameter significance of tracks associated to the jet are used. The
BDT is trained on a mixed signal sample comprised of +�, � → BB events with <B ∈ {16, 55} GeV and
2gB ∈ {10, 100} mm, and a mixed background sample comprised of CC̄, ,+jets and /+jets events in equal
parts. Distributions of the BDT score for jets in selected signal samples and in data can be found in the
Supplemental Material.

To reconstruct the origin of the hadronic jets produced from the decay of the LLPs, a DV reconstruction
algorithm [50] is run on the combined collection of tracks from both the primary and the large-impact
parameter tracking passes. Following Ref. [29], selections are placed on the reconstructed vertices to
reject DVs from SM processes and random combinations of tracks. DVs are required to have a track
multiplicity =track ≥ 3 and vertex goodness of fit j2

DV/=DoF < 5. The radial and longitudinal coordinates of
the DV position are each required to be less than 300 mm, and a material veto is applied to reject DVs from
interactions between high-momentum hadrons and known detector elements [51]. The ratio of the DV
invariant mass (<DV) and the maximum angular distance between any two tracks in the DV (Δ'max) is
required to satisfy <DV/Δ'max > 4 GeV, and the scalar sum of the transverse momentum of DV tracks is
required to be above 10 GeV. When computing the kinematic properties of the DVs, the track parameters
are calculated after extrapolating their trajectory to the DV position. DV tracks must satisfy |30 | > 0.1 mm
and at least one track in the vertex must have |30 | > 3 mm. To associate DVs to displaced jets, the vectorial
sum of the DV track momenta is required to be within Δ' < 0.6 of a jet with a BDT score greater than 0.5.
If multiple DVs are matched to a given jet, only the DV with the smallest Δ' to the jet axis is considered.

All events considered in the analysis are required to have at least two jets with a BDT score greater than 0.5.
An event-level discriminant (BDT 90 × BDT 91) is computed by taking the product of the BDT scores of the
two jets in the event with the largest BDT scores. From each of the three search regions, two signal regions
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(SRs) are defined based on the candidate DV multiplicity in the event, =DV = 1 or =DV ≥ 2, resulting in a
total of six SRs. Events in the =DV = 1 SRs are required to have BDT 90 × BDT 91 > 0.9. This condition is
relaxed to BDT 90 ×BDT 91 > 0.7 in the =DV ≥ 2 SRs. Example distributions of the event-level discriminant
can be found in the Supplemental Material.

The dominant sources of background are CC and ,+jets, /+jets, and multĳet production in the 1-lepton,
2-lepton, and VBF enriched SRs, respectively. The background contribution is estimated using a fully
data-driven approach, following the method developed in Ref. [29]. In each of the three search regions, a
control region (CR) is defined by requiring BDT 90 × BDT 91 < 0.7. Assuming a 12% branching ratio of
� → BB from Ref [33], the fractional signal contribution in the CRs is expected to be less than 1%. The
probability that a jet is matched to a DV is computed separately in each of the three CRs and encoded in a
three dimensional map parameterized in jet ?T, the jet flavor tagging score (DL1r) [52] that separates light
and heavy flavor jets, and BDT score. The map is divided evenly in the BDT dimension using a bin width
of 0.01 in the 1-lepton region, and 0.025 in the 2-lepton and VBF enriched regions where fewer events are
selected. The per-jet probabilities are then used to compute the probability that each event contains exactly
one, or greater than one DV based on the ?T, DL1r, and BDT scores of the jets in the event. The per-event
probability weights are applied inclusively to data in the search regions to predict the distributions of
BDT 90 × BDT 91 in events with =DV = 1 and =DV ≥ 2.

Two uncertainties in the background prediction are considered. First, the statistical uncertainty in the
background estimate due to the finite number of events in the CR used to derive the maps is computed
using ensembles of background estimates from a set of statistically varied per-jet probability maps [29].
The standard deviation of this ensemble of estimates is used to define the up and down statistical variations
on the nominal prediction. Second, in the 2-lepton and VBF enriched regions, where a coarser binning
is used in the BDT dimension of the per-jet probability map, an uncertainty in the background estimate
from the binning choice is quantified. In this regard, the difference between the nominal estimate and an
alternate estimate computed from a map with a BDT bin width of 0.01 is taken as a systematic uncertainty.
The total uncertainty in the background predictions varies from 10–50%, depending on the signal region.

The background estimate is validated in a subset of the =DV = 1 events defined by 0.7 < BDT 90 ×BDT 91 <

0.9 within each of the three search regions, and in a dedicated event selection requiring the presence of
a single photon with ?T > 160 GeV and |[ | < 2.47, zero leptons, and two jets with ?T > 20 GeV. The
distributions of data events are found to be well modeled by the predicted background in all regions,
validating the extrapolation of the background estimate from the CR to larger values of BDT 90 × BDT 91

and to events with =DV ≥ 2. A more detailed description of the background validation is given in Appendix
B.

Instrumental and theoretical uncertainties are assigned on the modeling of the simulated signal samples.
The dominant uncertainty is due to the modeling of the BDT score, which is derived as a per-jet uncertainty
by comparing the shape of the BDT score between data and the simulated /+jets sample in the 2-lepton
preselection, and then propagated to the final event yield. The impact of this uncertainty is as large as 15%.
Subleading sources of instrumental uncertainty include those on the primary and large-impact parameter
track reconstruction efficiencies [34]; lepton trigger, reconstruction, and identification efficiencies [53];
lepton energy scale and resolution [54]; jet energy scale and resolution [38]; modeling of the pileup in
simulation [55]; and the total integrated luminosity of the measurement [56, 57]. Theoretical uncertainties
are considered to account for variations due to the renormalization and factorization scales, parton
distribution functions, and parton showering.
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Figure 6: The distribution of (a) the BDT score of the jet with the highest BDT score in the event (BDT 90 ) and (b) the
product of the BDT scores of the two jets in the event with the largest BDT scores (BDT 90 × BDT 91), in simulated
signal samples (solid lines) and a background-enriched data sample (black points) for events in the 1-lepton search
region described in the text, with the additional requirement that the events contain at least two jets with BDT scores
greater than 0.5. The distributions are normalized to unit area.
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