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Search for the jet-induced diffusion wake in the

quark-gluon plasma via measurements of jet–track

correlations in photon–jet events in Pb+Pb collisions

at
√

sNN = 5.02 TeV with the ATLAS detector

The ATLAS Collaboration

This paper presents a measurement of jet–track correlations in photon–jet events, using
1.72 nb−1 of Pb+Pb data at

√
BNN = 5.02 TeV recorded with the ATLAS detector at the LHC.

Events with energetic photon–jet pairs are selected, where the photon and jet are approximately
back-to-back in azimuth. The angular correlation between jets and charged-particle tracks
with transverse momentum (?T) in the range 0.5–2.0 GeV in the hemisphere opposite to the
jet, |Δq(jet,track)| > c/2, is measured as a function of their relative pseudorapidity difference,
|Δ[(jet,track)|. In central Pb+Pb collisions, these correlations are predicted to be sensitive to
the diffusion wake in the quark-gluon plasma resulting from the lost energy of high-?T partons
traversing the plasma, with a characteristic modification as a function of |Δ[(jet,track)|. The
correlations are examined with different selections on the jet-to-photon ?T ratio to select
events with different degrees of energy loss. No diffusion wake signal is observed within the
current sensitivity and upper limits at 95% confidence level on the diffusion wake amplitude
are reported.
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1 Introduction

Collisions of high-energy nuclei at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron
Collider (LHC) produce small droplets of quark-gluon plasma (QGP) [1]. These QGP droplets quickly
expand and are well described as a near-perfect (i.e., nearly inviscid) fluid [2]. One of the primary
signatures of QGP formation is the substantial energy lost by large transverse momentum (?T) quarks and
gluons passing through the QGP. This energy loss, often termed “jet quenching”, indicates the presence
of a medium with large color opacity [3, 4]. Numerous measurements at the RHIC and at the LHC,
when combined with theoretical predictions, enable the extraction of the total amount of energy lost by
these partons while traversing the QGP. This has been most recently achieved via the measurement of jet
suppression in events tagged by prompt isolated photons, i.e., W–jet observables [5].

When a high-?T parton loses energy, it is important to understand how that energy is distributed in terms
of radiated gluons, i.e., what is the overall modification of the parton shower. In addition, energy may
also be transferred to the QGP fluid. Since the fluid is well described hydrodynamically with very small
dissipation, there are theoretical calculations predicting a “medium response,” including a Mach cone,
a wake front (an enhanced amplitude of the medium in the direction of the parton), and an associated
diffusion wake (a depletion in the amplitude of the medium in the opposite direction) [6–8]. Measurements
of this medium response would provide important constraints on the speed of sound and viscosity of the
QGP. Many papers have detailed calculations of this medium response with different modeling of the lost
energy and the QGP fluid itself [9–15].

As detailed in Ref. [15], there are significant challenges to experimentally confirm these different medium
response signatures. The medium response in the direction of the parton competes with the modified parton
shower and thus has not resulted in an unambiguous signature. Numerous observations of enhancement of
low-?T particles and particles at larger angles relative to the jet have been observed, but again without
unambiguous attribution [16–18].

In di-jet events, the diffusion wake (depletion) induced by one jet is contaminated from the wake
(enhancement) of the other jet in the opposite direction, which may lead to a cancellation of observable
effects. However, in //W–jets events, the diffusion wake can be measured cleanly as //W do not interact
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strongly in the plasma and thus produce no medium response of their own. Initial experimental results for
/–track correlations have been published [19, 20], while Ref. [15] specifically proposes to search for the
jet-induced diffusion wake in / /W–jets events. In this paper, the higher statistics W–jet channel is pursued.

In Ref. [21], a new observable is suggested to aid in the separation of the medium response, in this case the
diffusion wake, from other correlated particle production (referred to as the Multi-Parton Interaction (MPI)
contribution). Utilizing the Coupled Linear Boltzmann Transport and hydrodynamics (CoLBT-hydro)
framework [9], a fully three-dimensional medium response can be mapped out. This framework models
W–jet events and examines the correlation between the jet axis ([jet, qjet)1 and low-?T charged hadrons
([h, qh). The absolute medium modification is then obtained by subtracting the correlation from the same
hydrodynamic event without the W–jet. The expected magnitude of the modification to the medium is of
order 0.2% [21].

The proposal in Ref. [21] for separating the impacts of the diffusion wake and MPI is to examine this
observable as a function of GJW = ?

jet
T /?WT. For events with lower GJW , the quark or gluon opposing the

photon loses more energy on average in the medium and hence the diffusion wake is larger. On the other
hand, the MPI effect, being an initial-state effect, has no dependence on the energy loss effect, i.e., it
is independent of GJW . Thus, testing the MPI independence on GJW using proton–proton (pp) data is an
important cross check.

This paper presents jet–track angular correlations utilizing W–jet events in Pb+Pb collisions. The jet–track
yield as a function of |Δ[(jet,track)| is compared to the one in events without the presence of a jet to extract
the relative amount of diffusion wake compared to the bulk medium. This enables a direct test of these
diffusion wake theory predictions.

2 ATLAS detector

The ATLAS detector [22] at the LHC [23] covers nearly the entire solid angle around the collision point.
It consists of an inner tracking detector surrounded by a thin superconducting solenoid, electromagnetic
and hadronic calorimeters, and a muon spectrometer incorporating three large superconducting air-core
toroidal magnets.

The inner-detector system (ID) is immersed in a 2 T axial magnetic field and provides charged-particle
tracking in the range |[ | < 2.5. The high-granularity silicon pixel detector covers the vertex region and
typically provides four measurements per track, the first hit generally being in the insertable B-layer (IBL)
installed before Run 2 [24, 25]. It is followed by the SemiConductor Tracker (SCT), which usually provides
eight measurements per track. These silicon detectors are complemented by the transition radiation tracker
(TRT), which enables radially extended track reconstruction up to |[ | = 2.0.

The calorimeter system covers the pseudorapidity range |[ | < 4.9. Within the region |[ | < 3.2,
electromagnetic calorimetry is provided by barrel and endcap high-granularity lead/liquid-argon (LAr)
calorimeters, with an additional thin LAr presampler covering |[ | < 1.8 to correct for energy loss in material

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector
and the I-axis along the beam pipe. The G-axis points from the IP to the centre of the LHC ring, and the H-axis points upwards.
Polar coordinates (A, q) are used in the transverse plane, q being the azimuthal angle around the I-axis. The pseudorapidity is

defined in terms of the polar angle \ as [ = − ln tan(\/2) and is equal to the rapidity H =
1
2 ln

(

�+?I2
�−?I2

)

in the relativistic limit.

Angular distance is measured in units of Δ' ≡
√

(ΔH)2 + (Δq)2.
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upstream of the calorimeters. Hadronic calorimetry is provided by the steel/scintillator-tile calorimeter,
segmented into three barrel structures within |[ | < 1.7, and two copper/LAr hadronic endcap calorimeters.
The solid angle coverage is completed with forward copper/LAr and tungsten/LAr calorimeter modules
optimized for electromagnetic and hadronic energy measurements respectively.

Events are selected by the first-level trigger system implemented in custom hardware, followed by selections
made by algorithms implemented in software in the high-level trigger [26]. The first-level trigger accepts
events from the 40 MHz bunch crossings at a rate below 100 kHz, which the high-level trigger further
reduces in order to record complete events to disk at about 1 kHz.

A software suite [27] is used in data simulation, in the reconstruction and analysis of real and simulated
data, in detector operations, and in the trigger and data acquisition systems of the experiment.

3 Event selections and simulations

The datasets, photon and jet reconstruction, and simulation samples used in this measurement are identical
to those used in a previous measurement of photon–tagged jet production [5], and are briefly summarized
here.

Events in data are selected for analysis using triggers requiring a reconstructed photon with transverse energy,
�T, above 35 GeV (20 GeV) in pp (Pb+Pb) collisions [28]. These triggers sample the full luminosity of
255 pb−1 for the 2017 pp data and of 1.72 nb−1 for the 2018 Pb+Pb data, and are fully efficient for the photon
selection used in this analysis. In addition, minimum-bias (MB) triggered Pb+Pb events [29] are utilized for
event-mixing as detailed below. Events are required to satisfy detector and data-quality requirements [30]
and to have a reconstructed pp collision vertex from at least two tracks with ?T > 500 MeV [31]. The
vertex whose associated tracks give the highest sum of squared transverse momentum is designated the
event primary vertex.

In Pb+Pb collisions, the forward calorimeters (FCal) covering 3.2 < |[ | < 4.9 is used to estimate the
event centrality which is defined by the total transverse energy sum, Σ�FCal

T . Events in different intervals
of Σ�FCal

T are associated with an underlying geometric configuration according to a Monte Carlo (MC)
Glauber simulation [32] using the same event selection criteria as in previous ATLAS analyses [33]. This
analysis uses a centrality interval corresponding to the 0–10% of the Σ�FCal

T distribution in MB events.
This interval corresponds on average to the Pb+Pb collisions with the largest geometric overlap.

Simulated samples of W–jet events, including direct and fragmentation photon contributions, were generated
at leading order in QCD with Pythia 8 [34] using the NNPDF2.3LO [35] parton distribution function
set and the A14 [36] set of tuned parameters. To include the effects of the underlying event (UE) in
Pb+Pb collisions, the Pythia 8 W–jet events are overlaid at the detector-hit level with Pb+Pb data recorded
with minimum-bias triggers. These samples were simulated [37] using a Geant4 [38] description of the
ATLAS detector and were digitized and reconstructed in a manner identical to that of the data.

Photons are reconstructed following the method used previously in Pb+Pb collisions [39, 40], which applies
the procedure used in pp collisions [41] after an event-by-event estimation and subtraction of the UE
contribution to the energy deposited in each calorimeter cell [42]. Photon candidates must pass shower
shape requirements [43] designed to reject those arising from neutral meson decays and hadronic showers
starting in the electromagnetic calorimeter. Furthermore, photons are required to be isolated by requiring
the sum of the transverse energy (after UE subtraction) in calorimeter cells within a cone of size Δ' = 0.3
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cone to be below optimized thresholds, achieving a 90% efficiency for prompt photons in fine bins of
centrality classes, as determined using the simulations described above. The photon isolation efficiency is
evaluated with respect to generator-level final state photons which are isolated by requiring that the sum
of the transverse energy of all the final-state particles, excluding the photon itself, within a cone of size
Δ' = 0.4 cone be less than 5 GeV.

Jets are reconstructed following the procedure previously used in Pb+Pb collisions [42, 44]. The anti-:C
algorithm [45, 46] with distance parameter ' = 0.4 is applied to logical towers (Δ[ × Δq = 0.1 × c/32),
which are a combination of cells in all calorimeter layers. The contribution to the energy deposited in
towers by the UE is estimated on an event-by-event basis, and the tower energies are iteratively updated to
subtract the UE contribution, which is then re-estimated. The resulting jets are corrected using simulation
to account for the response of the calorimeter to jets [47], and then using in situ studies of jets recoiling
against photons, / bosons, and jets in other regions of the calorimeter in pp collisions [39] for the absolute
response in data. After performing this initial calibration, a process known as “cross-calibration” is
carried out. This step establishes a connection between the jet energy scale observed in high-luminosity
pp collisions at

√
B = 13 TeV [48] and the jets reconstructed using the different method described earlier in

the 5.02 TeV Pb+Pb data. The calibration described above is based on inclusive jets and an additional
calibration correction is applied to account for the different flavor fraction estimated in the MC simulation
between inclusive jets and jets produced in association with a photon.

Charged tracks are reconstructed following the procedure previously used in Pb+Pb collisions [49, 50].
A selection criterion optimized for primary charged particles is used [51]. Primary charged particles
are defined as charged particles with a mean lifetime g > 0.3 × 10−10 s, either directly produced in the
collision interactions or from subsequent decays of particles with a shorter lifetime [52]. All reconstructed
tracks satisfying the selection criteria with 0.5 < ?T < 2.0 GeV and |[ | < 2.5 are used in this analysis.
This specific ?T range is selected because the medium response is expected to be most significant at
lower transverse momenta. The charged-particle yield is corrected for reconstruction inefficiency, as well
as tracks which are not associated with primary particles, on a per-track basis using simulation-derived
correction factors.

4 Analysis

Events with photons passing the identification and isolation requirements described previously and with
90 < �

W

T < 180 GeV and |[W | < 2.37 (excluding the region 1.37 < |[W | < 1.52) are selected. Only the
highest-�T (leading) photon among them is used in the measurement. The kinematic selections of jets
in this analysis are ?

jet
T > 40 GeV and

�

�[jet
�

� < 2.5. These photon �
W

T and jet ?jet
T ranges encompass a

broad range of GJW , from 0.3 to 1.0. The results are reported in three GJW selections: 0.3 < GJW < 0.6,

0.6 < GJW < 0.8 and 0.8 < GJW < 1.0. These GJW ranges, by construction, impose upper ?
jet
T limits

corresponding to the photon �
W

T , which is restricted to below 180 GeV. The upper �W

T boundary of 180 GeV
is imposed to facilitate comparison with the theoretical prediction.

The jet energy resolution (JER) and scale (JES) can lead to migration between GJW ranges. However, this
effect is found to be small and accounted for in the systematic uncertainty, so no unfolding is performed.
The azimuthal angle between the leading photon and associated jet, Δq(W,jet), is required to be greater than
3c/4. Only the leading jet in this Δq(W,jet) window is taken for the measurement. These requirements
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Figure 1: Top panel: the |Δ[(jet,track)| distributions for raw (.corr) and mixed (.uncorr) events for the Pb+Pb 0–10%
centrality interval for 0.3 < GJW < 0.6. Bottom panel: the ratio .corr/.uncorr as a function of |Δ[(jet,track)|. The
vertical bars associated with symbols indicate the statistical uncertainties.

significantly reduce the rate of jets uncorrelated with the photon-producing hard scattering process as well
as the contribution from multi-jet topologies.

For events with photon–jet pairs passing these selections, the distribution of the absolute pseudorapidity
difference between the jet and each track, |Δ[(jet,track)|, is constructed. All jet–track pairs must be in
opposite azimuthal hemispheres, i.e., |Δq(jet,track)| > c/2. The |Δ[(jet,track)| distribution normalized by
the number of photon–jet pairs is defined as

.corr =
1

#W−jet

32# jet−track

3Δ[3Δq
. (1)

In Pb+Pb collisions, to gauge the medium modification of the QGP induced by the presence of jets, the
tracks produced from the bulk medium constitute a background that is estimated using an event mixing
technique and are used as a reference for the track–jet correlation in photon–jet events. This “uncorrelated”
track rate is estimated from the per-event track rate in MB Pb+Pb data. A photon–jet pair in a given
event is matched with tracks in a different event, i.e., tracks from MB events that should have no a priori

relationship to a given photon–jet pair are used. When mixing the two events, an MB Pb+Pb event is
chosen to have similar properties as the signal event by matching Σ�FCal

T , the event plane angle [53], and
the I position of the primary vertex. In Pb+Pb collisions, the value of Σ�FCal

T in events with the photon–jet
production (“signal” event) includes a contribution from the photon–jet production and another one from
the event without this photon–jet production. The Σ�FCal

T contribution from the photon–jet production

is estimated in pp data, and has a mean value Σ�
FCal,pp

T = 17 GeV. When mixing a signal event and an
MB event, the Σ�FCal

T required is thus 17 GeV smaller than that of the signal event. Figure 1 shows the
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Figure 2: Top panel: the raw |Δ[(jet,track)| distributions for different GJW selections in pp collisions at 5.02 TeV.
Bottom panel: Ratio of yields in different GJW selections to the one obtained for 0.6 < GJW < 0.8. The vertical bars
associated with each bin indicate the statistical uncertainties.

|Δ[(jet,track)| distributions from signal events (.corr) and from mixed events (labeled as .uncorr), and the
ratio corresponding to 0.3 < GJW < 0.6. This ratio indicates the relative medium modification.

As a check, the raw |Δ[(jet,track)| distributions in pp collisions at 5.02 TeV are studied with the identical
photon, jet, and track selections as in Pb+Pb collisions. In addition, the number of vertices is required to be
exactly one to reject pileup events in pp collisions. Figure 2 shows the comparison of the yield distributions
of tracks per photon–jet pair as a function of |Δ[(jet,track)| in three selections of GJW . According to
the theory expectations detailed in Ref. [9], the MPI should be independent of the specifics of the
photon–jet kinematics. The presented ratio of the yields in different GJW selections to the one obtained for
0.6 < GJW < 0.8 is shown to be consistent with unity within statistical uncertainties in Figure 2, i.e., in
agreement with the theoretical expectations.

5 Systematic uncertainties

The systematic uncertainties are evaluated by repeating the full analysis chain with a given systematic
variation, which may result in, e.g., a different reconstructed-level distribution. To avoid double-counting
the statistical uncertainties, a j2 test is performed for each source of systematic uncertainty. Firstly, the
signal samples are split into two halves for statistically independent comparisons between nominal and
varied conditions: one half of the events for the nominal condition, the other half for the variation. The
j2 of the difference between the variation and the nominal is calculated. If the j2 value is smaller than
a threshold (j2

cut), the differences are reasonably consistent within statistical fluctuations and thus no
systematic uncertainty is assigned for this variation. The j2

cut is set to correspond to the 68% probability
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Figure 3: Breakdown of the systematic uncertainties as a function of |Δ[(jet,track)| for the Pb+Pb 0–10% centrality
interval. Different panels represent different GJW ranges (0.3 < GJW < 0.6, 0.6 < GJW < 0.8, and 0.8 < GJW < 1.0).

level, obtained by splitting the datasets 200 times under the same nominal condition, which reflects purely
statistical fluctuations. Systematic sources which pass the j2

cut are deemed systematically significant,
whether due to a real systematic difference or as the result of a residual statistical fluctuation. In this j2

procedure, a small but real systematic difference may not be identified due to a statistical fluctuation in the
nominal-variation event splitting.

The sources of systematic uncertainty in this measurement are those associated with the track, jet, photon,
and event mixing components. For track-related uncertainties, track selection criteria are varied using the
same procedure as in Ref. [20]. Additionally, to account for the asymmetric detector performance in the ID,
the analysis is repeated for [track < 0 and [track > 0, separately. Similarly, the [jet asymmetry is considered
as another source of systematic uncertainty arising from the imperfections in the calorimeter performance.
In addition, the JER can shift jets between different GJW selections. Therefore, the reconstructed jet ?jet

T is
smeared using the JER for the variation. The JES is also considered as a systematic uncertainty, but its
effects are negligible. Regarding photon-related uncertainties, a tighter photon isolation energy requirement
is applied, setting the isolation threshold to achieve an 80% isolation efficiency. For the nominal selection,
the purity of isolated photons is high and there is thus no explicit correction made for background photons.
The tighter isolation criterion is used to account for the impact of potential remaining background photons.
Also, to examine the impact of the photon isolation energy cone size (Δ' = 0.3) on the results, the
analysis is repeated with Δ[(jet,W) > 0.5. This variation thus excludes tracks that might directly influence
the isolation energy calculation. Finally, systematic uncertainties related to the event-mixing procedure
are considered. The Σ�

FCal,pp

T estimation (17 GeV) is varied up and down by a conservative value of
±50%. For sources which have distinct “up” and “down” variations, i.e., event mixing, uncertainties are
asymmetric. For sources which only have a one-sided variation, uncertainties are symmetrized.

Figure 3 shows the breakdown of absolute systematic uncertainties for .corr/.uncorr. Systematic uncertainty
sources which fail the j2 test are not depicted in the Figure and are not included as a contribution to the total
uncertainty. As a result of the j2 test procedure, different uncertainty sources may be included in the total
uncertainty for the different GJW ranges. For 0.3 < GJW < 0.6, the dominant systematic uncertainty is the
event-mixing uncertainty, and the total uncertainty ranges from smaller than 0.5% at small |Δ[(jet,track)|
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Figure 6: The diffusion wake amplitude 0dw as a function of diffusion wake width fdw from Gaussian fits for
.corr/.uncorr. Different panels represent different GJW ranges (0.3 < GJW < 0.6, 0.6 < GJW < 0.8, and 0.8 < GJW < 1.0).
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0 0.5 1 1.5 2 2.5 3

dwr
σ

0.04−

0.03−

0.02−

0.01−

0

0.01

0.02

0.03

0.04

d
w

r
b

 Best fit

σ 1 ± σ 2 ± 

ATLAS -1 = 5.02 TeV, 1.72 nb
NN

sPb+Pb 

 < 180 GeV
γ

T
p90 < 

 > 40 GeV
jet

T
p

10%−Centrality 0

/2π(jet,track) > φ∆
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parameters in the double ratio (.corr/.uncorr)GJW=0.3−0.6/(.corr/.uncorr)GJW=0.8−1.0 of 1dwr = −0.00185 and
fdwr = 1.033. Figure 8 shows the probability distribution for the double ratio when fixing fdwr to 1.033.
The CoLBT-hydro theory expectation is overlaid. The small predicted 1dwr value is consistent with the
experimental results within uncertainty. A diffusion wake double amplitude 1dwr value smaller than -0.0058
can be ruled out at 95% confidence level. The ?-value for 1dwr being positive is 0.38. As above, the
constraining power of the measurement is limited by the statistical, rather than the systematic, precision of
the dataset.
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