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I present an algorithm for the reconstruction of multivariate rational functions from black-box probes. The
arguably most important application in high-energy physics is the calculation of multi-loop and multi-leg

amplitudes, where rational functions appear as coefficients in the integration-by-parts reduction to basis integrals.
I'show that for a dense coefficient the algorithm is nearly optimal, in the sense that the number of required probes
is close to the number of unknowns.
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1. Introduction

The reduction of a large number of scalar Feynman integrals to a
smaller set of basis (or master) integrals is an almost universal step in
precision calculations in quantum field theories. In many cases, it is also
among the most challenging parts of the computation, and has therefore
seen lots of attention and development over the years.

The current standard approach is to derive integration-by-parts iden-
tities [9,10] for a set of seed integrals with fixed powers of propagators
and irreducible scalar products and solve the resulting system of linear
relations via Gauss elimination [11]. The result is a subset of the seed
integrals, each expressed in terms of a linear combination of basis inte-
grals. The coefficients are rational functions of kinematic invariants and
the space-time dimension.

It is often advantageous to insert numerical values for the dimension
and the invariants and solve the system over a finite field [12]. This
strategy was initially used to quickly eliminate redundant relations [13].
However, solving the system with sufficiently many different probes, i.e.
different numeric values for the variables, it is possible to reconstruct the
full result [3,14]. In this way, one avoids large intermediate expressions
and can restrict the reconstruction to those coefficients that are actually
needed for the final result, for example a scattering amplitude. Further
advantages include ease of parallelisation, lower memory usage, and the
possibility to optimise the system further after a computationally cheap
pilot run.

This general strategy has been further developed along several di-
rections. Right from the start, one can attempt to find combinations of
relations that lead to better behaved systems or even an explicit recur-
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sive solution to the reduction problem [15-26]. Since in a finite-field
reduction the very same system of linear equations has to be solved
many times, it can be worthwhile to record the solution steps once, op-
timise the recorded sequence, and replay it to rapidly obtain further
probes [27]. Other efforts target the reconstruction itself. The complex-
ity of the rational function coefficients depends on the chosen basis
integrals, and a judicious choice results in a factorisation between the
dimension and the kinematic invariants [28,29]. Identifying common
factors in the coefficients can further reduce the number of probes re-
quired for the reconstruction [30-33]. Finally, the number of required
probes depends on the chosen reconstruction method, and various algo-
rithms with different strengths have been explored [4,5,7,34].

In the following, I present an algorithm for “scaling up” from ratio-
nal function reconstruction in a single variable to the multivariate case.
In section 2, I review reconstruction in a single variable using Thiele in-
terpolation [35]. I then discuss a way to generalise the method to the
multivariate case in section 3. The intended application is the recon-
struction of coefficients in the reduction to basis integrals. In section 4,
I apply the algorithm to complex reduction coefficients in a massive
four-loop propagator example and in the two-loop amplitude for dipho-
ton plus jet production [36]. I find that the number of required probes is
close to optimal when the fraction of vanishing polynomial coefficients
in the numerator and the denominator of the rational function is small.

2. Univariate rational function reconstruction

Excellent introductions into the reconstruction of polynomials and
rational functions are given in [3,4]. Let us briefly review the case of a
univariate rational function.

We are given a rational function f in a single variable for which we
want to find an explicit form
_ )

pa(x) ’
where p,, p, are unknown polynomials with no common roots. f is a
“black box”, meaning that our only piece of information is an algo-
rithm for computing f(¢) for any ¢ in the domain of f. One strategy
is to construct rational interpolations f, for N probes (t;, f(¢;)) with
i=1,...,N.If N is large enough, we then find f, = f with high prob-
ability.

We start with a single probe (¢, f(¢;)) and a constant interpolation

f)

@

f1(x)=a1~ (2)

Requiring f,(t;) = f(t;) we immediately find a; = f(¢;). We then add a
second probe (1,, f(t,)). If f{(t,) = f(t,) we note that we found agree-
ment and continue with the next probe. Otherwise, we introduce the
interpolation

x—1

frx)=a; + 3
a

=i
f(t))—ay
dent probes the interpolation has the form [35]

with a; = f(¢,) as before and a, = . In general, after N indepen-

x—1
v =a,+ o )
a + x-13
ot vy
o =L
For adding the next probe (fy1, f(ty41)) We compute
Ingt — 1

¢ =fUns)s iy = ———, ()

¢ —aq
for all i < N and construct fy,q wWithay,; =cy,; and ay,...,ay taken

from fy . If the denominator in equation (5) vanishes, the probe adds
no new information. We then check if our present interpolation already
agrees for this point, i.e. fy(tx,1) = f(ty41), and terminate the re-
construction as soon as some chosen number of probes are predicted
correctly. Otherwise we continue with the next probe.
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In many cases, the computational cost of the reconstruction is dom-
inated by either the evaluation of the probes or by the divisions in the
calculation of the auxiliary constants ¢ ] in equation (5). In the latter
case, the alternative division-free recursion
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ny=fns), nipy =Ny —1)d;, (6)

dipy =n; —a;d;, @)

1 in — N+l
eading to ay N

Note that the reconstruction is optimal if two conditions are fulfilled.
First, the degrees of the numerator and the denominator in f should be
equal or the degree of the numerator should be larger by one. Second,
the numerator and denominator polynomials should be perfectly dense,
with all coefficients non-zero. In this case the number of required probes
is equal to the number of unknown coefficients plus the chosen num-
ber of probes used for confirmation. Empirically, the rational functions
encountered in integration-by-parts reduction without any kinematic in-
variants are close to ideal with a typical overhead of about 10% in the
number of required probes.

can be much more efficient.

3. Scaling up to multiple variables

In general, the rational function to be reconstructed has the form

p1 Pn
_ Zcplv-.v,p,,x1 Xn

S x) = ——F———, (8)
q 4
ZDql ,,,,, qnxll st Xp
where the sums run over all powers 0 < p; < P,...,0<p, < P, in the
numerator and 0 < g; < Qy,...,0 < g, <0, in the denominator. The

degrees P,,..., P, and Qy,...,Q, are a priori unknown. To reconstruct
a pair (P;,Q;) of degrees we can set all other variables to some fixed
value, i.e. x =1 for all j # i, and perform a univariate rational function
reconstruction in the remaining free variable x; [2-4].

Once we know the degrees, we can in principle determine the un-
known coefficients C, D by simply solving a linear system of equations.
Knowing the value of f(t,...,t,), we obtain the linear equation

Zcpl,m,pntllj] "'tﬁ" = f(tla ’tn)ZDql,“.,q,,tT "'tzn 9

directly from the definition in equation (8). For N + 1 coefficients
Cor....0n>Dy,.....q,» We Tequire N probes to express them in terms of a
single coefficient which we can set to an arbitrary non-zero value to
fix the overall normalisation. If the numerator and denominator poly-
nomials are dense, the reconstruction is optimal in the sense of needing
the lowest possible number of probes. However, assuming constant-time
arithmetic for the arguments and coefficients, the time complexity for
solving the dense linear system is ()(N3) with a space complexity of
O(N?). In practice it is usually better to use a method that requires
more probes but has better scaling behaviour.

The univariate reconstruction based on Thiele interpolation we dis-
cussed in section 2 only requires O(N) space to store the arguments
t1,...,tny and the coefficients a,...,ay. To determine these coeffi-
cients, one needs to calculate N(N +1)/2 = O(N 2) auxiliary coefficients
(cf. equation (5)), each of which can be computed in constant time. Can
we generalise that method to the multivariate case while preserving the
superior scaling behaviour?

The main idea is to set all of the variables x,...,x, to a single
variable x, scaled to distinct powers so that we can recover the full de-
pendence on x, ..., x, after the reconstruction. Concretely, we consider
the auxiliary function g(x) = f(x%1,...,x%) with

a =1, a1 = [1+max(P;, Q))]a;. (10)

We then use univariate reconstruction in x to find an explicit form for
g(x). For each term of the form C;x’ we can formally interpret the power
i as a number in a mixed radix numeral system, where the individual
digits correspond to the powers py,...,p, of x;,...,X,,.
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Let us consider a simple example for a black-box function f(xy,x,).
Setting x, to a fixed value f, and using univariate reconstruction in x;
we find

Cy(t) + Ci(ty)x;

. an
Dy (1) + Dy(tp)x;

f(x1,1)=
We ignore the coefficients depending on #,; our only goal was to learn
that the largest power of x, is 2. This tells us to set @, =2+ 1, so we
introduce the auxiliary function g(x) = f(x, x*). From univariate recon-
struction we obtain

L+x+x*
1+x2+x3
The last step is to read off the corresponding powers of the original
variables x|, x,. For the exponents in g we have mixed radix notation
1=0,13,2=0,23,3 = 1,03,4 = 1,13, where the subscript indicates the
numeral base of the corresponding position and the base of the leading
digit is irrelevant. This tells us that the original function is

g(x)= 12)

I+x;+x1x;

flxy,x0) = (13)

L+ x7 +x,

The method described so far can suffer from accidental cancellations
between numerator and denominator. For example, for f(x;,x,) = i—z

we would obtain the auxillary function g(x) = x, which would lead us
to believe the original function was f(x;,x,) = x,. To prevent this, we
additionally shift the rescaled argument by a randomly chosen number.!
Spurious cancellations have to involve two or more different variables.
We therefore expect to avoid them by having at least one shifted variable
in each possible combination, i.e. we shift each variable except one.

Let us summarise the algorithm. Given a rational black-box function
f in n variables x, ..., x,

1. For each variable x; with i < n, find the largest powers P; and Q; in
the numerator and denominator. To do this, set all other variables
to randomly chosen values, x; =1; for all j # i, and use univariate
reconstruction in x;.

2. Compute the scaling powers «a,...,a, using equation (10) and
choose random shifts s, ..., s,. One of the shifts can be set to zero,
eg. s, =0.

3. Use univariate reconstruction to find g(x) from probes (z;, / (t?’1 +
Sps e ,tj.l" +5,)).

4. For each term C;x' in g(x), recover the powers py,...,p, of the
original variables x, ..., x, from the mixed-radix digits of i. Then,
replace x' — (x; — s1)P1 =+ (x,, — 5,,)Pn.

For the main application we have in mind, namely the reconstruc-
tion of coefficients in the reduction to basis integrals, one aims to recover
many rational functions from probes with the same arguments. One way
to use the same arguments t?‘ + 5, ,t;l” + s, for different functions
f,h,... isto choose the exponents aj, ... ,a, according to the maximum
powers of the respective variables in any of the numerators and denom-
inators of f,h,.... Often, the highest powers of all variables will be
determined by a single function, such that the maximum number of re-
quired probes remains unaffected. The price to pay is that for the simple
functions many vanishing coefficients will be reconstructed, increasing
the computing time required for the reconstruction itself. Alternatively,
different sets of probe arguments can be used for functions of widely
disparate complexity.

One of the main advantages of numerical reduction is ease of paral-
lelisation. This requires that subsequent probes can be chosen without
having to wait for the outcome of feeding earlier probes into the recon-

1 This random shift is also used with a slightly different purpose in the recon-
struction algorithm by Cuyt and Lee [2-4]. There, the goal is to ensure a unique
structure and uniform coefficient normalisation of the reconstructed function.
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struction algorithm. In this respect, algorithms for the reconstruction
of dense rational functions tend to perform better than methods aimed
at sparse rational functions with many vanishing coefficients, as for
the latter the probe selection typically has to be adjusted dynamically.
The presented algorithm mostly decouples the seed choice from the re-
construction progress. For n variables, the selection strategy has to be
updated » times — after determining the powers of each of the first n— 1
variables and once more to use the final rescaled arguments.
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4. Application to the reduction to basis integrals

Let us now assess the efficiency of the algorithm presented in sec-
tion 3 in practical applications. For brevity, we will refer to the new
method as “scaling” reconstruction. We compare it to an algorithm
proposed by Cuyt and Lee [2]. This algorithm is described in de-
tail in [3,4]. We briefly recall the main steps. First, the variables are
rescaled with a common factor 7 and shifted, leading to (x,...,x,)
= (ty; + s1,...,ty, + 5,) with y, = 1. One then performs a univari-
ate rational reconstruction in f. Starting from the highest powers, the
coefficients of # are reconstructed as polynomials in y,,...,y, and
transformed back to the original variables. For the comparison we use
state-of-the-art implementations in the public codes FireFly [4-6]
and FiniteFlow [7,8]. The comparison code and the example ratio-
nal functions in computer-readable form are available from https://
github.com/a-maier/scaling-rec.

For the scaling algorithm, the reconstruction is first performed over
a number of prime fields Zp, using arithmetic algorithms taken from
NTL [37]. We start with P =1152921504 606 846 883 and move to the
next smaller prime numbers as needed. The resulting coefficients are
lifted to a higher characteristic with the Chinese remainder theorem,
specifically Bézout’s identity. The actual rational coefficients are then re-
constructed from the finite-field integers via an algorithm by Wang [38].
Again, details are given in [3,4].

In principle, the reconstruction can be simplified tremendously ex-
ploiting the structure of the result [30-32]. Both FireFly and Finite-
Flow can factorise the numerator and denominator to a certain degree.
FiniteFlow determines the minimal degree in each variable to auto-
matically factor out common monomials. FireFly optionally performs
univariate factorisation to identify any factors depending on a single
variable. Since we are mainly interested in assessing the underlying
reconstruction algorithms, we disable FireFly’s factorisation in the
following comparisons. As there is no option to switch off factorisation
in FiniteFlow, we additionally compare the reconstruction after re-
moving all monomial factors from the function to be reconstructed.

4.1. Massive four-loop propagator

Our first benchmark point is a coefficient in the differential equa-
tion [39,40] for a four-loop massive propagator. Setting the mass m =1,
the propagator is a function of z = p?, where p is the external four-
momentum. One obtains

+..., a4

=q(z.d)

with the ellipsis indicating a linear combination of further basis integrals
with less complex coefficients. g(z,d) is a rational function in z and the
space-time dimension d, where the numerator degrees in z and d are
P, = P, =81 and the denominator degrees are Q, = 80 and Q,; = 78.
The numbers of probes required for reconstructing the function over
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Table 1

Number of probes required to
reconstruct a specific coefficient
in the differential equation for
a four-loop propagator over the
first characteristic.

Method Number of Probes

This work 13594
FireFly 16373
Optimal 12721

Table 2

Number of probes required to re-
construct a specific coefficient in
the differential equation for a four-
loop propagator over the first char-
acteristic after removing an overall
monomial factor. The FiniteFlow
entry does not include a few hun-
dred probes used for degree deter-

minations.
Method Number of Probes
This work 13594
FireFly 16020
FiniteFlow > 18205
Optimal 12721

the first characteristic are shown in Table 1 for the scaling algorithm
and FireFly together with a hypothetical optimal algorithm that can
determine one unknown coefficient per probe.

For a full rational function reconstruction probes are needed in sev-
eral additional prime fields. Since different implementations vary vastly
in the amount of reused information we refrain from a quantitative com-
parison.

Comparing the “Optimal” entry of Table 1 to the total number of
13123 monomials in the ansatz given by equation (8) we observe that
q(z,d) is dense in the sense that about 97% of the coefficients in the
ansatz are non-zero. We see that the scaling algorithm performs close to
optimal, with an overhead of about 7% additional probes. In compari-
son, FireF1ly requires approximately 29% more probes.

The denominator of the reconstructed function contains an overall
factor of d'z3. The improvement gained by identifying and removing
this factor is illustrated in Table 2, where we now also include Finite-
Flow. The FiniteFlow entry does not include a few hundred probes
used to determine the overall degree of the rational function and the de-
grees with respect to the individual variables from Thiele interpolation,
cf. section 2 [41]. The other entries count the total number of function
evaluations.

For the algorithm presented in section 3, the scaling powers in equa-
tion (10) are completely determined by the numerator in the present
example. Thus, removing factors from the denominator does not affect
the number of probes needed. However, we do observe a slight reduc-
tion in the number of required evaluations with FireFly, reducing the
overhead to 26% compared to the optimum. The number of evaluations
needed with FiniteFlow exceeds the number of non-vanishing coeffi-
cients to be determined by about 43%.

4.2. Diphoton plus jet production at two loops

Next, let us consider the two-loop amplitude for diphoton plus jet
production, taken from [36]. Specifically, we choose the parity-even
contribution with a left-handed quark and a gluon in the initial state,
a negative gluon helicity, opposite-sign photon helicities, and no closed
fermion loops. Denoting the quark helicity by 4,, the number of active

Comp Physics Col
Table 3
Number of probes required to re-
construct the coefficient in the
reduction of the two-loop dipho-
ton plus jet amplitude.
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Method Number of Probes
This work 169132

FireFly 163094

Optimal 30490

Table 4

Number of required probes after removing the overall mono-
mial prefactor. The FiniteFlow entries do not include a few
hundred probes used for degree determinations.

Method Number of Probes
This work 169132

FireFly 129894
FiniteFlow 249216
FiniteFlow with FFPolyVandermonde 247381

Optimal 30490

flavours by n, the number of colours by N, and the parity transfor-
mation operator by P, the reduction has the structure

A =L
1+ P
— _
+ n/v:O
=c_yNZ*+¢gNE + ¢, N, (15)

where c_,, ¢y, ¢, are linear combinations of pentagon functions [42] with

rational coefficients. From c, we select the largest of these coefficients

by Mathematica’s ByteCount. We write this coefficient as a rational
L 57

function in x,3, X34, X45, X51, Where x;; = i, and

s12 = (py +P2)% 523 = (02 — p3)°,
530 =(p3 + P 545 = (P4 + P5)*. 551 = (py — ps)°

are Mandelstam invariants. After determining the numerator and de-
nominator degrees our ansatz according to equation (8) contains 136934
unknown coefficients. However, the actual rational function is much
sparser than in the example in section 4.1 and only approximately 22%
of these coefficients are non-zero. In this example, the full coefficient
can be reconstructed using a single prime field. We collect the number
of required probes in Table 3.

The scaling algorithm introduced in section 3 performs slightly worse
than FireF1ly’s reconstruction. Both algorithms are far from optimal
for this scenario, requiring more than five probes for each unknown
coefficient.

The number of required reconstruction probes after removing an
overall monomial factor x§3x§ 4xijx§1 is shown in Table 4. As in sec-
tion 4.1, we see no improvement for the implementation of the algo-
rithm presented in this work. In contrast, FireF1ly needs approximately
20% fewer function evaluations than before. Most strikingly, Finite-
Flow is much closer to optimal than both FireFly and the scaling
reconstruction implementation, especially when using the FFPolyVan-
dermonde alternative polynomial reconstruction method. Even when
enabling its identification of univariate factors, FireFly still requires
87485 probes, substantially more than FiniteFlow. This difference
between FiniteFlow and FireF1ly is unexpected and deserves closer
inspection. However, since the focus of the present work is on the scal-
ing algorithm and dense reconstruction, we leave further investigation
to future work.
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5. Conclusion

I have presented an algorithm for the reconstruction of dense multi-
variate rational functions. Multiple variables are mapped onto a single
variable, using scaling powers and shifts chosen such that the mapping
can be inverted. In this way, the problem is reduced to well-known uni-
variate rational reconstruction.

The algorithm is tested on two examples taken from complex reduc-
tions to basis integrals, a massive four-loop propagator and a two-loop
five-point amplitude. For the dense rational function encountered in the
four-loop problem, the required number of probes exceeds the number
of unknown coefficients by only about 7%. This compares favourably
with the current state-of-the-art programs FireFly [4,5] and Finite-
Flow [7].

In the sparse two-loop example, the number of probes needed is
about 4% above the FireFly result when disabling factorisation. How-
ever, a comparison to FiniteFlow reveals that in this case there is
substantial room for improvements for both FireFly and the presented
algorithm. A further promising avenue for future research would be to
combine the univariate mapping with sparse rational reconstruction in
a single variable, see e.g. [43].
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