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A search is presented for a heavy scalar (�) or pseudo-scalar (�) predicted by the two-Higgs-

doublet models, where the �/� is produced in association with a top-quark pair (CC̄�/�),

and with the �/� decaying into a CC̄ pair. Events are selected requiring exactly one or two

opposite-charge electrons or muons. Data-driven corrections are applied to improve the

modelling of the CC̄+jets background in the regime with high jet and 1-jet multiplicities. These

include a novel multi-dimensional kinematic reweighting based on a neural network trained

using data and simulations. An �/�-mass parameterised graph neural network is trained to

optimise the signal-to-background discrimination. In combination with the previous search

performed by the ATLAS Collaboration in the multilepton final state, the observed upper limits

on the CC̄�/� → CC̄CC̄ production cross-section at 95% confidence level range between 14 fb

and 5.0 fb for an �/� with mass between 400 GeV and 1000 GeV, respectively. Assuming that

both the � and � contribute to the CC̄CC̄ cross-section, tan V values below 1.7 or 0.7 are excluded

for a mass of 400 GeV or 1000 GeV, respectively. The results are also used to constrain a

model predicting the pair production of a colour-octet scalar, with the scalar decaying into a CC̄

pair.
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1 Introduction

The discovery of the Higgs boson by the ATLAS and CMS collaborations at the Large Hadron Collider

(LHC) completes the list of elementary particles in the Standard Model (SM) [1, 2]. Shortcomings of the

SM remain, such as quadratic divergences arising from radiative corrections to the Higgs boson mass [3]

and the nature of non-baryonic dark matter [4]. As a result, many beyond the Standard Model (BSM)

theories have been proposed with extended Higgs sectors, such as two-Higgs-doublets models (2HDM) [5],

hMSSM [6–8], and models with Higgs boson triplets [9–14]. A search is presented for additional heavy

Higgs bosons using a four-top-quark (CC̄CC̄) final state. In Type-II 2HDM models, the Higgs boson sector

consists of two complex doublets of Higgs boson fields and generates five scalar states including CP-even

neutral Higgs bosons ℎ and �, a CP-odd neutral Higgs boson, �, and two charged Higgs boson states �±.

There are five free parameters including three Higgs boson masses, the mixing angle of the two CP-even

Higgs boson states (U) and the ratio of the vacuum expectation values of the Higgs boson doublets (tan V).

In what is called the ‘alignment limit’, where sin(V − U) = 1, the ℎ couplings in 2HDM matches those of

the SM Higgs boson.

Direct searches for heavy neutral bosons were carried out by the ATLAS and CMS collaborations [15–22],

and also indirect searches using precision measurements of the production cross-sections and decay rates
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Figure 1: Illustrative Feynman diagram showing the production of a heavy scalar or pseudo-scalar Higgs boson, �/�,

produced in association with a pair of top quarks and the Higgs boson decaying into a pair of top quarks.

of the SM Higgs boson [23]. These searches and measurements effectively restrict the available parameter

space to the alignment limit [24].

In the 2HDM model, for �/� masses > 500 GeV and modest values of tan V, the predominant decay mode

is into a CC̄ pair. Searches for �/� → CC̄ produced via a gluon–gluon initiated loop are difficult because

of destructive interference with the SM CC̄ background that distorts the Breit–Wigner peak in the CC̄ mass

spectrum [25, 26]. Both the ATLAS experiment (20.3 fb−1 at
√
B = 8 TeV) and the CMS experiment

(36 fb−1 at
√
B = 13 TeV) searched for 66 → �/� → CC̄ taking the interference term into account [20, 27].

The ATLAS experiment recently published results in the same channel using the full Run 2 data set at√
B = 13 TeV [19]. Alternatively, �/� production in association with a CC̄ pair, followed by �/� → CC̄, is

much less susceptible to interference effects with the SM CC̄CC̄ production. An illustrative Feynman diagram

for CC̄�/� → CC̄CC̄ production is shown in Figure 1. Searches for �/� production in the CC̄CC̄ final state

are therefore promising, especially given that the SM CC̄CC̄ production has now been observed by both the

ATLAS [28] and CMS experiments [29]. The measured cross-sections using final states with two leptons

with the same electric charge or at least three leptons (2LSS/ML) are 22.5+4.7
−4.3

(stat.)+4.6
−3.4

(syst.) fb by the

ATLAS experiment and 17.7+3.7
−3.5

(stat.)+2.3
−1.9

(syst.) fb by the CMS experiment. Both the measurements are

consistent with latest SM prediction of 13.4+1.0
−1.8

fb, computed at next-to-leading-order (NLO) with full

electroweak (EW) corrections including threshold resummation at next-to-leading-logarithm accuracy [30].

With the present uncertainties, both the measurements leave room for additional contributions to SM CC̄CC̄

production. Both the ATLAS and CMS experiments have searched for CC̄�/� → CC̄CC̄ production in the

2LSS/ML final state at
√
B = 13 TeV [21, 22, 31, 32].

A search is presented for CC̄�/� → CC̄CC̄ in the �/� mass (<� ) range of 400 − 1000 GeV. The search uses

events with exactly one lepton (electron or muon) or two leptons with opposite electric charge (1L/2LOS),

and multiple heavy-flavour jets selected from the 139 fb−1 of proton–proton (??) collision data at√
B = 13 TeV collected by the ATLAS experiment during 2015–2018. The analysis adopts similar strategies

to those used in Ref. [33], with improved physics object reconstruction and identification, advanced

background modelling of CC̄+jets with multivariate data-driven corrections, and a new <�/�-parameterised

multivariate discriminant. The cross-section of SM CC̄CC̄ production is taken to be its theoretical prediction

in the search, given that there is little discrimination between SM CC̄CC̄ and CC̄�/� → CC̄CC̄ production with

<�/� close to 400 GeV. Limits are produced on the CC̄�/� production cross-section times branching ratio

of �/� → CC̄ as a function of <�/�. A combination with a previous search using the 2LSS/ML final state

and the same data sample [21] is performed. The upper limits on the cross-sections are interpreted in the
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context of a Type-II 2HDM in the alignment limit. The analysis also sets limits on a model predicting

the pair production a colour-octet scalar, usually known as a sgluon, where the sgluons decay into CC̄

pairs [34].

2 ATLAS detector

The ATLAS detector [35] at the LHC covers nearly the entire solid angle around the collision point.1 It

consists of an inner tracking detector surrounded by a thin superconducting solenoid, electromagnetic

and hadronic calorimeters, and a muon spectrometer incorporating three large superconducting air-core

toroidal magnets.

The inner-detector system (ID) is immersed in a 2 T axial magnetic field and provides charged-particle

tracking in the range of |[ | < 2.5. The high-granularity silicon pixel detector covers the vertex region and

typically provides four measurements per track, the first hit generally being in the insertable B-layer (IBL)

installed before Run 2 [36, 37]. It is followed by the SemiConductor Tracker (SCT), which usually provides

eight measurements per track. These silicon detectors are complemented by the transition radiation tracker

(TRT), which enables radially extended track reconstruction up to |[ | = 2.0. The TRT also provides

electron identification information based on the fraction of hits (typically 30 in total) above a higher

energy-deposit threshold corresponding to transition radiation.

The calorimeter system covers the pseudorapidity range of |[ | < 4.9. Within the region of |[ | < 3.2,

electromagnetic calorimetry is provided by barrel and endcap high-granularity lead/liquid-argon (LAr)

calorimeters, with an additional thin LAr presampler covering |[ | < 1.8 to correct for energy loss in material

upstream of the calorimeters. Hadronic calorimetry is provided by the steel/scintillator-tile calorimeter,

segmented into three barrel structures within |[ | = 1.7, and two copper/LAr hadronic endcap calorimeters.

The solid angle coverage is completed with forward copper/LAr and tungsten/LAr calorimeter modules

optimised for electromagnetic and hadronic energy measurements respectively.

The muon spectrometer (MS) comprises separate trigger and high-precision tracking chambers measuring

the deflection of muons in a magnetic field generated by the superconducting air-core toroidal magnets.

The field integral of the toroids ranges between 2.0 and 6.0 T m across most of the detector. Three layers

of precision chambers, each consisting of layers of monitored drift tubes, cover the region of |[ | < 2.7,

complemented by cathode-strip chambers in the forward region, where the background is highest. The

muon trigger system covers the range of |[ | < 2.4 with resistive-plate chambers in the barrel, and thin-gap

chambers in the endcap regions.

The luminosity is measured mainly by the LUCID–2 [38] detector that records Cherenkov light produced

in the quartz windows of photomultipliers located close to the beampipe.

Events are selected by the first-level trigger system implemented in custom hardware, followed by selections

made by algorithms implemented in software in the high-level trigger [39]. The first-level trigger accepts

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector

and the I-axis along the beam pipe. The G-axis points from the IP to the centre of the LHC ring, and the H-axis points upwards.

Polar coordinates (A, q) are used in the transverse plane, q being the azimuthal angle around the I-axis. The pseudorapidity is

defined in terms of the polar angle \ as [ = − ln tan(\/2) and is equal to the rapidity H =
1
2

ln
(

�+?I2
�−?I2

)

in the relativistic limit.

Angular distance is measured in units of Δ' ≡
√

(ΔH)2 + (Δq)2.
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events from the 40 MHz bunch crossings at a rate below 100 kHz, which the high-level trigger further

reduces in order to record complete events to disk at about 1 kHz.

A software suite [40] is used in data simulation, in the reconstruction and analysis of real and simulated

data, in detector operations, and in the trigger and data acquisition systems of the experiment.

3 Object and event preselection

The analysis uses ?? collision data collected between 2015 and 2018 by the ATLAS detector at
√
B = 13 TeV.

The full data sample corresponds to an integrated luminosity of 139 fb−1 [41] after applying data quality

requirements [42]. Events were collected using single-lepton triggers, with minimum ?T thresholds

varying from 20 to 26 GeV depending on the lepton flavour and the data-taking period [43, 44]. Events are

required to have a collision vertex matched with at least two ID tracks, each with transverse momentum

?T > 0.5 GeV. The vertex with the largest sum of ?2
T

over all matched ID tracks is referred to as the

primary vertex [45].

Electron candidates are reconstructed from energy deposits in the electromagnetic calorimeter matched to

a track in the ID [46] and are required to be within |[ | = 2.47, excluding the calorimeter transition region

1.37 < |[ | < 1.52. Muon candidates are reconstructed by combining tracks in the ID with tracks in the

MS [47] and are required to be within |[ | = 2.5. Both the electron and muon candidates are required to

have ?T > 10 GeV. Electrons must satisfy the ‘TightLH’ identification criterion [46] and are required to be

well isolated using criteria based on the sum of the energies of the topological clusters in the calorimeter

and ?T of ID tracks around the reconstructed electron. Muons must meet the ‘Medium’ identification

criterion [47] and are required to satisfy isolation requirements based on the ?T sum of the ID tracks around

the reconstructed muon. The transverse impact parameter divided by its estimated uncertainty, |30 |/f(30),
is required to be lower than five (three) for electron (muon) candidates. The longitudinal impact parameter

must satisfy |I0 sin \ | < 0.5 mm for both the lepton flavours.

Jets are reconstructed by combining measurements from both the ID and the calorimeter using a particle-flow

algorithm [48]. The anti-:C algorithm [49, 50] with a radius parameter of ' = 0.4 is used. These jets

are referred to as ‘small-' jets’ (or jets for simplicity). They are calibrated as described in Ref. [51]

and are required to have ?T > 25 GeV and |[ | < 2.5. A jet-vertex tagger (JVT) [52] is applied to jets

with ?T < 60 GeV and |[ | < 2.4 to reduce the effect of additional ?? collisions in the same or a nearby

bunch crossing, collectively referred to as pile-up. A set of quality criteria are also applied to reject events

containing at least one jet arising from non-collision sources or detector noise [53].

Jets containing 1-hadrons are identified (1-tagged) using the DL1r algorithm [54]. A jet is 1-tagged if the

DL1r score is above a certain threshold, referred to as an operating point (OP). Four OPs are defined with

average expected efficiencies for 1-jets of 60%, 70%, 77% and 85%, as determined in simulated CC̄ events.

A pseudo-continuous 1-tagging (pcb) score is assigned to each jet satisfying these OPs but failing to meet

the adjacent tighter one, with an integer value ranging from five for jets that satisfies the 60% OP to two for

jets passing only the 85% OP. A score of one is assigned if a jet does not satisfy any of the OPs.

The selected and calibrated small-' jets are used as inputs for jet reclustering [55], using the anti-:C
algorithm with a radius parameter of ' = 1.0. These reclustered jets are referred to as ‘large-' jets’. The

calibration corrections and uncertainties for the reclustered large-' jets are inherited from the small-'

jets. To suppress the contribution from pile-up, a trimming procedure is applied to the reclustered jets to
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remove all the matched small-' jets that have ?T below 5% of the ?T of the reclustered jet. Large-' jets

are required to have ?T > 200 GeV and |[ | < 2.0.

A sequential overlap removal procedure identical to that used in Ref. [21] is applied to ensure that the

same calorimeter energy deposit or the same track is not matched with two or more different reconstructed

objects.

The missing transverse momentum of the event, whose magnitude is denoted by �miss
T

, is defined as the

negative vector sum of the ?T of all reconstructed and calibrated objects in the event. This sum includes a

term to account for the transverse momenta of ID tracks matched to the selected primary vertex but not

matched with any of the selected objects in the event [56].

Events are preselected by requiring either exactly one lepton (electron or muon) and at least seven jets

(1L channel) or exactly two opposite-charge leptons and at least five jets (2LOS channel). The highest-?T

(leading) lepton must have ?T > 28 GeV. In the 2LOS channel, the events with two same-flavour leptons

must have a dilepton invariant mass above 15 GeV and outside the / boson mass window of 83–99 GeV.

Events must contain at least two 1-tagged jets passing the 70% OP. After the preselection, ∼91% of the

background events come from CC̄+jets production, estimated by using the simulated samples described in

Section 4 with data-driven corrections discussed in Section 6.

4 Monte Carlo simulations

Monte-Carlo (MC) simulated samples were generated for all signal and background processes [57]. The

predictions are based on simulations produced with Powheg [58–61] or MadGraph5_aMC@NLO [62] as

the matrix element (ME) generator, interfaced with Pythia 8 [63] or Herwig 7 [64, 65] for the simulation

of parton shower (PS) including fragmentation and hadronisation, or combined simulations of ME and

PS produced with the Sherpa 2 [66] generator following the MEPS@NLO prescription [67–71]. The

masses of the top quark and the SM Higgs boson in the relevant samples were set to 172.5 and 125 GeV,

respectively. The A14 set of tuned parameters (tune) [72] was implemented in Pythia 8 whereas for

Herwig 7 and Sherpa the generator-specific tuned parameters were used. Unless otherwise specified,

the NNPDF2.3lo [73] and NNPDF3.0nlo [74] sets of parton distribution functions (PDF) were used for

samples generated with leading-order (LO) and NLO accuracy in QCD, respectively. Pile-up events were

simulated using Pythia 8.186 [75] with the NNPDF2.3lo PDF set and the A3 tune [76], and overlaid on

each hard-scattering event. EvtGen 1.2.0 or 1.6.0 [77] were used to model heavy-flavour hadron decays in

Pythia 8 and Herwig 7. The detector geometry and response were simulated using either Geant4 [78] or

a fast simulation (AFII) which parameterises the calorimeter response [79]. All simulated samples were

processed through the same reconstruction software as used for data.

The signal samples were simulated assuming a 2HDM Type-II model in the alignment limit (sin(V−U) = 1).

Events of CC̄� → CC̄CC̄ were simulated assuming the on-shell production of �. The simulation was performed

at LO accuracy in the ME using MadGraph5_aMC@NLO with the NNPDF3.1lo [74] PDF set. The decay

of the top quarks is simulated in the ME generation to include spin correlations. The value of V was found

to yield no change in the event kinematics. No mixing between � and � was considered. No dedicated

CC̄ � → CC̄CC̄ samples were simulated given that the kinematic distributions of interest differ by less than 1%

between CC̄� → CC̄CC̄ and CC̄ � → CC̄CC̄. Seven signal samples were generated for <� from 400 to 1000 GeV

spaced with 100 GeV steps. For each assumed <� value, the � width was set to values consistent with the

scenario of tan V ∼ 1, ranging from 5 GeV for <� = 400 GeV to 30 GeV for <� = 1000 GeV. Varying

6



the width up to 75% of <� yields a change of less than 10% in only the lepton and jet ?T distributions and

negligible changes in the other distributions. The interference with the SM CC̄CC̄ production was not taken

into account. For the (tan V, <�/�) parameter space that this search is sensitive to, both the effects of the

interference and the non-resonant production are smaller than a few percent, and are therefore neglected.

An additional BSM signal corresponding to the pair production of a colour-octet scalar ((8), a sgluon,

was considered, where both the (8 decay into a CC̄ pair. The production of (8(8 events was simulated at

LO with MadGraph5_aMC@NLO using the simplified model from Ref. [34] with the NNPDF3.0nlo

PDF set, interfaced with Pythia 8. The decay of (8 → CC̄ was handled by MadSpin [80, 81]. Simulated

samples were generated for <(8
ranging between 0.4 TeV and 2 TeV, with a spacing of 100 GeV for

<(8
∈ [0.4, 1.5] TeV, and 250 GeV for <(8

∈ [1.75, 2.0] TeV. The (8CC̄ coupling parameter H(8
was set

to 0.1, ensuring that (8(8 production dominates over CC̄(8 production. For H(8
< 0.1 and <(8

< 2 TeV,

the interference with the SM background and the CC̄(8 production contribute less than 10% to the total

cross-section of CC̄CC̄ production via (8 and were thus not simulated. The kinematics of (8(8 → CC̄CC̄

production do not depend on the value of H(8
.

The simulated CC̄+jets events are classified into different groups. This classification is used to construct a

detailed model of theoretical systematic uncertainties affecting this process. The events are classified as

CC̄+≥11, CC̄+≥12 and CC̄+light according to the flavour of the particle jets not originating from top-quark

decays.2. The flavour and origin of the particle jets are determined by checking whether any 1- or 2-hadron

with ?T > 5 GeV not originating from top-quark decays falls within Δ' = 0.3 around the jet axis. Events

with at least one particle jet matched to such 1-hadrons are classified as CC̄+≥11 events. Those that are

not classified as CC̄+≥11 events but contain at least one particle jet matched to 2-hadrons are classified

as CC̄+≥12 events. The CC̄+≥11 and CC̄+≥12 events are collectively referred to as ‘CC̄+HF’ events (HF for

‘heavy flavour’). The remaining are classified as CC̄+light events. The CC̄+≥11 events are further classified

into CC̄+1, CC̄+11̄, CC̄+� and CC̄+≥31 events, where the 1 or 1̄ refers to a particle jet matched to a single

1-hadron, and � refers to a particle jet matched to more than one 1-hadron. The CC̄+≥31 events contain

more than two particle jets matched to any number of 1-hadrons.

The nominal CC̄+jets prediction is based on a sample simulated using Powheg Box 2 at NLO in QCD

using the five-flavour scheme (5FS). The ℎdamp parameter, which regulates the ?T of the first additional

emission beyond the Born configuration, is set to 1.5 times the top-quark mass of <C = 172.5 GeV. The

renormalisation and factorisation scales were set to 1
2
Σ8=C ,C̄<T,8, where <T,8 is the transverse mass of a

given parton 8. Several samples in addition to the nominal Powheg Box + Pythia 8 samples were generated

to evaluate systematic uncertainties, including samples generated with alternative ME or PS generators,

MadGraph5_aMC@NLO + Pythia 8 and Powheg + Herwig 7. Furthermore, a dedicated CC̄11̄ sample

was produced using Powheg Box Res [82, 83] and OpenLoops [84–86] with the NNPDF3.0nlo_nf4 [74]

PDF set, interfaced with Pythia 8. This sample was produced using the four-flavour scheme (4FS) with

the additional 1-quarks in the ME generation. The ℎdamp parameter was set to 1
2
Σ8=C ,C̄ ,1,1̄<T,8. The

renormalisation and factorisation scales were set to 4
√
∏

8=C ,C̄ ,1,1̄ <T,8 and 1
2
Σ8=C ,C̄ ,1,1̄, 9<T,8 (where 9 stands

for extra partons), respectively. These CC̄+jets samples were previously studied in detail and compared in

Ref. [87].

The SM CC̄CC̄ background has an important impact on the search despite its small yield. The nominal CC̄CC̄

sample was simulated using MadGraph5_aMC@NLO at NLO in QCD with the NNPDF3.1nlo PDF

set. The decay of the top quarks was simulated using MadSpin. The renormalisation and factorisation

2 Particle jets are constructed from simulated stable particles (with mean lifetime g > 3 × 10−11 s) using the anti-:C algorithm

with ' = 0.4 and are required to have ?T > 15 GeV and |[ | < 2.5.
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scales were set to 1
4
Σ8=C ,C̄ , 9<T,8 following Ref. [88]. Two alternative samples were generated, one with

Sherpa 2.2.11, and another by replacing the Pythia 8 parton shower of the nominal sample by Herwig 7.

The Sherpa sample was simulated at NLO in QCD. The renormalisation and factorisation scales were set

to half of the scalar sum of the ?T of all final state particle. All CC̄CC̄ samples were normalised to the latest

cross-section prediction of 13.4+1.0
−1.8

fb [30].

Other backgrounds constitute less than 8% of the total background. Most of these events come from CC̄�,

CC̄, , CC̄/ , single-top-quark and ++jets productions. The CC̄� and CC̄,// samples were simulated at NLO

in QCD using Powheg Box 2 and MadGraph5_aMC@NLO, respectively. For the CC̄, background, a

dedicated sample containing only EW corrections was produced at LO in QCD, and combined with the

NLO QCD sample. Alternative samples for CC̄� and CC̄, were simulated using MadGraph5_aMC@NLO

+ Pythia 8 and Sherpa 2.2.10, respectively. The production of single-top quarks was modelled using the

same generators as the ones used for the inclusive CC̄+jets sample, including the alternative samples for

systematic uncertainties. The ‘diagram removal’ scheme was used to treat the overlap between C, and

CC̄ production. An alternative sample was simulated using the ‘diagram subtraction’ scheme [89]. The

++jets samples were simulated using Sherpa 2.2.1 with the NNPDF3.0nnlo PDF set. The generation

considered ME at NLO in QCD with up to two additional jets and at LO with up to four additional jets.

The remaining events comprise less than 1% of the total background. These include events from CC̄,, ,

C,/ , C/ , CC̄C production (simulated using MadGraph5_aMC@NLO) and ++ production (simulated using

Sherpa 2).

5 Analysis strategy and event categorisation

The CC̄�/� → CC̄CC̄ events feature high jet and 1-jet multiplicities. The main background affecting

the 1L/2LOS final states is CC̄+jets, where several additional jets beyond the CC̄ born level are required

to give topologies similar to the CC̄CC̄ signal. Two known issues affect the modelling of the CC̄+jets

background from the simulations described in Section 4. The kinematics are mismodelled in the regime

of high jet multiplicities and high ?T of the CC̄ system [90] and the cross-section of CC̄+HF production is

underestimated [91, 92]. Both of the issues affect the phase space populated by signal events. Data-driven

corrections are adopted to mitigate the mismodelling. Rescaling factors are derived to correct the fractions

and normalizations of CC̄+light, CC̄+≥12 and CC̄+≥11, referred to as the ‘flavour rescaling’. After applying the

flavour rescaling, a neural network (NN) is then trained to correct the kinematic mismodelling. The details

of the data-driven corrections are described in Section 6. Events passing the preselection are categorised

into orthogonal regions. These include regions used to derive the data-driven corrections, and the control

and signal regions (CR/SR) used in a profile likelihood fit (see Section 9) to extract and set a limit on the

signal strength. In the SRs, a multivariate analysis based on <�/�-parameterised graph neural networks

(GNN) is performed to optimise the separation between the signals and the largest background, CC̄+jets,

detailed in Section 7.

Figure 2 illustrates the event categorisation. Events are categorised in bins of jet multiplicity, from seven

jets (7j) to at least ten jets (≥10j) in the 1L channel and from five jets (5j) to at least eight jets (≥8j) in

the 2LOS channel. Each jet multiplicity bin is further separated according to the 1-tagging requirements

listed in Table 1. Events are first split according to the number of 1-tagged jets using the 70% OP (#70%
1

),

from two to at least five (four) in the 1L (2LOS) channel. The events with three 1-tagged jets are further

separated into 3bL, 3bH and 3bV regions given the number of jets passing the 60% and 85% OPs (#60%
1

and #85%
1

). The 3bL (3bH) requirement aims to select events with lower (higher) purity of jets originating
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Figure 3: The relative contribution of the different background classes in the control, validation and signal regions in

the (a) 1L and (b) 2LOS channels.

channel. The six 3bV regions, with a signal contamination of < 2%, are used as validation regions for the

background modelling, in particular the CC̄+≥11 events. The ≥5b regions in the 1L channel provide unique

constraints on the CC̄+≥31 background. The 2LOS channel has a lower number of events and therefore the

≥4b region is not further separated. Figure 3 illustrates the background fractions in all the CRs, VRs and

SRs.

6 Modelling of t t̄+jets background

The flavour rescaling factors are determined as corrections to the overall normalisation of the CC̄+light,

CC̄+≥12 and CC̄+≥11 backgrounds. These factors correct the fraction of the three components and the

overall acceptance of the CC̄+jets background. To derive the flavour rescaling factors, events in the 7j and 5j

bins respectively in the 1L and 2LOS channels are categorised into regions containing events with two,

three or at least four 1-tagged jets at the 70% OP. The predictions from the simulations are fit to data

simultaneously in these six regions. The fit observable is the sum of the 1-tagging pcb scores (defined in

Section 3) of the third and fourth jets in descending order of the score. Systematic uncertainties arising

from the calibration of the tagging efficiencies of 1-jets and the mis-tag rates of 2-jets and light-flavour jets

are considered [93–95]. For the CC̄+light background, two separate rescaling factors are assigned to the 1L

and the 2LOS channels. This is to reduce the tension due to the different acceptance effects of the two

channels. The resulting rescaling factors are 0.84± 0.04 (0.87± 0.03) for the CC̄+light background in the 1L

(2LOS) channel, 1.61 ± 0.13 for the CC̄+≥12 background and 1.18 ± 0.03 for the CC̄+≥11 background. The

central values are used to correct the CC̄+jets simulations in the VRs, CRs and SRs. The fitted uncertainties

in the rescaling factors are not considered in the profile likelihood fit determining the signals. Instead,

more conservative uncertainties are assigned that cover the residual mis-modelling and the extrapolation

from the low to high jet multiplicity bins. For CC̄+≥11 and CC̄+≥12, a normalisation uncertainty of 50% is

assigned to each of them, based on the discrepancies observed in previous measurements [91, 92]. For
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CC̄+light events, a normalisation uncertainty of 5% is considered which covers both the uncertainties in the

individual rescaling factors for the 1L and 2LOS channels, and the difference between the two channels.

The NN kinematic corrections are derived from multi-dimensional probability density functions of data and

simulations estimated by using a feed-forward NN [96, 97]. The NN is trained as a binary classifier between

data and simulation. The output of the NN (O) as a function of the input vector (x) can be interpreted in

terms of the a-posteriori Bayesian probability of data and simulations, %data(x) and %sim(x):

O(x) = %(data|x) = Udata%data(x)
Udata%data(x) + Usim%sim(x)

, (1)

where Udata and Usim are the proportions of data and simulated events used in the training, satisfying

Udata + Usim = 1. Event-by-event reweighting factors can therefore be obtained as:

F(x) = Udata%data(x)
Usim%sim(x)

=
O(x)

1 − O(x) . (2)

The weights F(x) can be used to reweight the simulations to match the probability density function of data.

The training aims to correct only CC̄+jets simulations, therefore other background events are subtracted from

data during the training. This is done by labelling simulated non-CC̄+jets events as ‘data’ events but with

negative event weights. The events labelled as ‘simulation’ in the training are exclusively CC̄+jets events,

corrected with the flavour rescaling factors. To improve the performance of the training in the regime with

small training sample size, an exponential loss function is used [97]:

L = %data(x)4−
O(x)

2 + %sim(x)4
O(x)

2 . (3)

The resulting reweighting factors after the minimisation of L become F(x) = 4O(x) . The input variables

to the training include the ?T of all leptons and jets, the number of jets (#jets) and large-' jets (#LR-jets)

and �miss
T

. The training is performed in the inclusive 2b regions with #jets ≥ 7 (1L) and #jets ≥ 5 (2LOS)

separately.

Figure 4 illustrates the effect of the data-driven corrections in the inclusive region containing all CRs, VRs

and SRs, separately for the 1L and 2LOS channels. The correction improves significantly the agreement

between data and the prediction in both the overall normalisation and the shape of the most relevant

kinematic variables for signal-to-background discrimination.

7 Multivariate analysis

A multivariate discriminant is built based on a novel GNN structure parameterised as certain physics

parameters of interest. GNNs use graph representatives of events, with ‘nodes’ representing the reconstructed

physics objects and ‘edges’ connecting the nodes describing their relationships [98]. The training therefore

captures non-Euclidean relations between the input objects which exploits more details of event topologies.

The parameterisation gives a smooth interpolation between the different values of a physics parameter [99],

which in this case is <�/�.

The GNNs are built with the PyTorch library [100] and trained as a binary classifier with the signal

samples at all mass points together against the CC̄+jets background. The training is performed separately

for the 1L and 2LOS channels, using events from the inclusive regions with #jets ≥ 9 (1L) and #jets ≥ 6

(2LOS) and #70%
1

≥ 3. To balance the resulting performance against different signal masses, the signal
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Figure 4: The comparison of (a, b) �T, (c, d) #jets and (e, f) #LR-jets distributions between data and background

predictions before the likelihood fit to data (Pre-Fit), and before and after applying the data-driven corrections,

separately for the 1L and 2LOS channels. The background prediction after applying the data-driven corrections is

shown in coloured stacks, whilst the one before applying the corrections is shown with the red dashed line. The

hashed area represents the total uncertainty in the background. The last bin in each distribution contains the overflow.
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Table 2: The list of global features used in the GNN training in descending order of importance in the training of the

1L GNN. The importance is evaluated according to the fractional change in loss when removing the feature from the

training.

Variable Description

∑

8∈[1,6] pcb8 Sum of the pcb scores of the six jets with the highest scores

�T ?T sum of all reconstructed leptons and jets

#jets Number of jets

�ratio
T

?T sum of the four leading jets in ?T divided by the ?T sum of the remaining jets

3'
avg.

9 9
Average Δ' across all jet pairs

<,
T

, boson transverse mass calculated using the lepton four-momenta and �miss
T

(1L only)

Δ'min.
11

Minimum Δ' between any pair of jets 1-tagged at the 70% OP

Δ'min.
ℓ1

Minimum Δ' between any pair of lepton and jet 1-tagged at the 70% OP

<
avg.

111
Average invariant mass of all triplets of jets 1-tagged at the 70% OP

<
avg.

9 9 9
Average invariant mass of all triplets of jets with an angular separation of Δ' < 3

∑

312 Sum of the first :C splitting scale 312 over all large-' jets
∑

323 Sum of the second :C splitting scale 323 over all large-' jets

#LR-jets Number of large-' jets with a mass greater than 100 GeV

Centrality
∑

8 ?
8
T
/∑8 �8 where the sums are performed over all reconstructed jets and leptons

<ℓℓ Invariant mass of the two leptons (2LOS only)

samples at the different mass points are normalised to the same yields in the defined inclusive regions. The

output of the GNN is used as the discriminant in the SRs. The 3bV regions with ≥9 (≥7) jets in the 1L

(2LOS) channel are used to validate the modelling of the GNN output. The graphs representing the events

are constructed using the reconstructed leptons, jets and �miss
T

as nodes, encoding information about their

type, four-momenta excluding q, and jet pcb scores. Edges connecting all pairs of objects in the events

encode their relative Δq, Δ[ and Δ'. In addition, event-level observables are introduced as global features

of each graph, covering jet 1-tagging information, object multiplicities, event shape and kinematics, and

the substructure information of the large-' jets. These global features are listed in Table 2. The <�/�
parameterisation is done by including <�/� as an input to the training alongside the graphs. For the signal

samples, this corresponds to the generated <�/�. In the CC̄+jets samples, a pseudo-<�/� is assigned to

each event randomly taking the values from the generated signal <�/� with a uniform prior.

The training achieves an area under the receiver-operator-characteristic curve of 85% for the 400 GeV mass

point and 94% for 1000 GeV mass point. The dominant feature for the training is the node-?T for both the

channels, followed by
∑

8∈[1,6] pcb8 and the pcb scores of the jet-nodes. Collectively, the global features

�T, �ratio
T

and #jets and the edge feature Δ' also contribute significantly. The distributions of the GNN

output evaluated at 400 GeV and 1000 GeV for both the 1L and 2LOS channels are shown in Figure 5. The

signal is compared with the SM CC̄CC̄ and CC̄+jets backgrounds. The distributions of the signal and SM CC̄CC̄

production is similar for <� = 400 GeV. The discrimination is significantly better for large <� .
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Figure 5: The distributions of the GNN output evaluated at 400 GeV and 1000 GeV for the (a, b) 1L and (c, d) 2LOS

channels with inclusive selections close to the signal region. The distributions are compared for the signal, SM CC̄CC̄

production and CC̄+jets production.

8 Systematic uncertainties

Systematic uncertainties in the results arise from uncertainties in experimental procedures, signal and

background cross-sections, and the modelling of the relevant physics processes. Each uncertainty can

affect either or both the normalisation and shape of the predictions. The largest uncertainties are from the

modelling of the CC̄+jets background, especially CC̄+≥11 events. The uncertainties in the modelling of the

SM CC̄CC̄ production also have a sizeable contribution. The impact of the experimental uncertainties is small.

The effects of the post-fit uncertainties on the results are summarised in Table 3 in Section 9.
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8.1 Experimental uncertainties

All of the individual experimental uncertainties have a small impact on the analysis. The leading group of

experimental uncertainties arises from the calibration of the jet energy scale and resolution [51]. The most

important components are related to the modelling of the composition of gluon- and quark-jets and their

detector response. The calibration of the 1-tagging efficiencies and 2- and light-jet rejection rates have

smaller effects amongst the experimental uncertainties [93–95]. Other experimental uncertainties have

minor contributions. The uncertainty in the integrated luminosity of the data sample is 1.7% [41], measured

using the LUCID-2 detector [38] with complementary measurements using the ID and calorimeters. An

uncertainty in the correction of the pile-up profile in the simulations to match that in data is considered. An

uncertainty is applied to the corrections on the JVT selection efficiencies in simulations [52]. Uncertainties in

electrons and muons arise from the calibration of the efficiencies of the trigger, reconstruction, identification

and isolation requirements, and the energy scale and resolution [56]. Uncertainties in the measurement of

�miss
T

arise from a possible mis-calibration of its soft-track component [101].

8.2 Uncertainties in the signals, SM t t̄ t t̄ and t t̄+jets

The uncertainties in signal modelling have minor impacts on the results. The uncertainties due to missing

higher order QCD corrections and from PDF variations are considered. The former is evaluated by varying

the renormalisation and factorisation scales in MadGraph5_aMC@NLO by a factor of two up and down,

and comparing to the nominal prediction. The latter has an effect of up to 1% on the signal yields, estimated

following the PDF4LHC recommendations [102].

The largest uncertainty in CC̄CC̄ modelling is evaluated by comparing the nominal sample simulated

using MadGraph5_aMC@NLO + Pythia 8 with the one using Sherpa 2.2.11. This uncertainty

covers the effects from the different matching schemes between the ME and PS, and different PS,

hadronisation and fragmentation models. The uncertainty in the predicted CC̄CC̄ production cross-section,
+7.8%
−13.3%

from Ref. [30], has a smaller impact. Other uncertainties in CC̄CC̄ modelling have negligible impacts.

These include an uncertainty evaluated by comparing the nominal sample with the one simulated using

MadGraph5_aMC@NLO + Herwig 7, and the uncertainties from missing higher order QCD corrections

and PDF variations evaluated in the same way as those for the signals.

The uncertainties in CC̄+jets modelling are decomposed based on the CC̄+jets event classification. The

uncertainties for the different event classes are treated as independent. Uncertainties in the overall

normalisation of CC̄+light (5%), CC̄+≥12 (50%) and CC̄+≥11 (50%) are assigned as described in Section 6.

Three sets of uncertainties are evaluated by comparing samples simulated using different generators.

The effects from the ME-PS matching and the PS, hadronisation and fragmentation models are covered

by the two uncertainties from the comparison of the nominal Powheg + Pythia 8 sample with those

simulated using MadGraph5_aMC@NLO + Pythia 8 and Powheg + Herwig 7. For CC̄+≥11 events,

another uncertainty is assigned by comparing the nominal prediction based on the 5FS with the one from

the 4FS CC̄11̄ sample. Each of these three uncertainties is first decomposed into components based on the

finer classification that considers CC̄+≥11 subclasses. The component for each event class is further split

into two, one controlling the shape of the fitted distributions in each region and another controlling the

relative normalisation across the different regions. Other uncertainties are evaluated by varying the value

of physics parameters used in the generation of the nominal sample. These are split into components for

CC̄+light, CC̄+≥12 and CC̄+≥11. The uncertainty from missing higher order QCD corrections is estimated

by varying the factorisation and renormalisation scales individually or simultaneously by a factor of two
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up or down, and taking the envelope of all variations. An uncertainty due to the chosen ℎdamp value is

estimated by varying its value up by a factor of two. The uncertainties in the amount of initial-state and

final-state radiations (ISR/FSR) from the PS are evaluated, respectively, by varying the A14 tune parameter

that controls the strong coupling and the FSR renormalisation scale by a factor of 2.0 and 0.625. The PDF

uncertainties are estimated by using the same method as for the signals.

8.2.1 Flavour rescaling and NN kinematic corrections on t t̄+jets modelling uncertainties

The data-driven corrections described in Section 6 are consistently derived for and applied to the alternative

CC̄+jets predictions used to evaluate modelling uncertainties (Section 8.2). For each of these alternative

predictions, dedicated flavour rescaling factors and NN kinematic corrections are derived. The flavour

rescaling factors are derived such that the alternative predictions have the same CC̄+≥11, CC̄+≥12 and CC̄+light

yields as the nominal prediction after the flavour rescaling. The NN kinematic corrections are obtained

from dedicated GNN trainings where the corresponding alternative CC̄+jets simulations are used. These

corrections reduce the size of the pre-fit uncertainties by exploiting the data. Evaluating dedicated flavour

rescalings for each modelling uncertainty also avoids double counting effects from the acceptance and

CC̄+HF production cross-section, significantly reducing the correlations between these uncertainties and the

CC̄+≥11, CC̄+≥12 and CC̄+light normalisation uncertainties. For experimental uncertainties, given their small

impact on the predictions, the nominal rescaling factors and NN kinematic corrections are used.

8.2.2 Uncertainties in NN kinematic corrections

Two sets of uncertainties are considered for the derived NN kinematic corrections. To account for the

uncertainties in the cross-sections of the subtracted non-CC̄+jets background processes, their cross-sections

are varied by ±50% simultaneously and the NN is retrained. The resulting uncertainties have a 2% to 6%

effect on the fitted distributions. In addition, the influence of the finite training data sample is evaluated

using the MC dropout method [103]. The NN is retrained 1000 times, each time with randomly dropped-out

neurons. The standard deviation of the NN outputs from the 1000 sets of training output are propagated

to the fitted distributions. The resulting uncertainties range from about 5% in the CRs up to 12% in the

SRs.

8.3 Other uncertainties

Other small uncertainties arise from the modelling of the minor backgrounds, and the uncertainties due to

the finite size of the simulated samples, referred to as ‘simulation statistical uncertainties’. The latter are

treated as independent for each analysis bin, and separately for the total background and any particular signal

sample considered in the fit. The cross-section uncertainties for the minor background are assigned taking

into account the high jet multiplicity regime. For CC̄, , CC̄/ and CC̄� production, uncertainties of 60% [104],

15% [105] and 20% [106] are assigned to the inclusive production cross-sections. Additional uncertainties

of 10%, 20% and 30% are assigned to CC̄,///� events with nine (seven), ten (eight), ≥11 (≥9) jets in the

1L (2LOS) channel, based on the discrepancies observed between data and CC̄+jets simulations in the 2b

regions before applying the data-driven corrections. For the ++jets backgrounds, an uncertainty of 60% is

assigned, estimated by adding in quadrature a 24% uncertainty for each additional jet based on a comparison

of different algorithms for merging LO ME and PS generators [107]. Uncertainties of 30% and 35% are
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assigned to the single-top-quark and CC̄C production cross-sections [28]. For CC̄,///� and single-top-quark

production, uncertainties due to missing higher-order QCD corrections are estimated by using the same

method used for the signals. The alternative samples described in Section 4 are compared with the nominal

samples to evaluate effects from the ME-PS matching or the modelling of the PS, hadronisation and

fragmentation. For single-top-quark production, an additional uncertainty is evaluated by comparing the

nominal prediction with the one simulated using the diagram subtraction scheme.

9 Results and interpretation

9.1 Statistical analysis

The �T distributions in the CRs and the GNN output distributions in the SRs are used to search for the

presence of a signal. The simulation is fit to data, using a profile likelihood function L(`, \\\) that is

constructed as a product of Poisson and Gaussian probability density terms over all bins in the distributions

of the CRs and SRs:

L (===|`, \\\) =
∏

A∈region

∏

8∈bin

Pois
(

=8,A |`(8,A (\\\) + �8 ,A (\\\)
)

×
∏

9∈NP

�
(

\ 9

)

. (4)

Here n represents the data vector, with =8,A representing data yields in the bin 8 and region A . The vector \\\

denotes the nuisance parameters (NPs), each representing a systematic uncertainty, that affect the number

of signal events (8,A as well as the number of background events �8,A in the bin 8 and region A . The quantity

` is the signal strength, which is the parameter of interest in the likelihood and it represents the ratio

of the measured cross-section to a reference cross-section used to normalise the signal samples. This

cross-section is arbitrary and does not change the cross-section upper limit. The terms ‘Pois’ and ‘G’

represent the Poisson and Gaussian probability distributions respectively. The Gaussian distribution terms

adjust the expectations for signal and background according to their systematic uncertainties.

For limit setting, a test statistic @(`) is defined for use with the CLB method [108, 109]. The profile

likelihood ratio used is: @(`) = −2 ln(L(`, ˆ̂
\\\`)/L( ˆ̀, \̂\\)), where ˆ̀ and \̂\\ are the values of the parameters

that maximise the likelihood function (with the constraint 0 ≤ ˆ̀ ≤ `), and
ˆ̂
\\\` are the values of the NPs

that maximise the likelihood function for a given value of `. No significant excess above the background

expectation is observed and therefore upper limits on ` for each of the signal scenarios considered are

derived. For a given signal scenario, values of ` yielding CLB<0.05, where CLB is computed using the

asymptotic approximation [110], are excluded at ≥95% confidence level (CL). All the statistical analyses

have used the RooStats framework [111–113].

For each <� scenario, a profile likelihood fit is performed using all CRs and SRs in both the 1L and 2LOS

channels simultaneously. The post-fit distributions of the GNN output for the most sensitive regions in the

1L and 2LOS channels are shown in Figure 6.

9.2 Limits on t t̄N/G → t t̄ t t̄ production in a 2HDM

The expected and observed 95% CL upper limits on the CC̄�/� → CC̄CC̄ production cross-sections as a

function of <�/� mass are shown in Figure 7. The theoretical predictions at NLO in QCD for two different

values of tan V are also shown [114–119]. Overall, the observed limits are consistent with the expected
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Figure 6: Post-fit distribution of the GNN score evaluated with <�/� = 400 GeV (a) in the 1L region with ≥ 10 jets

and four 1-tagged jets and (b) in the 2LOS region with ≥ 8 jets and ≥ 4 1-tagged jets. The fit is performed under the

background-only hypothesis. The hashed area represents the total uncertainty in the background. The distribution of

the signal (red dashed line) is shown normalised to the total post-fit background for illustration purposes. The pre-fit

background prediction is illustrated using a blue dashed line.

ones. Similar to the results in the 2LSS/ML final states [21], there is a small excess in the observed limits

compared with the expected ones. At the mass point with the largest discrepancy between the observed

and expected limits, <�/� = 500 GeV, the local significance of the fitted signal is evaluated to be 2.1

standard deviations. All other mass points have a local significance of less than 1.5 standard deviations.

The goodness-of-fit is evaluated for all the mass points for the fits under the background-only hypothesis,

using a likelihood-ratio test in which the nominal fit is compared with that of a saturated model [120]. The

smallest goodness-of-fit value of 40% is observed for <�/� = 800 GeV, whilst for <�/� = 500 GeV the

value is 48%. Other mass points have a goodness-of-fit value of greater than 64%.

The upper limits on the cross-sections are interpreted as exclusion limits on tan V in the context of a

2HDM Type-II model in the alignment limit. As described in Section 4, the signal kinematics is the same

at different tan V values and for � and �. Therefore, the limits on tan V are obtained by comparing the

cross-section upper limits in Figure 7 with the predicted signal cross-section for CC̄� → CC̄CC̄ and CC̄ � → CC̄CC̄

at different values of tan V. The uncertainty in the theory cross-sections arises from variations of the PDFs

and the renormalisation and factorisation scales. The expected and observed 95% CL lower limits for tan V

as a function of the <�/� mass for different scenarios are shown in Figure 8. The scenarios shown are

for both the scalar � and pseudo-scalar � bosons contributing to the CC̄CC̄ cross-section with equal masses

and for a � boson contributing solely. The results for the scenario where only an � boson contributes are

similar to those of �, differing only because the predicted cross-sections are slightly different.
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Table 3: The list of impacts on the fitted CC̄�/� → CC̄CC̄ cross-sections from all sources of uncertainties, for

<�/� = 400 GeV, 700 GeV and 1000 GeV. The impacts are evaluated using the post-fit uncertainties in the

CC̄�/� → CC̄CC̄ cross-sections (the total uncertainty) from the fit to data under the signal-plus-background hypothesis

including all uncertainties (referred to as the nominal fit). The statistical uncertainty is evaluated as the post-fit

uncertainty in the CC̄�/� → CC̄CC̄ cross-sections when fixing all systematic uncertainties to their post-fit values from

the nominal fit. The impacts of systematic uncertainties are shown for groups of individual uncertainties of similar

nature. The value for each group is obtained by fixing the group of uncertainties to their post-fit values from the

nominal fit, and taking the quadratic difference between the resulting uncertainty in the CC̄�/� → CC̄CC̄ cross-section

and the total uncertainty. The total systematic uncertainty is the quadratic difference between the total uncertainty

and the statistical uncertainty. The sum in quadrature of all systematic uncertainties can be different from the total

systematic uncertainty in the table due to the correlations amongst the uncertainties.

Uncertainty source ΔfC C̄�/�→C C̄ C C̄ [fb]

<�/�=400 GeV <�/�=700 GeV <�/�=1000 GeV

Signal Modelling

BSM CC̄CC̄ modelling < 1 +0.1 < 0.1 < 0.1

Background Modelling

CC̄+≥11 modelling +11 -10 +3.7 -3.4 +1.9 -1.7

SM CC̄CC̄ modelling +3 -3 +2.1 -2.1 +0.9 -0.9

CC̄+jets reweighting +3 -3 +1.0 -1.0 +0.5 -0.5

CC̄+≥12 modelling +2 -2 +0.9 -0.8 +0.4 -0.4

CC̄+light modelling +1 -1 +0.2 -0.2 < 0.1

Other background modelling < 1 +0.4 -0.4 +0.2 -0.2

Experimental

Jet energy scale and resolution +4 -2 +1.3 -0.8 +0.5 -0.3

MC statistical uncertainties +2 -3 +0.6 -0.7 +0.4 -0.4

1-tagging efficiency +2 -1 +0.7 -0.4 +0.4 -0.4

Other uncertainties < 1 +0.3 -0.5 +0.1 -0.2

Luminosity < 1 +0.3 -0.1 < 0.1

Total systematic uncertainty +13 -12 +4.8 -4.6 +2.5 -2.4

Statistical uncertainty +6 -6 +3.3 -3.2 +2.3 -2.2

Total uncertainty +14 -13 +5.6 -5.4 +3.2 -3.0

in the CC̄�/� → CC̄CC̄ cross-sections from the fit to data under the signal-plus-background hypothesis, and

can be compared with the cross-section upper limits shown in Figure 7. As described in Section 8 the

largest sources of systematic errors arise from uncertainties in the modelling of the CC̄+jets background. The

leading individual uncertainties include those from: the comparison between the 4FS and 5FS predictions

and the PS, hadronisation and fragmentation modelling in CC̄+11̄ and CC̄+≥31 background components;

the generator comparison of SM CC̄CC̄ production; the normalisation of CC̄+≥12 and CC̄+≥11; and the NN

kinematic corrections in the 2LOS channel.

The search in the 1L/2LOS final states is combined with that in the 2LSS/ML final states [21]. The

combination is performed via a simultaneous profile likelihood fit including all SRs and CRs of both the
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final states, with all systematic uncertainties included, to give a combined upper limit of CC̄�/� → CC̄CC̄

production cross-section. The events in the two analyses are statistically independent given the lepton

selection criteria. The experimental uncertainties are treated as fully correlated between the two analyses

since both the analyses use the same reconstructed objects and data set. Theoretical modelling uncertainties

in the non-CC̄+jets backgrounds and the signals are also correlated if they have identical definition in both

the 1L/2LOS and 2LSS/ML final states. The CC̄, and CC̄+jets backgrounds are treated differently in the

two analyses. The CC̄+jets background is the dominant irreducible background in the 1L/2LOS final state

and data-based corrections are applied. In the 2LSS/ML final state this background is a much smaller

contribution and arises from prompt leptons with mis-identified charges or from mis-reconstructed or

non-prompt leptons, therefore different data-based corrections are applied. The CC̄, background is the

most important background in the 2LSS/ML channel, and a detailed model of systematic uncertainties was

used, while in the 1L/2LOS channel it is a small background. Uncertainties in CC̄, and CC̄+jets backgrounds

are thus uncorrelated.

Figure 9 shows the observed and expected 95% CL upper limits on the CC̄�/� → CC̄CC̄ production cross-

section from the combined fit to all SRs and CRs in the 1L/2LOS and 2LSS/ML analyses. The observed

(expected) upper limits range from 14 (9.4) fb for <�/� = 400 GeV to 5.0 (3.8) fb for <�/� = 1000 GeV.

The figure also compares the expected upper limits from the 1L/2LOS and 2LSS/ML with the one from

the combination. The sensitivity is dominated by the 2LSS/ML final states in the low mass regime. The

combination improves the sensitivity relative to using only the 2LSS/ML final states in the high mass

regime. The largest improvement in the observed upper limit is 19% for <�/� = 900 GeV, with the

expected upper limits across the full mass range improving by up to 18%.

The resulting 95% CL lower limits for tan V from the combination are shown in Figure 10. For the

case where <� = <� , at low masses, this result is less restrictive than that from the 66 → �/� → CC̄

search [19]. At high masses, the expected sensitivity is comparable.

9.3 Limits on Y8Y8 → t t̄ t t̄ production

The same analysis strategy is used to derive upper limits on the (8(8 → CC̄CC̄ production cross-section.

The 1L/2LOS and 2LSS/ML final states are combined to determine the final limits. For the mass points

with <(8
≤ 1 TeV, the <�/�-parameterised classifiers (GNN for 1L/2LOS and BDT for 2LSS/ML) are

evaluated at <(8
= <�/�. At each mass point, the binning of the fitted distributions is the same as the

one used for �/�. For <(8
> 1 TeV, the GNN/BDT and binning for <�/� = 1 TeV are adopted. The

resulting 95% CL upper limits on the (8(8 → CC̄CC̄ production cross-section are illustrated in Figure 11.

The observed and expected upper limits from the combination of 1L/2LOS and 2LSS/ML final states are

shown, compared with the expected limits from using only the 1L/2LOS or the 2LSS/ML final states.

The behaviour of the limits for <(8
≤ 1 TeV is similar to that for CC̄�/� → CC̄CC̄ production, with an

improvement of up to 26% when using the combination relative to using the 2LSS/ML final states only.

The limits slightly weaken for <(8
> 1 TeV given that the classifiers are optimised for <�/� = 1 TeV.

Sgluon masses <(8
< 1.4 TeV are excluded at 95% CL.
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Figure 11: Expected and observed 95% CL upper limits on the (8(8 → CC̄CC̄ production cross-section as a function

of <(8
, obtained from the combination of the 1L/2LOS and 2LSS/ML final states. The expected limits from the

individual 1L/2LOS and 2LSS/ML analyses are also shown. The predicted production cross-section from Ref. [34] is

shown with the solid blue curve.

10 Conclusions

A search for CC̄�/� → CC̄CC̄ production is presented using the full LHC Run 2 data sample collected by

the ATLAS experiment during 2015–2018, corresponding to an integrated luminosity of 139 fb−1 of ??

collisions at
√
B = 13 TeV. Events with one lepton or two leptons with opposite-sign charges and high

jet multiplicities are selected. The dominant background in all selected regions is CC̄+jets. Data-driven

corrections are applied to the normalisation of the CC̄+light, CC̄+≥12 and CC̄+≥11 background components,

and their kinematics. The kinematic corrections are derived based on NNs and improve the modelling

of the CC̄+jets background in multiple dimensions. A <�/�-parameterised GNN is used to optimise the

signal-to-background discrimination.

Upper limits at 95% CL are set on the production cross-section times branching ratio, f(?? →
CC̄�/�) × �(�/� → CC̄), for �/� masses between 400 GeV and 1000 GeV. These results are combined

with a previous search from ATLAS using multilepton final states. The combined upper limits range

from 14 fb at 400 GeV to 5.0 fb at 1000 GeV, with an improvement of up to 19% relative to using only

the multilepton final states. These results are interpreted in the context of a 2HDM Type-II model in the

alignment limit to set limits on the values of tan V. When only the scalar � boson or pseudo-scalar �

boson contribute to the cross-section, values of tan V below 1.2 and 0.5 are excluded at the low and high

mass �/� mass values. When both the particles contribute, the exclusion range is below 1.7 and 0.7 at

masses of 400 GeV and 1000 GeV. When considering the sgluon pair production signals with <(8
from

400 GeV to 2 TeV, the observed 95% CL upper limits on the (8(8 → CC̄CC̄ cross-section range from 14 fb

(400 GeV) to 2.2 fb (1 TeV). Sgluon masses <(8
< 1500 GeV are excluded.
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