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I present an algorithm for the reconstruction of multivariate rational functions from black-box probes. The 
arguably most important application in high-energy physics is the calculation of multi-loop and multi-leg 
amplitudes, where rational functions appear as coefficients in the integration-by-parts reduction to basis integrals. 
I show that for a dense coefficient the algorithm is nearly optimal, in the sense that the number of required probes 
is close to the number of unknowns.

PROGRAM SUMMARY

Program title: rare 
CPC Library link to program files: https://doi.org/10.17632/wt228b57

kw.1

Developer’s repository link: https://github.com/a-maier/rare. 
Licensing provisions: GNU General Public License 3 
Programming language: Rust 
Supplementary material: Comparison code to other programs is available 
under https://github.com/a-maier/scaling-rec and uses C++, Rust, and 
Wolfram Mathematica. 
Nature of problem: Straightforward computations of scattering ampli

tudes in perturbative quantum field theory suffer from large interme

diate expressions. Hence, state-of-the-art approaches make heavy use of 
multivariate rational function reconstruction from probes in fields with 
a finite characteristic. In this way, only numbers with a bounded size 
are encountered in intermediate steps. This strategy requires efficient 
reconstruction algorithms. 
Solution method: The code provides a proof-of-concept implementation 
of a new rational reconstruction algorithm. The algorithm is particu

larly efficient for dense functions, where the number of required probes 
is close to the number of unknown coefficients. 
Additional comments including restrictions and unusual features: As cus

tomary for Rust libraries, the code is not intended for stand-alone in

stallation, but for compilation as part of a larger program, e.g. using the 
Cargo package manager [1]. 
References: The code is compared to implementations of an algorithm by 
Cuyt and Lee [2,3] in FireFly [4--6] and FiniteFlow [7,8].

E-mail address: andreas.martin.maier@desy.de.

1. Introduction

The reduction of a large number of scalar Feynman integrals to a 
smaller set of basis (or master) integrals is an almost universal step in 
precision calculations in quantum field theories. In many cases, it is also 
among the most challenging parts of the computation, and has therefore 
seen lots of attention and development over the years.

The current standard approach is to derive integration-by-parts iden

tities [9,10] for a set of seed integrals with fixed powers of propagators 
and irreducible scalar products and solve the resulting system of linear 
relations via Gauss elimination [11]. The result is a subset of the seed 
integrals, each expressed in terms of a linear combination of basis inte

grals. The coefficients are rational functions of kinematic invariants and 
the space-time dimension.

It is often advantageous to insert numerical values for the dimension 
and the invariants and solve the system over a finite field [12]. This 
strategy was initially used to quickly eliminate redundant relations [13]. 
However, solving the system with sufficiently many different probes, i.e. 
different numeric values for the variables, it is possible to reconstruct the 
full result [3,14]. In this way, one avoids large intermediate expressions 
and can restrict the reconstruction to those coefficients that are actually 
needed for the final result, for example a scattering amplitude. Further 
advantages include ease of parallelisation, lower memory usage, and the 
possibility to optimise the system further after a computationally cheap 
pilot run.

This general strategy has been further developed along several di

rections. Right from the start, one can attempt to find combinations of 
relations that lead to better behaved systems or even an explicit recur
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sive solution to the reduction problem [15--26]. Since in a finitefield 
reduction the very same system of linear equations has to be solved 
many times, it can be worthwhile to record the solution steps once, op

timise the recorded sequence, and replay it to rapidly obtain further 
probes [27]. Other efforts target the reconstruction itself. The complex

ity of the rational function coefficients depends on the chosen basis 
integrals, and a judicious choice results in a factorisation between the 
dimension and the kinematic invariants [28,29]. Identifying common 
factors in the coefficients can further reduce the number of probes re

quired for the reconstruction [30--33]. Finally, the number of required 
probes depends on the chosen reconstruction method, and various algo

rithms with different strengths have been explored [4,5,7,34].

In the following, I present an algorithm for ``scaling up'' from ratio

nal function reconstruction in a single variable to the multivariate case. 
In section 2, I review reconstruction in a single variable using Thiele in

terpolation [35]. I then discuss a way to generalise the method to the 
multivariate case in section 3. The intended application is the recon

struction of coefficients in the reduction to basis integrals. In section 4, 
I apply the algorithm to complex reduction coefficients in a massive 
four-loop propagator example and in the two-loop amplitude for dipho

ton plus jet production [36]. I find that the number of required probes is 
close to optimal when the fraction of vanishing polynomial coefficients 
in the numerator and the denominator of the rational function is small.

2. Univariate rational function reconstruction

Excellent introductions into the reconstruction of polynomials and 
rational functions are given in [3,4]. Let us briefly review the case of a 
univariate rational function.

We are given a rational function 𝑓 in a single variable for which we 
want to find an explicit form

𝑓 (𝑥) =
𝑝𝑛(𝑥) 
𝑝𝑑 (𝑥)

, (1)

where 𝑝𝑛, 𝑝𝑑 are unknown polynomials with no common roots. 𝑓 is a 
“black box'', meaning that our only piece of information is an algo

rithm for computing 𝑓 (𝑡) for any 𝑡 in the domain of 𝑓 . One strategy 
is to construct rational interpolations 𝑓𝑁 for 𝑁 probes (𝑡𝑖, 𝑓 (𝑡𝑖)) with 
𝑖 = 1,… ,𝑁 . If 𝑁 is large enough, we then find 𝑓𝑁 = 𝑓 with high prob

ability.

We start with a single probe (𝑡1, 𝑓 (𝑡1)) and a constant interpolation

𝑓1(𝑥) = 𝑎1. (2)

Requiring 𝑓1(𝑡1) = 𝑓 (𝑡1) we immediately find 𝑎1 = 𝑓 (𝑡1). We then add a 
second probe (𝑡2, 𝑓 (𝑡2)). If 𝑓1(𝑡2) = 𝑓 (𝑡2) we note that we found agree

ment and continue with the next probe. Otherwise, we introduce the 
interpolation

𝑓2(𝑥) = 𝑎1 +
𝑥− 𝑡1
𝑎2

(3)

with 𝑎1 = 𝑓 (𝑡1) as before and 𝑎2 =
𝑡2−𝑡1

𝑓 (𝑡2)−𝑎1
. In general, after 𝑁 indepen

dent probes the interpolation has the form [35]

𝑓𝑁 (𝑥) = 𝑎1 +
𝑥− 𝑡1

𝑎2 +
𝑥−𝑡2

𝑎3+
𝑥−𝑡3

⋯+
𝑥−𝑡𝑁−1

𝑎𝑁

. (4)

For adding the next probe (𝑡𝑁+1, 𝑓 (𝑡𝑁+1)) we compute

𝑐1 = 𝑓 (𝑡𝑁+1), 𝑐𝑖+1 =
𝑡𝑁+1 − 𝑡𝑖

𝑐𝑖 − 𝑎𝑖
, (5)

for all 𝑖 ≤𝑁 and construct 𝑓𝑁+1 with 𝑎𝑁+1 = 𝑐𝑁+1 and 𝑎1,… , 𝑎𝑁 taken 
from 𝑓𝑁 . If the denominator in equation (5) vanishes, the probe adds 
no new information. We then check if our present interpolation already 
agrees for this point, i.e. 𝑓𝑁 (𝑡𝑁+1) = 𝑓 (𝑡𝑁+1), and terminate the re

construction as soon as some chosen number of probes are predicted 
correctly. Otherwise we continue with the next probe.

In many cases, the computational cost of the reconstruction is dom

inated by either the evaluation of the probes or by the divisions in the 
calculation of the auxiliary constants 𝑐𝑗 in equation (5). In the latter 
case, the alternative division-free recursion

𝑛1 = 𝑓 (𝑡𝑁+1), 𝑛𝑖+1 = (𝑡𝑁+1 − 𝑡𝑖)𝑑𝑖, (6)

𝑑1 = 1, 𝑑𝑖+1 = 𝑛𝑖 − 𝑎𝑖𝑑𝑖, (7)

leading to 𝑎𝑁+1 =
𝑛𝑁+1
𝑑𝑁+1

can be much more efficient.

Note that the reconstruction is optimal if two conditions are fulfilled. 
First, the degrees of the numerator and the denominator in 𝑓 should be 
equal or the degree of the numerator should be larger by one. Second, 
the numerator and denominator polynomials should be perfectly dense, 
with all coefficients non-zero. In this case the number of required probes 
is equal to the number of unknown coefficients plus the chosen num

ber of probes used for confirmation. Empirically, the rational functions 
encountered in integration-by-parts reduction without any kinematic in

variants are close to ideal with a typical overhead of about 10% in the 
number of required probes.

3. Scaling up to multiple variables

In general, the rational function to be reconstructed has the form

𝑓 (𝑥1,… , 𝑥𝑛) =
∑

𝐶𝑝1 ,…,𝑝𝑛
𝑥
𝑝1
1 ⋯𝑥

𝑝𝑛
𝑛∑

𝐷𝑞1 ,…,𝑞𝑛
𝑥
𝑞1
1 ⋯𝑥

𝑞𝑛
𝑛

, (8)

where the sums run over all powers 0 ≤ 𝑝1 ≤ 𝑃1,… ,0 ≤ 𝑝𝑛 ≤ 𝑃𝑛 in the 
numerator and 0 ≤ 𝑞1 ≤ 𝑄1,… ,0 ≤ 𝑞𝑛 ≤ 𝑄𝑛 in the denominator. The 
degrees 𝑃1,… , 𝑃𝑛 and 𝑄1,… ,𝑄𝑛 are a priori unknown. To reconstruct 
a pair (𝑃𝑖,𝑄𝑖) of degrees we can set all other variables to some fixed 
value, i.e. 𝑥𝑗 = 𝑡𝑗 for all 𝑗 ≠ 𝑖, and perform a univariate rational function 
reconstruction in the remaining free variable 𝑥𝑖 [2--4].

Once we know the degrees, we can in principle determine the un

known coefficients 𝐶,𝐷 by simply solving a linear system of equations. 
Knowing the value of 𝑓 (𝑡1,… , 𝑡𝑛), we obtain the linear equation

∑
𝐶𝑝1 ,…,𝑝𝑛

𝑡
𝑝1
1 ⋯ 𝑡

𝑝𝑛
𝑛 = 𝑓 (𝑡1,… , 𝑡𝑛)

∑
𝐷𝑞1 ,…,𝑞𝑛

𝑡
𝑞1
1 ⋯ 𝑡

𝑞𝑛
𝑛 (9)

directly from the definition in equation (8). For 𝑁 + 1 coefficients 
𝐶𝑝1 ,…,𝑝𝑛

,𝐷𝑞1 ,…,𝑞𝑛
, we require 𝑁 probes to express them in terms of a 

single coefficient which we can set to an arbitrary non-zero value to 
fix the overall normalisation. If the numerator and denominator poly

nomials are dense, the reconstruction is optimal in the sense of needing 
the lowest possible number of probes. However, assuming constant-time 
arithmetic for the arguments and coefficients, the time complexity for 
solving the dense linear system is (𝑁3) with a space complexity of 
(𝑁2). In practice it is usually better to use a method that requires 
more probes but has better scaling behaviour.

The univariate reconstruction based on Thiele interpolation we dis

cussed in section 2 only requires (𝑁) space to store the arguments 
𝑡1,… , 𝑡𝑁 and the coefficients 𝑎1,… , 𝑎𝑁 . To determine these coeffi

cients, one needs to calculate 𝑁(𝑁+1)∕2 =(𝑁2) auxiliary coefficients 
(cf. equation (5)), each of which can be computed in constant time. Can 
we generalise that method to the multivariate case while preserving the 
superior scaling behaviour?

The main idea is to set all of the variables 𝑥1,… , 𝑥𝑛 to a single 
variable 𝑥, scaled to distinct powers so that we can recover the full de

pendence on 𝑥1,… , 𝑥𝑛 after the reconstruction. Concretely, we consider 
the auxiliary function 𝑔(𝑥) = 𝑓 (𝑥𝛼1 ,… , 𝑥𝛼𝑛 ) with

𝛼1 = 1, 𝛼𝑖+1 = [1 +max(𝑃𝑖,𝑄𝑖)]𝛼𝑖. (10)

We then use univariate reconstruction in 𝑥 to find an explicit form for 
𝑔(𝑥). For each term of the form 𝐶𝑖𝑥

𝑖 we can formally interpret the power 
𝑖 as a number in a mixed radix numeral system, where the individual 
digits correspond to the powers 𝑝1,… , 𝑝𝑛 of 𝑥1,… , 𝑥𝑛.
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Let us consider a simple example for a black-box function 𝑓 (𝑥1, 𝑥2). 
Setting 𝑥2 to a fixed value 𝑡2 and using univariate reconstruction in 𝑥1
we find

𝑓 (𝑥1, 𝑡2) =
𝐶0(𝑡2) +𝐶1(𝑡2)𝑥1
𝐷0(𝑡2) +𝐷2(𝑡2)𝑥21

. (11)

We ignore the coefficients depending on 𝑡2; our only goal was to learn 
that the largest power of 𝑥1 is 2. This tells us to set 𝛼2 = 2 + 1, so we 
introduce the auxiliary function 𝑔(𝑥) = 𝑓 (𝑥,𝑥3). From univariate recon

struction we obtain

𝑔(𝑥) = 1 + 𝑥+ 𝑥4

1 + 𝑥2 + 𝑥3
. (12)

The last step is to read off the corresponding powers of the original 
variables 𝑥1, 𝑥2. For the exponents in 𝑔 we have mixed radix notation 
1 = 0?13,2 = 0?23,3 = 1?03,4 = 1?13, where the subscript indicates the 
numeral base of the corresponding position and the base of the leading 
digit is irrelevant. This tells us that the original function is

𝑓 (𝑥1, 𝑥2) =
1 + 𝑥1 + 𝑥1𝑥2

1 + 𝑥21 + 𝑥2
. (13)

The method described so far can suffer from accidental cancellations 
between numerator and denominator. For example, for 𝑓 (𝑥1, 𝑥2) =

𝑥2
𝑥1

we would obtain the auxillary function 𝑔(𝑥) = 𝑥, which would lead us 
to believe the original function was 𝑓 (𝑥1, 𝑥2) = 𝑥1. To prevent this, we 
additionally shift the rescaled argument by a randomly chosen number.1

Spurious cancellations have to involve two or more different variables. 
We therefore expect to avoid them by having at least one shifted variable 
in each possible combination, i.e. we shift each variable except one.

Let us summarise the algorithm. Given a rational black-box function 
𝑓 in 𝑛 variables 𝑥1,… , 𝑥𝑛

1. For each variable 𝑥𝑖 with 𝑖 < 𝑛, find the largest powers 𝑃𝑖 and 𝑄𝑖 in 
the numerator and denominator. To do this, set all other variables 
to randomly chosen values, 𝑥𝑗 = 𝑡𝑗 for all 𝑗 ≠ 𝑖, and use univariate 
reconstruction in 𝑥𝑖.

2. Compute the scaling powers 𝛼1,… , 𝛼𝑛 using equation (10) and 
choose random shifts 𝑠1,… , 𝑠𝑛. One of the shifts can be set to zero, 
e.g. 𝑠1 = 0.

3. Use univariate reconstruction to find 𝑔(𝑥) from probes (𝑡𝑖, 𝑓 (𝑡
𝛼1
𝑖

+
𝑠1,… , 𝑡

𝛼𝑛
𝑖

+ 𝑠𝑛)).
4. For each term 𝐶𝑖𝑥

𝑖 in 𝑔(𝑥), recover the powers 𝑝1,… , 𝑝𝑛 of the 
original variables 𝑥1,… , 𝑥𝑛 from the mixed-radix digits of 𝑖. Then, 
replace 𝑥𝑖 → (𝑥1 − 𝑠1)𝑝1 ⋯ (𝑥𝑛 − 𝑠𝑛)𝑝𝑛 .

For the main application we have in mind, namely the reconstruc

tion of coefficients in the reduction to basis integrals, one aims to recover 
many rational functions from probes with the same arguments. One way 
to use the same arguments 𝑡𝛼1

𝑖
+ 𝑠1,… , 𝑡

𝛼𝑛
𝑖

+ 𝑠𝑛 for different functions 
𝑓,ℎ,… is to choose the exponents 𝛼1,… , 𝛼𝑛 according to the maximum 
powers of the respective variables in any of the numerators and denom

inators of 𝑓,ℎ,… . Often, the highest powers of all variables will be 
determined by a single function, such that the maximum number of re

quired probes remains unaffected. The price to pay is that for the simple 
functions many vanishing coefficients will be reconstructed, increasing 
the computing time required for the reconstruction itself. Alternatively, 
different sets of probe arguments can be used for functions of widely 
disparate complexity.

One of the main advantages of numerical reduction is ease of paral

lelisation. This requires that subsequent probes can be chosen without 
having to wait for the outcome of feeding earlier probes into the recon

1 This random shift is also used with a slightly different purpose in the recon

struction algorithm by Cuyt and Lee [2--4]. There, the goal is to ensure a unique 
structure and uniform coefficient normalisation of the reconstructed function.

struction algorithm. In this respect, algorithms for the reconstruction 
of dense rational functions tend to perform better than methods aimed 
at sparse rational functions with many vanishing coefficients, as for 
the latter the probe selection typically has to be adjusted dynamically. 
The presented algorithm mostly decouples the seed choice from the re

construction progress. For 𝑛 variables, the selection strategy has to be 
updated 𝑛 times �- after determining the powers of each of the first 𝑛−1
variables and once more to use the final rescaled arguments.

4. Application to the reduction to basis integrals

Let us now assess the efficiency of the algorithm presented in sec

tion 3 in practical applications. For brevity, we will refer to the new 
method as ``scaling'' reconstruction. We compare it to an algorithm 
proposed by Cuyt and Lee [2]. This algorithm is described in de

tail in [3,4]. We briefly recall the main steps. First, the variables are 
rescaled with a common factor 𝑡 and shifted, leading to (𝑥1,… , 𝑥𝑛)
= (𝑡𝑦1 + 𝑠1,… , 𝑡𝑦𝑛 + 𝑠𝑛) with 𝑦𝑛 = 1. One then performs a univari

ate rational reconstruction in 𝑡. Starting from the highest powers, the 
coefficients of 𝑡𝑖 are reconstructed as polynomials in 𝑦1,… , 𝑦𝑛 and 
transformed back to the original variables. For the comparison we use 
state-of-the-art implementations in the public codes FireFly [4--6] 
and FiniteFlow [7,8]. The comparison code and the example ratio

nal functions in computer-readable form are available from https://

github.com/a-maier/scaling-rec.

For the scaling algorithm, the reconstruction is first performed over 
a number of prime fields ℤ𝑃 , using arithmetic algorithms taken from 
NTL [37]. We start with 𝑃 = 1 152 921 504 606 846 883 and move to the 
next smaller prime numbers as needed. The resulting coefficients are 
lifted to a higher characteristic with the Chinese remainder theorem, 
specifically Bézout’s identity. The actual rational coefficients are then re

constructed from the finitefield integers via an algorithm by Wang [38]. 
Again, details are given in [3,4].

In principle, the reconstruction can be simplified tremendously ex

ploiting the structure of the result [30--32]. Both FireFly and Finite
Flow can factorise the numerator and denominator to a certain degree. 
FiniteFlow determines the minimal degree in each variable to auto

matically factor out common monomials. FireFly optionally performs 
univariate factorisation to identify any factors depending on a single 
variable. Since we are mainly interested in assessing the underlying 
reconstruction algorithms, we disable FireFly’s factorisation in the 
following comparisons. As there is no option to switch off factorisation 
in FiniteFlow, we additionally compare the reconstruction after re

moving all monomial factors from the function to be reconstructed.

4.1. Massive four-loop propagator

Our first benchmark point is a coefficient in the differential equa

tion [39,40] for a four-loop massive propagator. Setting the mass 𝑚 = 1, 
the propagator is a function of 𝑧 = 𝑝2, where 𝑝 is the external four

momentum. One obtains

𝑧
𝑑

𝑑𝑧

= 𝑞(𝑧, 𝑑) +… , (14)

with the ellipsis indicating a linear combination of further basis integrals 
with less complex coefficients. 𝑞(𝑧, 𝑑) is a rational function in 𝑧 and the 
space-time dimension 𝑑, where the numerator degrees in 𝑧 and 𝑑 are 
𝑃𝑧 = 𝑃𝑑 = 81 and the denominator degrees are 𝑄𝑧 = 80 and 𝑄𝑑 = 78. 
The numbers of probes required for reconstructing the function over 
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Table 1
Number of probes required to 
reconstruct a specific coefficient 
in the differential equation for 
a four-loop propagator over the 
first characteristic.

Method Number of Probes 
This work 13 594
FireFly 16 373
Optimal 12 721

Table 2
Number of probes required to re

construct a specific coefficient in 
the differential equation for a four

loop propagator over the first char

acteristic after removing an overall 
monomial factor. The FiniteFlow 
entry does not include a few hun

dred probes used for degree deter

minations.

Method Number of Probes 
This work 13 594
FireFly 16 020
FiniteFlow ≳ 18 205
Optimal 12 721

the first characteristic are shown in Table 1 for the scaling algorithm 
and FireFly together with a hypothetical optimal algorithm that can 
determine one unknown coefficient per probe.

For a full rational function reconstruction probes are needed in sev

eral additional prime fields. Since different implementations vary vastly 
in the amount of reused information we refrain from a quantitative com

parison.

Comparing the ``Optimal'' entry of Table 1 to the total number of 
13 123 monomials in the ansatz given by equation (8) we observe that 
𝑞(𝑧, 𝑑) is dense in the sense that about 97% of the coefficients in the 
ansatz are non-zero. We see that the scaling algorithm performs close to 
optimal, with an overhead of about 7% additional probes. In compari

son, FireFly requires approximately 29% more probes.

The denominator of the reconstructed function contains an overall 
factor of 𝑑1𝑧3. The improvement gained by identifying and removing 
this factor is illustrated in Table 2, where we now also include Finite
Flow. The FiniteFlow entry does not include a few hundred probes 
used to determine the overall degree of the rational function and the de

grees with respect to the individual variables from Thiele interpolation, 
cf. section 2 [41]. The other entries count the total number of function 
evaluations.

For the algorithm presented in section 3, the scaling powers in equa

tion (10) are completely determined by the numerator in the present 
example. Thus, removing factors from the denominator does not affect 
the number of probes needed. However, we do observe a slight reduc

tion in the number of required evaluations with FireFly, reducing the 
overhead to 26% compared to the optimum. The number of evaluations 
needed with FiniteFlow exceeds the number of non-vanishing coeffi

cients to be determined by about 43%.

4.2. Diphoton plus jet production at two loops

Next, let us consider the two-loop amplitude for diphoton plus jet 
production, taken from [36]. Specifically, we choose the parity-even 
contribution with a left-handed quark and a gluon in the initial state, 
a negative gluon helicity, opposite-sign photon helicities, and no closed 
fermion loops. Denoting the quark helicity by 𝜆𝑞 , the number of active 

Table 3
Number of probes required to re

construct the coefficient in the 
reduction of the two-loop dipho

ton plus jet amplitude.

Method Number of Probes 
This work 169 132
FireFly 163 094
Optimal 30 490

Table 4
Number of required probes after removing the overall mono

mial prefactor. The FiniteFlow entries do not include a few 
hundred probes used for degree determinations.

Method Number of Probes 
This work 169 132
FireFly 129 894
FiniteFlow ≳ 49 216
FiniteFlow with FFPolyVandermonde ≳ 47 381
Optimal 30 490

flavours by 𝑛𝑓 , the number of colours by 𝑁𝐶 , and the parity transfor

mation operator by 𝑃 , the reduction has the structure

1 + 𝑃

2 

⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦
𝑛𝑓=0

= 𝑐−2𝑁
−2
𝐶

+ 𝑐0𝑁
0
𝐶
+ 𝑐2𝑁

2
𝐶
, (15)

where 𝑐−2, 𝑐0, 𝑐2 are linear combinations of pentagon functions [42] with 
rational coefficients. From 𝑐0 we select the largest of these coefficients 
by Mathematica’s ByteCount. We write this coefficient as a rational 
function in 𝑥23, 𝑥34, 𝑥45, 𝑥51, where 𝑥𝑖𝑗 =

𝑠𝑖𝑗

𝑠12
, and

𝑠12 = (𝑝1 + 𝑝2)2, 𝑠23 = (𝑝2 − 𝑝3)2,

𝑠34 = (𝑝3 + 𝑝4)2, 𝑠45 = (𝑝4 + 𝑝5)2, 𝑠51 = (𝑝1 − 𝑝5)2

are Mandelstam invariants. After determining the numerator and de

nominator degrees our ansatz according to equation (8) contains 136 934
unknown coefficients. However, the actual rational function is much 
sparser than in the example in section 4.1 and only approximately 22%
of these coefficients are non-zero. In this example, the full coefficient 
can be reconstructed using a single prime field. We collect the number 
of required probes in Table 3.

The scaling algorithm introduced in section 3 performs slightly worse 
than FireFly’s reconstruction. Both algorithms are far from optimal 
for this scenario, requiring more than five probes for each unknown 
coefficient.

The number of required reconstruction probes after removing an 
overall monomial factor 𝑥223𝑥

2
34𝑥

2
45𝑥

2
51 is shown in Table 4. As in sec

tion 4.1, we see no improvement for the implementation of the algo

rithm presented in this work. In contrast, FireFly needs approximately 
20% fewer function evaluations than before. Most strikingly, Finite
Flow is much closer to optimal than both FireFly and the scaling 
reconstruction implementation, especially when using the FFPolyVan
dermonde alternative polynomial reconstruction method. Even when 
enabling its identification of univariate factors, FireFly still requires 
87 485 probes, substantially more than FiniteFlow. This difference 
between FiniteFlow and FireFly is unexpected and deserves closer 
inspection. However, since the focus of the present work is on the scal

ing algorithm and dense reconstruction, we leave further investigation 
to future work.
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5. Conclusion

I have presented an algorithm for the reconstruction of dense multi

variate rational functions. Multiple variables are mapped onto a single 
variable, using scaling powers and shifts chosen such that the mapping 
can be inverted. In this way, the problem is reduced to well-known uni

variate rational reconstruction.

The algorithm is tested on two examples taken from complex reduc

tions to basis integrals, a massive four-loop propagator and a two-loop 
five-point amplitude. For the dense rational function encountered in the 
four-loop problem, the required number of probes exceeds the number 
of unknown coefficients by only about 7%. This compares favourably 
with the current state-of-the-art programs FireFly [4,5] and Finite
Flow [7].

In the sparse two-loop example, the number of probes needed is 
about 4% above the FireFly result when disabling factorisation. How

ever, a comparison to FiniteFlow reveals that in this case there is 
substantial room for improvements for both FireFly and the presented 
algorithm. A further promising avenue for future research would be to 
combine the univariate mapping with sparse rational reconstruction in 
a single variable, see e.g. [43].
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