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Abstract: The atomic structures of Zn and Na borophosphate glasses were studied using X-ray and
neutron scattering techniques. Peaks assigned to the B−O, P−O, and O−O distances confirm that
only BO4 units co-exist with the PO4 tetrahedra. The Zn−O and Na−O coordination numbers are
found to be a little larger than four. The narrowest peaks of the Zn−O first-neighbor distances exist
for the glasses along a line connecting the Zn(PO3)2 and BPO4 compositions (50 mol% P2O5), which
is explained by networks of ZnO4, BO4, and PO4 tetrahedra with twofold coordinated oxygens.
The calculated amounts of available oxygen support this interpretation. Broadened peaks occur for
glasses with lower P2O5 contents, which is consistent with the presence of threefold coordinated
oxygens. The two distinct P−O peak components of the Zn and Na borophosphate glasses differ in
their relative abundances. This is interpreted as follows: Na+ cations coordinate oxygens in some
P−O−B bridges, which is something not seen for the Zn2+ ions.
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1. Introduction

The addition of B2O3 to phosphate glasses improves their chemical durability [1] and
makes these glasses suitable for a variety of applications. Dissolution rates and thermal
stability are optimized for biomedical use [2]. No tendency toward devitrification was
observed in the rare-earth doped fibers of Na/Nb borophosphate glasses [3]. Borophos-
phate glasses with alkali modifiers are of particular interest due to their promising ionic
conductivities and large glass-forming ranges extending into the P2O5- or B2O3-rich com-
positional regions [4]. The observation of maxima in ionic conductivity, for example, in
the glasses (A2O)0.35[(B2O3)x(P2O5)1−x]0.65 at x = ~0.4, gave rise to the introduction of
the term mixed network-former effect [5] (A2O—alkali oxide). A striking feature of the
mixed glassy networks with compositions rich in P2O5 is that the boron forms exclusively
tetrahedral BO4 units with the corners mostly linked to phosphate tetrahedra but also
to some neighboring BO4 units [6–11]. The higher cationic mobility with increasing x is
accompanied by increasing cross-link densities of the borophosphate networks. At the
B2O3-rich end, the BO4 fractions decrease, replaced by BO3 units, to those values known
according to the boron anomaly of binary alkali borate glasses [12].

The BO4 formation in the P2O5-rich glasses with predominantly B−O−P bridges
in the tetrahedral corners expresses the usual effect of additional oxygen in the phos-
phate networks, namely the disruption of P−O−P bridges [13]. The BPO4 crystals [14,15]
illustrate the mutual benefit for the PO4 and BO4 tetrahedra. They possess balanced va-
lences of 1.25 and 0.75 vu (valence units) in their four bonds with P−O and B−O bond
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lengths of ~0.152 and ~0.147 nm, respectively. The few known borophosphate crystals,
e.g., Na3BP2O8 [16], Na5B2P3O13 [17], and Zn3BO3PO4 [18], have structures where the
phosphate networks are already fully dissolved (no P−O−P bridges). Crystalline analogs
for the glassy borophosphate networks are missing in the regions of samples that are rich
in P2O5.

The present work aims to clarify the structural role of ZnO in the borophosphate
networks and compare that role to the one played by Na2O in two similar compositions.
The glass-forming range of binary ZnO-B2O3 glasses is small [19] and ternary glasses with
small P2O5 contents (<30 mol%) are difficult to obtain [13,20–22]. Raman spectroscopy,
X-ray photoelectron spectroscopy (XPS), high-pressure liquid chromatography (HPLC), and
31P or 11B MAS NMR have provided detailed information on the structural evolution of the
Zn-borophosphate networks whose chemical compositions are given in Figure 1a. B−O−B
bridges alongside P−O−P bridges contradict the usual scheme of fully depolymerized
phosphate networks [23]. This behavior was explained by the stronger acidity of the glass-
former B2O3 [13], when compared, e.g., with Al2O3 in phosphate networks [24]. Most stud-
ies on the mixed network-former effect use a series of constant modifier contents, [6,10,11]
as shown in Figure 1a. Other series have fixed O/P ratios, e.g., for the Zn alumino- and
borophosphate glasses [13,24]. The O/P ratios determine the mean number of PO4 corners
in P−O−P bridges provided that all oxygen belongs to at least one PO4.
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numbers in (b) mark the Zn borophosphate glasses of the present work. In addition to the ZnO and 
P2O5 contents, the ONB/Zn and OB/B ratios for the binary samples are given. Borophosphate glasses 
of compositions 8 and 13 with Na2O instead of ZnO were also measured. 

For describing the borophosphate networks, the labels P௠୆௡   and B௠୔௡   were intro-
duced to describe the PO4 and BO4 (BO3) units with the bridges P−O−P, B−O−B, and P−O−B 
[6–8]. The superscript n is the total number of bridging corners of the P- or B-centered 
units, while the subscript m gives the number of heteroatomic bridges. The corresponding 
fractions of groups can be widely resolved by 31P and 11B MAS NMR [6–11] and were use-
ful for developing quantitative descriptions of the compositional dependence of the net-
work structures. These models, however, are not used to analyze the Zn- and Na-centered 
oxygen polyhedra in the borophosphate glasses, which is the focus of the present work. 
Here, the critical parameter will be the number of P−O bonds that do not link to neighbor-
ing PO4 tetrahedra, which will ultimately determine the coordination environments of the 
Zn- and Na-ions. Therefore, besides the P௠୆௡  and B௠୔௡  units, the PO4 units will still be 
characterized by the common Qn nomenclature, where the superscript n gives the number 
of PO4 corners in P−O−P bridges with possible n = 3, 2, 1, or 0 [23]. The oxygens of binary 
phosphate glasses are divided into OB (bridging in P−O−P) and ONB (non-bridging in other 

Figure 1. Compositions of the ternary zinc and alkali borophosphate glasses as reported in the
literature (a) and measured in this work (b). The upper three citations [13,20–22] in (a) belong to ZnO-
B2O3-P2O5 glasses, and the others [6,7,10,11] to alkali (A2O) borophosphate glasses. The red dots
with numbers in (b) mark the Zn borophosphate glasses of the present work. In addition to the ZnO
and P2O5 contents, the ONB/Zn and OB/B ratios for the binary samples are given. Borophosphate
glasses of compositions 8 and 13 with Na2O instead of ZnO were also measured.

For describing the borophosphate networks, the labels Pn
mB and Bn

mP were introduced to
describe the PO4 and BO4 (BO3) units with the bridges P−O−P, B−O−B, and P−O−B [6–8].
The superscript n is the total number of bridging corners of the P- or B-centered units, while
the subscript m gives the number of heteroatomic bridges. The corresponding fractions
of groups can be widely resolved by 31P and 11B MAS NMR [6–11] and were useful
for developing quantitative descriptions of the compositional dependence of the network
structures. These models, however, are not used to analyze the Zn- and Na-centered oxygen
polyhedra in the borophosphate glasses, which is the focus of the present work. Here,
the critical parameter will be the number of P−O bonds that do not link to neighboring
PO4 tetrahedra, which will ultimately determine the coordination environments of the
Zn- and Na-ions. Therefore, besides the Pn

mB and Bn
mP units, the PO4 units will still be

characterized by the common Qn nomenclature, where the superscript n gives the number
of PO4 corners in P−O−P bridges with possible n = 3, 2, 1, or 0 [23]. The oxygens of
binary phosphate glasses are divided into OB (bridging in P−O−P) and ONB (non-bridging
in other bonds). In detail, the OB atoms of the borophosphate glasses can form P−O−P,
P−O−B, and B−O−B bridges, where some of them have modifier cations in their vicinity.
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A complete description of all combinations of nearest neighbors is a challenging task. The
knowledge of the binary systems is helpful to start.

In binary (ZnO)x(P2O5)1−x glasses with 0.33 ≤ x ≤ 0.5, the Zn−O coordination number
(NZnO—the number of oxygens surrounding a Zn site) decreases from six to four with
increasing zinc oxide content [25–27]. The minimum NZnO of four is reached at 50 mol%
P2O5 [28]. In this compositional range, the NZnO value follows the ONB/Zn ratio = 2/x,
indicating real Zn−O−P bridges [25]. The ONB/Zn ratio of the binary system is given on
the left axis of Figure 1b. For glasses with x > 0.5, increasing fractions of ONB must share
two Zn neighbors. The P−ONB bonds of the Qn with n = 3, 2, 1, and 0 show decreasing
bond valences with 2.0, 1.5, 1.33, and 1.25 vu (valence unit) [23]. Thus, the electron charges
on the ONB increase, and are to be balanced by the Zn-ions. The Q1 and Q0 groups supply
a sufficient charge to their ONB to be shared by two Zn2+ that still form ZnO4. The bond
valence is not strictly fixed for a given P−ONB in a Qn. The P−ONB bond distances show
variations according to the demands of their local environments. For example, the bond
valence P−ONB of the Q3 is a little less than 2.0 vu if this ONB coordinates a Zn [26]. For
x > 0.5, the ONB atoms shared by two Zn cause some elongated Zn−O bonds if compared
with those in Zn−O−P bridges. This effect broadens the peak of Zn−O distances. Also,
the Zn−O coordination can exceed the number four in the binary glasses of the phosphate-
rich compositions (x < 0.5) [29]. A broadening of the Zn−O peaks is expected, as well,
because of longer bonds associated with the ZnO5 or ZnO6 that account for the increasing
NZnO > 4 [25–27].

This work will mainly focus on the variations in the Zn−O distance peaks; the P
and B environments and the borophosphate networks were characterized in a preceding
work [13]. In addition to the glasses along a line from Zn(PO3)2 to BPO4 with fixed 50 mol%
P2O5, two series with fixed O/P ratios are chosen for the diffraction study. An earlier
measured sample of a binary Zn borate glass is adopted for discussing the change in the
ZnOm units for a glass being free of P2O5. Two additional samples contain Na2O instead of
ZnO to investigate the different effects of the Na+ and Zn2+ cations on details of the P−O
bond lengths.

2. Materials and Methods
2.1. Samples

The zinc borophosphate glasses were prepared as described in a preceding work
(Freudenberger and Brow [13]). The raw materials ZnO (99.5+%, Acros Organics, Waltham,
MA USA), H3BO3 (cer. ACS, Fisher Scientific, Rochester, NY USA), and H3PO4 (85%,
Fisher) were mixed to obtain glasses with the nominal compositions as given in Figure 1b
and Table S1 (Supplementary Material). The samples are labeled zbp01 and so on according
to their numbers given in Figure 1b. Two Na borophosphate glasses with labels nbp08
and nbp13 were prepared using Na2CO3 (99.5%, Alfa Aesar, Ward Hill, MA USA) as a
raw material. The mixtures were calcined in platinum crucibles for 16 h at 350 ◦C. The
duration of melting was two hours at temperatures in the range of 1000–1225 ◦C. The
melts were quenched in preheated carbon molds. The clear glasses were annealed for one
hour at temperatures of 400–550 ◦C (each at 10 ◦C below the respective glass transition
temperature) [13]. The chemical analyses of the Zn borophosphate glasses of the preceding
study [13] gave a loss of P2O5 content from 0 to 6 mol% with uncertainties of ~2.5 mol%.
It was decided to start the data analyses with the batch compositions. The mass densities
were measured using the Archimedes method. Two samples (zbp04, zbp11) exceed the
range of homogeneous glasses that was reported in [22].

2.2. X-ray Scattering

The X-ray scattering (XRD) experiments were performed at the synchrotron (storage
ring PETRA III at DESY Photon Science Hamburg/Germany). The hard photons at the
beamline P02.1 have fixed radiation energies of ~60 keV. The exact wavelength of the
incident beam (0.02080 nm) and the sample–detector distance (249.9 mm) were calibrated
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with the diffraction pattern from CeO2 powder. The beam size was 0.5 × 0.5 mm2. Thus, the
beam is narrower than the silica capillaries (diameter 1 mm and wall thickness ~10 µm) that
contain the powdered sample material. The beam stop between the sample and detector
was fixed on a Kapton foil. The image-plate detector (Perkin Elmer 1621; Perkin Elmer
Optoelectronics, Wiesbaden, Germany) used in these experiments is sensitive to photons of
radiation energies > 20 keV. The samples were irradiated five times for one second with a
full duration of the measurement equal to one minute per sample. The two-dimensional
scattering images were merged to functions of the scattering angle 2θ. Further details
on the instrument and first data analysis are described elsewhere [30]. The scattering
intensities were corrected for container scattering, background, and absorption. The final
intensities Icorr(Q) were normalized to the structure-independent scattering, which makes
use of the chemical compositions of the samples and the tabulated atomic data of coherent
and Compton scattering Icompt(Q) [31,32]. The final X-ray structure factors SX(Q) are given
by the following:

SX(Q) =
[

Icorr(Q)·N− < f 2(Q) > − Icompt(Q)
]
/< f (Q) >2 (1)

where <. . .> means the average of the sample composition and f (Q) is the coherent atomic
scattering amplitude. The normalization factor N allows SX(Q) to oscillate around unity.
Smoothly changing corrections improve the behavior in the upper end of the Q-range. The
scattering data of the zbp14 sample were obtained in an earlier laboratory experiment
using Ag Kα radiation. A recent work [19] improved the knowledge of the range of binary
Zn borate glasses from 54 to 70 mol% ZnO. Glasses with a smaller ZnO content show the
separation of a B2O3-rich phase during melting. The Raman spectrum of the clear part
of the glass with a 50 mol% batch is identical to that of the 54 mol% glass [19]. Hence,
54 mol% ZnO is also used for analyzing the data of the zbp14 sample instead of its batch
composition of 50 mol%.

2.3. Neutron Scattering

The neutron scattering experiments were performed using the GEM instrument of
the neutron spallation source ISIS of the Rutherford Appleton Laboratory (Chilton/UK).
Measurements were made for six of the fifteen samples (zbp05, zbp07, zbp09, zbp11,
zbp13, nbp13). The powdered sample material was loaded into thin-walled vanadium
cylinders (diameter: 10.33 mm for all samples). The cylinder wall is a vanadium foil which
is only 0.025 mm thick. The duration of data acquisition was at least 5 h per sample. A
vanadium rod was used to determine the incident energy spectrum that is needed for the
data normalization in the time-of-flight regime. The data were corrected using standard
procedures for container and background scattering, attenuation, multiple scattering, and
inelasticity effects [33]. Since natural boron with 20% of the strongly absorbing isotope
10B was used, a strong wavelength-dependent neutron absorption occurs. The corrections
proved to be reliable even for up to 8% of boron atoms in the zbp11 sample. The differential
scattering cross-sections of the detector groups 2, 3, 4, and 5 (scattering angles 14◦–109◦)
are normalized to the mean scattering that is calculated from the sample compositions
and tabulated neutron scattering lengths. Finally, the neutron structure factors SN(Q) were
obtained in analogy to Equation (1).

3. Results

The corrected and normalized X-ray structure factors of the borophosphate glasses
are shown in Figure S1. The SX(Q) data of the samples zbp04 and zbp11, which are
close to the border of glass formation [22], show small Bragg reflections of tiny crystalline
fractions. Statistical noise is no issue in the measurements using image plates. The neutron
scattering experiments of six samples cover large Q-ranges, which bears the advantage of
an excellent real-space resolution. The neutron diffraction results are shown in Figure 2 by
the interference functions, which are weighted by the factor Q. The experimental data are
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compared with model curves composed of damped sinusoidal functions. These oscillating
functions in the scattering intensities are the pendant to Gaussian peaks in the real-space
correlation functions T(r). The model curves are calculated by the parameters given in
Table S2 as obtained from the subsequently described Gaussian fitting. The T(r) functions
are Fourier transforms of the experimental S(Q) data with the following:

T(r) = 4πrρ0 +
2
π

∫ Qmax

0
Q[S(Q)− 1]M(Q)sin(Qr)dQ . (2)

The number densities of atoms, ρ0, are calculated from the mass densities and glass com-
positions given in Table S1. The T(r) functions are calculated with Qmax = 183 nm−1

(X-rays), 400 nm−1 (neutrons), and M(Q) = 1. According to Lorch, a damping M(Q) with
Qmax = 200 nm−1 (X-rays) and 500 nm−1 (neutrons) was used for a second series of T(r)
functions. The Gaussian fitting procedures of the first-neighbor peaks were applied to
both series of T(r) functions, where the effects of truncation at Qmax, M(Q) damping, and
the Q-dependence of the partial weighting factors in the case of X-rays are taken into
account [34,35]. Good fits for the first-neighbor peaks were obtained for all X-ray T(r)
functions, whereas the fits of the Zn−O (Na−O) peaks in the neutron T(r) functions were
not as good for some cases. Several comparisons of the model T(r) functions with the
experimental T(r) functions are exemplified in Figures 3, 4 and S2–S4. The resulting peak
parameters are listed in Table S2.
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Figure 4. X-ray correlation functions T(r) as obtained without damping (M(Q) = 1) for the series with
fixed P2O5 content (a) and fixed O/P ratio (b). Except for zbp01 and zbp05 samples, the baselines of
the data are shifted up for visual clarity. The experimental curves (black dots) are compared with the
total model functions (thick red lines) and the partial Zn−O peaks (thick olive lines). The other partial
model peaks are given with thin lines (B−O—magenta; P−O—blue; O−O—orange and purple). The
two model O−O peaks correspond to different edge lengths of the BO4 and PO4 units.

The combination of X-ray and neutron scattering does allow the separation of the
B−O and P−O bonds due to the different changes in scattering contrast. Nevertheless,
NBO = 4 was fixed in this analysis, which is consistent with previous 11B MAS NMR studies
that showed that BO4 units were dominant in the structures of the full compositional range
of the investigated borophosphate glasses [8,13,21,22]. In scattering experiments, the limit
of detection for the presence of any BO3 fractions is of poorer certainty (±10%). The bond
length of 0.147 nm for the BO4 is taken from related crystals [14–17] and is used together
with a reasonable peak width to fit the scattering data.

For the binary ZnO-P2O5 glasses (zbp01, zbp05), the P−O peak is based on two bond
lengths, P−ONB and P−OB, which differ by ~0.010 nm [26,36]. These fractions are directly
determined from the P−O peaks in the T(r) of zbp05 from neutron diffraction (Figure 3).
The bond fractions are also calculated from the O/P ratio that corresponds to the average n
of the Qn distributions [23]. Here, the corresponding relation is also applied to the ternary
glasses, assuming that the P−O bonds in P−O−B bridges are only insignificantly longer
than those in P−O−Zn bridges. The necessary changes in the bond fractions to achieve
excellent fits are small for the P−O peaks of all samples. However, the bond fractions
calculated from O/P ratios are not correct for glasses with B−O−B bridges. Additional
P−O−P bridges must also form [13]. The observed P−O bonds of the Na borophosphate
glasses show slightly different behavior. Both deviations are discussed in Section 4.3.

Finally, the two P−O distances give a satisfactory approximation of the P−O peaks for
all samples. Two samples show total NPO values of 3.6, which differs from the expected 4.0
by more than the common uncertainty. That can be due to a slightly changed composition
for the zbp11 sample because its NZnO appears quite large. The deviation for zbp06 must be
due to a normalization problem. In the case of all other samples, the NPO values are quite
reasonable, which gives support to the use of the batch compositions for these analyses.
The O−O peaks at 0.25 nm belong to the edges of the BO4 and PO4 units. The numbers of
the tetrahedral edges were calculated from the fractions of the BO4 and PO4 units according
to the batch compositions (Table S1). The calculation of the NOO value of the Zn borate glass
zbp14 takes into account the fractions of the BO4 and BO3 units according to NBO = 3.3,
which equals the result from 11B MAS NMR [19]. The successful fits of the huge O−O
peaks in the case of the neutron T(r) functions support the choice of this approach. The
edge length of the BO4 tetrahedron was fixed to 0.241 nm as taken from a crystal [14], and
that of the PO4, which was close to 0.252 nm, was adjusted a little for each case.

Good fits of the metal cation–oxygen distances are possible up to ~0.27 nm. That is
the lower limit of the B−O, P−O, and O−O second-neighbors with unknown numbers
and distances. The overlaps with the O−O distances of the BO4 or PO4 tetrahedral edges
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are no issue in the fits. The contrast change of X-ray and neutron scattering differs for
the O−O and Zn−O (Na−O) correlations. In addition, the calculated O−O peaks gave
reasonable fits.

The scattering weight of the Zn−O partial correlation is larger for X-rays than for
neutrons. Therefore, T(r) fitting in the range of the Zn−O distances was made to the
X-ray correlation functions independent of the neutron data. The high-energy XRD has
several advantages, including low absorption, and thus little demand for precise sample
positioning. On the other hand, the real-space resolution of the neutron data is so good
that termination effects are nearly vanishing. Oscillations caused by termination at Qmax in
Equation (2) are visible only for the narrow B−O and P−O peaks, but not for the others
(cf. Figure 3). The positions and shapes of the obtained Zn−O peaks are reproduced in
the neutron data. The full peak heights are not reached for the zbp11 and zbp13 samples
(Figure S3). The Zn−O partial of zbp11 has a small scattering weight for neutrons (only 5%)
and large corrections for the highly absorbing boron content were needed. It is noteworthy
that the fits to the T(r) functions obtained with Lorch damping gave equivalently good
results. Figure S4 shows both variants of fits for the sodium borophosphate glass nbp13.
The Na−O distances overlap with the O−O peaks. The X-ray data show a good fit for
the broad Na−O peak with four oxygen neighbors at distances centered at 0.238 nm
(Table S2). The neutron T(r) functions show unphysical features at ~0.185 nm, as indicated
in Figure S4.

The present work aims to clarify how the glass composition affects the Zn−O envi-
ronment. At first glance, the results are disappointing in that interesting changes are not
observed. The Zn−O coordination numbers given in Figure S5 are almost constant at ~4.4,
showing a slight increase toward smaller ZnO contents. The NZnO values of zbp06 and
zbp11 are considered outliers. It is noteworthy that these are also the samples with small
NPO values = 3.6. Commonly, the bond lengths increase with NZnO and the mean distances
can be used as a criterion for the NZnO values. The ZnO4, ZnO5, and ZnO6 units have
mean bond lengths of 0.194, 0.205, and 0.209 nm, respectively, as found in related crystal
structures [37–39]. The Zn−O distances in the glasses have been reported with 0.194 nm
for ZnO4 [28] and 0.209 nm for ZnO6 units [26]. In the present work, the Zn−O distances
vary from 0.196 to 0.199 nm, with changes only a little outside the uncertainty interval (cf.
Figure 5); these lengths were consistent with the obtained coordination numbers, which
were found to be a little larger than four. A careful inspection of the bond lengths of the
series with constant O/P = 3.25 (Figure 5b) identifies the shortest bonds for the zbp09
sample. This sample is also a member of the series of constant 50 mol% P2O5 (Figure 5a),
where systematic distance changes were not observed. The Zn borate glass (zbp14) has an
NZnO value of 4.3 and the largest detected Zn−O bond length of all samples at 0.200 nm
(cf. Table S2). The Gaussian fit of this sample was repeated using the batch composition of
50 mol% ZnO instead of the 54 mol% taken from [19]. The two NZnO values do not differ,
which is explained by a compensation of the compositional Zn decrease and O increase in
the calculation of the Zn−O weighting factors. In the case of using 50 mol% ZnO, however,
an NBO of only 2.9 was obtained.

The Zn−O peaks in the total X-ray T(r) functions (Figure 4) do not show significant
changes. A further way to compare them is by considering the model peaks, which are here
presented by the radial distribution functions. These Zn−O model peaks were calculated
with the parameters obtained from Gaussian fitting and these peaks are compared with the
bond lengths in the related crystals. This approach was recently used for binary phosphate
glasses [27], where it was shown that the termination effects of the Fourier transformation
(broadening and oscillations) and the influence of the changed scattering weights as the
ZnO content changes are widely eliminated. The full widths at half maximum (fwhm) of
these model peaks are shown in Figure 6. Again, a minimum is found for the zbp09 sample
in the series in Figure 6b, whereas the values in Figure 6a do not show any clear trend. The
Zn−O model peaks of all samples are shown for the three series of constant P2O5 content
or constant O/P ratio (cf. Figure 7). For better comparability, the peaks of the glasses
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are given with identical heights. The peaks of the ZnO4, ZnO5, and ZnO6 units from the
crystals show significant differences in the bond lengths. For all three series, the peaks of
the glasses are close to that of the ZnO4 units known from the β-ZnP2O6 crystal [37]. The
ZnO4 polyhedron of β-ZnP2O6 has a fifth oxygen nearby. Hence, the small contributions at
~0.230 nm found for all samples can be interpreted as real distances. Significant differences
exist at ~0.215 nm. The peaks of the glasses with a constant 50 mol% P2O5 content shown
in Figure 7a have small numbers of such distances and change very little. The samples
outside the line of 50 mol% (cf. Figure 1) have significantly more Zn−O bonds at ~0.215 nm
as becomes visible in Figure 7b,c. The differences appear very pronounced for the samples
shown in Figure 7c. The zbp12, zbp13, and zbp14 samples have visibly more distances at
~0.215 nm than zbp04, due to bond lengths that belong to fractions of ZnO5 or ZnO6 units
or shared ONB. This behavior is also found for zbp05, zbp06, zbp07, and zbp11 in Figure 7b.
Among them, zbp11 is the only sample with a P2O5 content > 50 mol% (cf. Figure 1b).
According to the large uncertainties of the measured coordination numbers, the behavior
shown by the bond lengths is a better basis for discussing the Zn−O environments in the
Zn borophosphate glasses. To support this statement, the fractions of the long bonds are
calculated with Nlong/(Nshort + Nlong) and given in Figure S6. The Nshort and Nlong values
are the numbers of oxygen neighbors at 0.194 and ~0.212 nm, as given in Table S2. Similar
to the fwhm in Figure 6, the Nlong fractions for the series with constant 50 mol% P2O5
(Figure S6a) do not show systematic changes, whereas the minimum of long bonds in the
series with the O/P ratio of 3.25 is found for the zbp09 sample (Figure S6b).
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Figure 5. The Zn−O first-neighbor distances for two series of the Zn borophosphate glasses:
(a) constant P2O5 content, (b) constant O/P ratio. The black squares denote the values corresponding
to typical bond lengths. The red circles are values that include the contributions being a little longer
with ~0.23 nm. To assign sample numbers, see Figure 1b. The equal values at 12.5 mol% B2O3 in
(a) and (b) belong to sample zbp09.
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Figure 6. Full widths at half maximum (fwhm) values of the model Zn−O peaks as shown in Figure 7
for two series of the Zn borophosphate glasses: (a) constant P2O5 content, (b) constant O/P ratio.
To assign sample numbers, see Figure 1b. The equal values at 12.5 mol% B2O3 in (a,b) belong to the
zbp09 sample.
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4. Discussion
4.1. Fully Tetrahedral Networks and the Ratio ONB/Zn

The Zn borophosphate glasses have the potential to form continuous disordered net-
works of corner-connected tetrahedra with all oxygen atoms being two-fold coordinated.
The Zn metaphosphate glass (50 mol% P2O5) has been considered a continuous tetrahedral
network for a long time now [40], which is manifested in its properties [41]. This classifi-
cation is not entirely accurate because the Zn−O coordination number is slightly larger
than four, which is also reflected in the corresponding bond lengths (Figures S4 and 5).
The ZnO4 units of the β-Zn(PO3)2 crystal [37] show a fifth Zn−O bond of 0.28 nm in
length. Similarly, a few longer distances exist for the investigated glasses. Nevertheless, the
metaphosphate glass zbp01 and the borophosphate glasses of 50 mol% P2O5 (zbp02, zbp09,
zbp03, and zbp04) show the narrowest Zn−O peaks, together with the smallest distance
contributions at ~0.212 nm (Figures 7a and S6); this is evidence that a great majority of Zn
ions are in tetrahedral units that have their four corners in Zn−O−P linkages.

The Zn−O peaks of the samples possessing less than 50 mol% P2O5 show increased
contributions at ~0.212 nm that indicate ONB shared by two Zn. A significant increase in
the corresponding NZnO is not detected. Two samples (zbp10, zbp11) of the series with
the fixed O/P ratio of 3.25 have more than 50 mol% P2O5. The zbp11 sample shows
significantly increased values of NZnO, rZnO, and peak width (fwhm). In this case, the
ONB/Zn ratio is larger than four, and some larger units than ZnO4 are formed. Similar to
the binary ZnO-P2O5 system [25,26,42], the borophosphate networks behave in such a way
that avoids PO4 units (Q3, Q2) with terminal P=O double bonds. The possible second bond
partner of this oxygen is Zn but not B, for reasons of bond valences. This is in contrast to
what has been found for the Zn aluminophosphate glasses, where the Al3+ cations form
AlO5 and AlO6 units for the P2O5-rich and ZnO-poor compositions [24]. This structural
flexibility of Al allows the glass-forming range to reach the binary Al2O3-P2O5 border.
However, similar to the BPO4, the range of the AlPO4 composition is excluded for its strong
crystallization tendency.

On the side of the binary B2O3-P2O5 system, BPO4 crystals [14,15] are known, but
disordered networks of PO4 and BO4 units are not formed. The structure of BPO4 consists
of P4

4B and B4
4P units, each connected via their four corners by P−O−B bridges. Figure 8a

shows the bond valences in the BPO4 crystals formed by these units. The tetrahedral
network in the Zn(PO3)2 metaphosphate glass consists of P2

0B and ZnO4 units (Figure 8b).
If one connects the Zn(PO3)2 and the BPO4 compositions (50 mol% P2O5) in Figure 1, their
mixture could create networks of ZnO4, BO4, and PO4 units whose corners are connected
exclusively by twofold coordinated oxygens. That behavior receives support from the
narrow Zn−O distance peaks (Figure 7a). However, the question arises as to how the
structures made of Zn(PO3)2 and BPO4 with mixed P2

0B and P4
4B groups can be arranged,

whereby the isolated ZnO4 and BO4 units must be provided with the necessary bond
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valences. Starting from the side of the ZnO-rich glasses, the problem is solved using a
structural speciation reaction:

P2
0B + P4

4B ↔ 2P3
2B (3)

where the oxygens of the P3
2B (a Q1 unit) are shared with one ZnO4, one PO4, and two BO4

units, as shown in Figure 8c. The Q1 groups terminate the phosphate chains. Most ZnO4
corners interact with the remaining Q2 groups while the BO4 tetrahedra connect the Q1

and Q0 groups. Neither the ZnO4 nor the BO4 could exist in isolated sites alone with only
Q1 neighbors (with P1

0B or P4
3B, respectively). The ZnO4 would have to share ONB and the

BO4 would not receive sufficient bond valence. Approaching the composition of the zbp04
sample, nearly all Q2 have changed to Q1 groups. A high ordering of the ZnO4 and BO4
is required so that both groups can receive the necessary bond valences. Fortunately, a
further solution exists for the bond valences, which stabilizes the disordered borophosphate
networks, whereby some of the oxygens that, for example, would form P−O−B bonds,
are instead incorporated into B−O−B bonds, necessitating the concomitant formation of
new P−O−P bonds to produce a weak polymerization of the phosphate network [13]. This
rearrangement is described by the following:
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units. Reactions according to Equation (3) take place in glasses of high Q2 fractions (high
ZnO content), whereas reactions according to Equation (4) dominate when the Q2 units are
already in the minority (equal amounts of ZnO and B2O3). The fraction of oxygens that
are available for coordinating the Zn2+ cations is preserved when the fraction of B4

3P units
changes. Equation (4) does not change the numbers of P−O and B−O bonds, as illustrated
in Figure S7. That allows us to calculate the accurate ONB/Zn without knowing the accurate
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3P fraction and this ONB/Zn ratio largely determines the Zn−O environments.
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Now, the question of how one can divide the oxygen fractions to coordinate the Zn
and B is discussed. Simply knowing the sample composition of the ternary phosphate
glasses is not sufficient for addressing this. The available number of oxygens is derived by
subtracting the number of P−O−P bonds per PO4 and that is calculated from the total O/P
ratio. In analogy to the structural behavior of the Zn phosphate glasses (cf. Introduction),
all oxygens will find two neighbors with decreasing P2O5 content (P, B, Zn) before threefold
coordinated oxygen sites occur. Sophisticated considerations have to take into account the
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different properties of the two sorts of cations besides the P5+ such as charge balance, field
strength, preference of definite oxygen polyhedra, or threefold coordinated oxygen sites.

A general model (model 1) takes into account the different requirements for the charge
compensation of the Zn2+ and B3+ cations. It is assumed that the two cationic species
act independently of each other and are linked to the different Qn with equal probability,
which makes sense for a simple approach. The corresponding ONB/Zn and OB/B values
are obtained with the following:

ONB/Zn = 4(cO − 2 cP)/(2cZn + 3cB) (5)

and
OB/B = 6(cO − 2 cP)/(2cZn + 3cB) (6)

where the ci are the concentrations of the four sorts of atoms. This approach produces
OB/B ratios that are too large (>4) for all samples, as shown in Figure 9, where the ratios
are considered for the series with constant P2O5 contents at 50 mol% (a) and constant O/P
ratios of 3.25 (b). The boron cannot meet this coordination behavior. In other words, the
Zn−O environments and BO4 units cannot form independently of each other. Preferences
for special Qn neighbors, as shown in Figure 8c,d, must be effective. In the range of the
glasses studied, the situation is quite simple because 11B MAS NMR detected only BO4
(no BO3) [13]. When NBO is fixed to the number four for BO4 units, a well-defined fraction
of oxygens is used as bridging oxygens by the borons. Then, the oxygens formed as non-
bridging in the PO4 units are used for the coordination of the zinc (model 2) with the
following ratio:

ONB/Zn = [2(cO − 2 cP)− NBO cB]/cZn. (7)

For glasses with P2O5 contents of 50 mol%, model 2 predicts that ONB/Zn = 4. This
value is exactly what is necessary for isolated ZnO4 units and fully tetrahedral networks
(filled squares in Figure 9a). Differently, the fixed O/P ratios of 3.25 produce a continuous
increase in ONB/Zn with increasing B2O3 content (cf. Figure 9b). For completeness, the
ONB/Zn ratios according to model 2 for the zbp12 and zbp13 samples result in 3.10 and
3.27, respectively.
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Figure 9. Ratios of the available oxygens for coordination of the Zn and B atoms for two series of the
Zn borophosphate glasses with (a) constant P2O5 content of 50 mol% and (b) constant O/P ratio of
3.25. The models are explained in the text. To assign sample numbers, see Figure 1b. The values at
12.5 mol% B2O3 in (a,b) belong to the zbp09 sample.

The ONB/Zn ratio becomes less than four for glasses with P2O5 contents below
50 mol%. Then, two ZnO4 units must share some of their ONB neighbors. The obtained
ONB/Zn ratios are still larger than three, which means a few connected ZnO4 units are
present, but not any interconnected ZnO4 substructures. If one looks at the binary ZnO-
B2O3 glasses obtained with 54 to 70 mol% ZnO [19], theONB/Zn ratios reach only 1.5 to
1.9 (Table S3). For the ZnO4 units existing in these glasses, each ONB is shared by at least
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two Zn and extended substructures of interconnected ZnO4 exist. Octahedral ZnO6 units
were proposed for these glasses [19]. However, EXAFS and X-ray scattering suggest that
ZnO4 units are the dominant moiety [43]. The NZnO value of 4.3 for our Zn borate glass
is similar to those of the borophosphate glasses. Its mean bond length of 0.200 nm is the
largest among those of the other glasses (cf. Figure 7c). The Zn−O distances of zbp14 show
large variations due to the massive need for shared ONB. Highly distorted ZnO5 polyhedra
co-exist beside ZnO4.

Figure 9b shows strongly increasing ONB/Zn ratios > 4 with increasing B2O3 contents.
Thus, a significant increase in NZnO is forced. According to the Zn−O distances (Figures 5b
and 7b), the NZnO of the zbp11 sample is significantly larger than four but it is expected to
be less than five. Otherwise, in the case of NZnO < ONB/Zn, some terminal P=O double
bonds must occur. According to the other limitations of the zbp11 sample (NPO = 3.6), its
P2O5 content should be a little less than the nominal value. The formation of homogeneous
glasses reaches the limit for this sample as reported for such compositions [22].

Model 1 was introduced assuming equal preferences of B and Zn for the oxygens of
the different Qn. The B and Zn would form their environments independently. However,
that is not possible with the limit NBO ≤ 4. For the ZnO-Al2O3-P2O5 glasses, the Al−O
coordination number can increase up to six and the changes of NAlO according to model
1 are possible in a large concentration range. The NAlO values were calculated from the
fractions of the AlO4, AlO5, and AlO6 units, which were determined with 27Al MAS
NMR [24]. One of the glasses is a compositional analog to that of the zbp11 sample.
That Al−O coordination number was 5.2 and close to 5.0, which resulted from model 1
(Figure 9b). The structural analysis of Na2O-Al2O3-P2O5 glasses has shown that all oxygen
is used to break P−O−P bridges [44]. The compositional dependence of NAlO was found
to follow other rules than simply a continuous increase with the ONB fractions. Abrupt
changes from NAlO = 4 to 6 were found [44], which indicates the greater stability of the
AlO4 and AlO6 polyhedra if compared with the AlO5. The Na+ coordinating the oxygens
in Al−O−P bridges is essential for this behavior. Certainly, special preferences with the
different Qn groups exist.

In this work, the different preferences for the oxygens of the Q2, Q1, and Q0 units with
the Zn and B polyhedra are due to the restrictions of the B to BO4 units (model 2). The
different field strengths of Zn2+ and B3+ are not essential in this context. The maximum
limit NBO = 4 made the model considerations comparably simple for the borophosphate
glasses of this study. As long as the NBO value = 4 is less than the OB/B ratio of model 1, the
ONB/Zn ratio can be calculated and it determines the Zn−O environments. The success of
model 2 became obvious in the predicted behavior of the Zn−O distances with the narrow
peaks along the line of 50 mol% P2O5.

4.2. The Stabilization of the BO4 Units and the Boron Anomaly

BO4 tetrahedra and planar BO3 triangles are the units in the crystalline forms of
B2O3 [45,46]. The BO4 unit is the variant with the densest packing and can be formed
provided that its bond valences can be balanced. In the high-pressure B2O3 crystal [45],
charge compensation is realized with oxygens which are threefold-linked to borons. Usually,
glasses are only obtained when there is no or little threefold connected oxygen in the
network. Accordingly, vitreous B2O3 forms BO3 units. Other mechanisms can deplete
electron density from the B−O bonds in the BO4 unit resulting in four bonds with the
necessary valences of ~0.75 vu. The BO4 units in binary borate glasses were identified as
the origin of non-continuous property changes known as the boron anomaly [12].

For the borophosphate glasses, the BPO4 crystals [14,15] show the mutual benefit
for the B and P atoms with a deficit and excess valence electron density in the B−O−P
bridges of the tetrahedral networks (cf. Figure 8a). This type of valence transfer is effective
throughout the Zn borophosphate glasses studied, whereby the BO4 units do not form
B−O−Zn bridges. The typical PO4–Zn interactions are shown in Figure 10a,b, which were
discussed above. The interaction of the Zn with the oxygen sites in P−O−B bridges is
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rather improbable. Each Zn−O bond of a ZnO4 requires a bond valence of ~0.50 vu, which
is too much to be shared with these oxygens. For the same reasons, the oxygen corner
of a ZnO4 unit cannot be the oxygen between two BO3 units or a pair of BO3 and BO4
(analogously to Figure 10g). These circumstances suggest a relation to the lack of glass
formation in the B2O3-rich and P2O5-poor regions of the Zn borophosphate system. There
is one exception; the oxygen sites in B−O−B between BO4 pairs can coordinate a Zn (cf.
Figure 10d), as found in several Zn borate crystals [47–50]. However, this feature is not
sufficient to stabilize any glasses poor in P2O5, but it can occur in the glasses of moderate
P2O5 content until just under 50 mol%.

Solids 2024, 5, FOR PEER REVIEW 13 
 

 

For the borophosphate glasses, the BPO4 crystals [14,15] show the mutual benefit for 
the B and P atoms with a deficit and excess valence electron density in the B−O−P bridges 
of the tetrahedral networks (cf. Figure 8a). This type of valence transfer is effective 
throughout the Zn borophosphate glasses studied, whereby the BO4 units do not form 
B−O−Zn bridges. The typical PO4–Zn interactions are shown in Figure 10a,b, which were 
discussed above. The interaction of the Zn with the oxygen sites in P−O−B bridges is rather 
improbable. Each Zn−O bond of a ZnO4 requires a bond valence of ~0.50 vu, which is too 
much to be shared with these oxygens. For the same reasons, the oxygen corner of a ZnO4 
unit cannot be the oxygen between two BO3 units or a pair of BO3 and BO4 (analogously 
to Figure 10g). These circumstances suggest a relation to the lack of glass formation in the 
B2O3-rich and P2O5-poor regions of the Zn borophosphate system. There is one exception; 
the oxygen sites in B−O−B between BO4 pairs can coordinate a Zn (cf. Figure 10d), as found 
in several Zn borate crystals [47–50]. However, this feature is not sufficient to stabilize any 
glasses poor in P2O5, but it can occur in the glasses of moderate P2O5 content until just 
under 50 mol%. 

 
Figure 10. Characteristic modifier oxygen interactions in the Zn and Na borophosphate glasses and 
crystals: (a,b) one or two Zn bound to an ONB (P−ONB), (c) two Zn bound to an ONB (B−ONB), (d) Zn 
bound to an OB in a B−O−B bridge (Zn2B10O17 crystal [49]), (e) three Na bound to an ONB (P−ONB), (f) 
Na bound to an OB in a P−O−B bridge (Na5B2P3O13 crystal [17]), (g) Na bound to an OB in a B−O−B 
bridge (Na2B8O13 crystal [51]), and (h) three Na bound to an ONB (B−ONB). The numbers indicate the 
bond valences given in valence units (vu). 
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Similar to the ZnO4 units, the Na+ cations have total coordination numbers close to 
four (Table S2). The cation oxygen distance is larger for Na+ and the width (fwhm) of the 
Na−O peak is ~0.042 nm (cf. Figure S8), much more than the ~0.017 nm of the Zn−O peak 
(Figure 6). These parameters express the large flexibility of the Na+ cations to form dis-
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the P or B atoms, which is similar to the Zn−O bonds in Figure 10a–c. Here, the Na-O 
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tion allows the Na+ to approach the OB sites in the P−O−B and B−O−B bridges (cf. Figure 
10f,g). The corresponding oxygens are still quasi-twofold linked. The third partner Na+ 
forms a flexible bond that maintains sufficient flexibility to the disordered network as nec-
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(P−ONB), (f) Na bound to an OB in a P−O−B bridge (Na5B2P3O13 crystal [17]), (g) Na bound to an
OB in a B−O−B bridge (Na2B8O13 crystal [51]), and (h) three Na bound to an ONB (B−ONB). The
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Binary Zn borate glasses are obtained in a small range rich in ZnO [19], where a
significant fraction of ONB in BO3-triangles already exists (ONB/Zn ≥ 1.5). Two Zn2+

cations share each ONB (cf. Figure 10c), which means that at least three such ONB corners
are present in each Zn-O environment. The scattering results of the Zn borate glass (zbp14)
suggest a fraction of ZnO5 units in addition to the ZnO4. The ZnO5 have bonds of unequal
lengths whose two more distant corners can coordinate the oxygens in any B−O−B bridge.
The corner of a ZnO4 can only coordinate an OB in a bridge between two BO4 units (cf.
Figure 10d), as explained in the preceding paragraph.

Similar to the ZnO4 units, the Na+ cations have total coordination numbers close to
four (Table S2). The cation oxygen distance is larger for Na+ and the width (fwhm) of the
Na−O peak is ~0.042 nm (cf. Figure S8), much more than the ~0.017 nm of the Zn−O
peak (Figure 6). These parameters express the large flexibility of the Na+ cations to form
distorted oxygen environments. Figure 10e,h show the interaction of the Na+ with the
ONB of the P or B atoms, which is similar to the Zn−O bonds in Figure 10a–c. Here, the
Na-O bonds are drawn with bond valences of ~0.25 vu as belonging to a NaO4 tetrahedron.
This value can vary according to the distortions of the NaOm polyhedron, including the
variations in m. The Na−O bonds are dominantly ionic, but it is better not to mix the
bond valences and electronic charges in the schematic presentations. The weak Na−O
interaction allows the Na+ to approach the OB sites in the P−O−B and B−O−B bridges (cf.
Figure 10f,g). The corresponding oxygens are still quasi-twofold linked. The third partner
Na+ forms a flexible bond that maintains sufficient flexibility to the disordered network as
necessary for glass formation.

It was emphasized that the BO4 units in the Zn borophosphate glasses with P2O5
contents of ≥50 mol% are charge-balanced by PO4 units (Figure 8). The Zn2+ cations can
approach oxygens in B−O−B bridges only for glasses with a P2O5 content < 50 mol%
and then also contribute to the BO4 stabilization. Of course, the BO4 fractions in the
binary Zn borate glasses [19] are charge-balanced by the Zn2+ cations. What about the
Na borophosphate glasses? One can compare them with the known crystal structures.
The Na2B8O13 crystal, which is free of phosphate [51], shows two mechanisms for BO4
stabilization through Na+. The lengths of the B−O bonds suggest that the surplus negative
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charge of the BO4 is not only balanced by the Na+ coordinating the BO4 corners, but it is
also transferred to the neighboring BO3 triangles. The bond lengths in the BO3 units are
strengthened in B−O−B bridges to the BO4 (~0.134 nm), whereas they are elongated in
bridges to other BO3 (~0.138 nm). Thus, the Na+ cations also act across the BO3 triangles as
neighbors of the BO4. It is to be presumed that there is no serious difference between the
depletion effects of electron density from the bonds in the BO4 in the direction of the PO4
units or the Zn2+ and Na+ cations.

4.3. Different Effects of Zn and Na on the P−O Bond Lengths

The lengths of the P−O bonds in the zbp13 and nbp13 glasses with compositions with
an O/P ratio of 3.5 reveal different effects of the Zn2+ and Na+ cations. Binary phosphate
glasses with the same O/P ratio (pyrophosphates with ONB/OB = 6:1) possess two different
lengths of P−O bonds, the P−ONB and P−OB bonds, with a frequency ratio of 3:1 [23,36].
The obtained distribution of bond lengths of a corresponding glass (ZnPbP2O7 [36]) is
shown in Figure 11, and its structure is illustrated in Figure S9a.
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The neutron diffraction results of zbp13 and nbp13 also show two types of P−O bonds
(cf. Figures S3 and S4). The frequency numbers of the two P−O bonds are obtained with
2.8 and 1.0 for zbp13 and 2.5 and 1.3 for nbp13 (cf. Table S2). The corresponding ratios of
bonds are similar to that of the ZnPbP2O7 glass, though the P−ONB/P−OB ratios of 9:11 for
zbp13 and nbp13 are formally quite different from 3:1 (cf. Figure S9). This difference is
explained by short P−OB bonds in the P−O−B bridges if compared with those in the
P−O−P bridges.

For the zbp13 sample, the ratio is close to 3:1, and the P−O peak agrees with that
of the ZnPbP2O7 glass (cf. Figure 11). The nbp13 sample has a slightly larger fraction of
P−O bonds with lengths of ~0.160 nm. An effect that could increase this P−O fraction is
the formation of B−O−B bridges between two BO4 according to Equation (4), which is
accompanied by additional P−O−P bridges. A borophosphate glass with a composition
close to that of zbp13 has 27.7% boron in B4

3P units [13]. According to the glass composition
of zbp13 and excluding B−O−B bridges, the P−O bonds can be divided into 25% in
P−O−P bridges, 30% in P−O−B bridges, and 45% in P−ONB. A total of 27.7% of the
B in B4

3P units means that there is an increase in the bonds in P−O−P bridges from 25%
to 27%. Therefore, the corresponding increase in the number of longer P−OB bonds is
insignificant (<0.1).

The Na borophosphate glass nbp13 is expected to be almost free of B−O−B bridges,
as has been reported for a similar glass (sample x = 0.125 in [10]). The structures of the
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Na3BP2O8 [16] and Na5B2P3O13 [17] crystals help to understand the larger fraction of the
longer P−O bonds, although the crystal’s compositions differ somewhat from that of nbp13
(cf. Figure 1). The Na borophosphate crystals have isolated PO4 units (Q0). From the point
of view of binary phosphates [23], only a single P−O distance should occur. However, two
distances become obvious (cf. Figure 11). Half of the oxygens of the PO4 units participate in
P−O−B bridges and these oxygens have a Na+ cation in their close vicinity, as illustrated
in Figure 10f. These Na+ stabilize the BO4 but also reduce the bond valence in the adjacent
PO4 (elongation of the P−O bond). The other two PO4 corners coordinate only Na+ cations,
as shown in Figure 10e, and the corresponding short P−O bonds carry the surplus bond
valence taken over from the others. The difference in both P−O bond strengths in these
crystals is a little smaller than that in the zbp13 and ZnPbP2O7 glasses, the latter with bond
valences of 1.33 and 1.0 vu (cf. Figure 11). For the nbp13 glass, the changes in bond lengths
appear less pronounced than in the crystals. Again, 25% of the P−O bonds are in P−O−P
bridges, 30% in P−O−B bridges, and 45% in P−ONB. To achieve the right ratio of the short
and long P−O bonds of the nbp13 sample (2.5:1.3), the fraction of the P−O−B bridges is
split into two parts, those with a Na+ close nearby and those free of any Na+ neighbor.
Then, 30% of the P−O bonds in the P−O−B bridges are elongated, indicating the effect
of a Na+ cation. The other 70% of P−O bonds in P−O−B bridges are not affected by any
Na+ cations and have lengths similar to those of typical P−ONB bonds. This difference
from zbp13 means that the BO4 units in the nbp13 glass undergo charge compensation
equally by Na+ cations and PO4 units. The ZnO4 units in zbp13 contribute less because
their corners do not participate in P−O−B bridges.

Two species of P−O−B bridges are suggested for nbp13 that seem to be easily dis-
tinguishable. One is coordinated to a Na+ cation, and the other is not. On the other hand,
a clear separation of the P−O−B bridges into those with and without a Na+ neighbor
might be questionable due to the large width of the Na−O distance peak. Both P−O
peak components overlay with each other. The analyses of the O 1s spectra (XPS) did
not distinguish two different types of P−O−B bridges in the Na and Zn borophosphate
glasses [8,20]. Nevertheless, the effect of the Na+ on the P−O−B is real and it is not effective
for Zn2+. Another approach supports the fact that only part of the P−O−B bridges of nbp13
can have Na+ neighbors. The total Na−O coordination number is calculated assuming
all oxygens in the P−ONB bonds or P−O−B bridges are present with three or one Na+

neighbors, as shown in Figure 10e,f, respectively. Then, for nbp13, a NNaO value of ~6.0 is
obtained, which noticeably exceeds the value of 4.0 obtained from scattering. Accordingly,
only part of the P−O−B can have a Na+ neighbor (30% as estimated for nbp13). Also, the
ONB shown in Figure 10e can only have 2.3 Na+ neighbors on average instead of 3 Na+

neighbors. These conditions mean that only a third of the Na+ can coordinate the oxygen
in a P−O−B bridge. All other oxygens in the Na−O bonds belong to the P−ONB bonds.
Here, only the behavior of a single sample is discussed. The corresponding relations will
strongly change with the glass compositions.

The ionic forces of Na+ are weak compared to strong P−O and B−O bonds. Therefore,
Na+ does not form dense oxygen environments, e.g., NaO6 octahedra. The broad Na−O
distance peaks (cf. Figure S8) correspond to NNaO values of 4.5 and 4.0 in the glasses and are
thus significantly smaller than those (5 and 6) in the related crystals [16,17], accompanied
by shorter bonds. Likewise, the number and bond valences of the P−ONB bonds in zbp13
(cf. Figure 10b) would allow the Zn2+ to form ZnO6 octahedra, which is not the case.
The strong bonds in the PO4 and BO4 units and the comparatively high cross-linking
density of the borophosphate networks prevent the modifier cations from forming compact
oxygen polyhedra.

The relation between the network structure and the modifier environments was also
used to interpret the mixed network-former effect. The average number of OB per glass-
forming unit, BO, calculated for the yNa2O-xB2O3-(1−x)P2O5 glasses, characterizes the
stiffness of the network [6,10]. This value’s behavior correlates well with the Tg values. A
larger BO means an increasing network stiffness, which is accompanied by more disordered
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modifier environments; in this case, it is the NaOm polyhedron. In addition, the ONB/Na
ratio decreases (Equation (7)). These changes explain the reduced activation energies for
ionic transport when the B2O3 content increases while the Na2O content is constant [6,10].
The average number of bridging corners per network-forming unit, BCNFU, is a more
plausible value with BCNFU = 2 BO. For the borophosphate glasses, it is calculated with
the following:

BCNFU = 2(4cP + NBO cB − cO)/(cP + cB) . (8)

The BCNFU value is two for the P2
0B chain units in the NaPO3 glass. It increases to 2.6 for

the nbp13 sample. Maximum values of ≥3 are reached for a larger B2O3 content until the
potential of the PO4 units to stabilize the BO4 is exhausted and BO3 triangles occur. The
Na−O distances of the two glass compositions are shown in Figure S8. A significant change
in the Na−O peaks is not observed. The small scattering power of Na, if compared with Zn
and the overlap with the O−O distances at 0.25 nm, impede an accurate distance analysis.

Previous diffraction work on Na2O-B2O3-P2O5 glasses [52,53] did not reach such a
large Qmax, which is needed to resolve different P−O bonds. The structural analysis was
made using the Reverse Monte Carlo (RMC) technique, which aimed to elucidate the
mixed network-former effect. A main point was the description of the medium-range order
which includes the migration pathways for the Na+ cations. The analysis of the Na−O
environments in the model configurations gave total NNaO values of ~4.5 with very broad
distributions of the distinct Na sites ranging from a two- to eightfold coordination. The two
distances of 0.152 and 0.156 nm given in [53] for the P−ONB and P−OB bonds are simply
calculated from the RMC configurations, but are not resolved in the measuring results and
thus cannot be compared with our data.

4.4. The Evolution of the Properties of the Zn Borophosphate Glasses

The figures with the mass densities ρ of the ZnO-B2O3-P2O5 glasses in [22] show
a continuous increase with fixed ZnO and increasing B2O3 contents. Glass transition
temperatures Tg show similar trends while the expansion coefficients α change in opposite
directions. The values of ρ and Tg in [13] show similar trends, although the comparisons
are made along constant O/P ratios. It needs to be remembered that the Zn phosphate
glasses have been classified as showing anomalous behavior [40]. The minima of mass
density at 50 mol% ZnO [25,40,54] or Tg values [13,54] at ~60 mol% ZnO are characteristic
of the binary Zn phosphate glasses. Below, the mass densities that were published for the
full range of glass formation in the ZnO-B2O3-P2O5 system are discussed [22]. Packing
densities are better suited for comparisons whereby the influence of atomic size and mass
is widely eliminated. Such comparisons were made for the ZnO-P2O5 glasses recently [27]
by using the ionic radii from [55].

A packing density is the filled volume fraction, assuming the atoms are spheres of
known ionic radii. Since the BO4 tetrahedra have small O−O distances, there is some
overlap of the oxygen spheres with an ionic radius of 0.135 nm; to a lesser extent, there
is also some overlap for the PO4 tetrahedra. A correction was made for this overlap.
The packing densities of the Zn borophosphate glasses obtained from the mass densities
given in [22] are shown in Figure 12 as numbers given close to the sample positions in the
concentration triangle. The absolute minimum at 50 mol% ZnO shows a packing density of
46.4%. This behavior was attributed to being caused by the network of corner-connected
PO4 and ZnO4 tetrahedra with all oxygens in bridges (Figure 8b), a network that fills the
space quite inefficiently [25].

Above, it was shown that the tetrahedral character of the network does not change
when B2O3 replaces the ZnO while 50 mol% P2O5 is fixed. A plateau of ~51% packing
density is reached with 10% B2O3 (Figure 12). This increase is due to the exchange of the
rather open ZnO4 unit for the more compact BO4 unit. There exists a further subtle increase
in the packing density up to ~52.5% in the direction of decreasing P2O5 contents. This fact is
interpreted with the change from P−O−Zn bridges (Figure 10a) to the first ONB shared by
two Zn (Figure 10b) and the exchange of PO4 for BO4 units. Finally, when only isolated PO4
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units exist, then BO3 units with ONB shared by two Zn are also formed (Figure 10c), and
the packing densities still increase. The (ZnO)x(B2O3)1−x glasses with 0.54 ≤ x ≤ 0.67 [19]
with few BO4 connected with BO3 have packing efficiencies of 55% to 53.5%, where the
ONB of the BO3 are shared by two Zn. For the reachable glass compositions, the BO3 units
of the Zn borate glasses have one or two ONB.

Solids 2024, 5, FOR PEER REVIEW 17 
 

 

behavior was attributed to being caused by the network of corner-connected PO4 and 
ZnO4 tetrahedra with all oxygens in bridges (Figure 8b), a network that fills the space quite 
inefficiently [25]. 

Above, it was shown that the tetrahedral character of the network does not change 
when B2O3 replaces the ZnO while 50 mol% P2O5 is fixed. A plateau of ~51% packing den-
sity is reached with 10% B2O3 (Figure 12). This increase is due to the exchange of the rather 
open ZnO4 unit for the more compact BO4 unit. There exists a further subtle increase in 
the packing density up to ~52.5% in the direction of decreasing P2O5 contents. This fact is 
interpreted with the change from P−O−Zn bridges (Figure 10a) to the first ONB shared by 
two Zn (Figure 10b) and the exchange of PO4 for BO4 units. Finally, when only isolated 
PO4 units exist, then BO3 units with ONB shared by two Zn are also formed (Figure 10c), 
and the packing densities still increase. The (ZnO)x(B2O3)1−x glasses with 0.54 ≤ x ≤ 0.67 [19] 
with few BO4 connected with BO3 have packing efficiencies of 55% to 53.5%, where the 
ONB of the BO3 are shared by two Zn. For the reachable glass compositions, the BO3 units 
of the Zn borate glasses have one or two ONB. 

 
Figure 12. The packing densities of the ZnO-B2O3-P2O5 glasses obtained from the mass densities 
given in [22] are given as numbers near the sample positions in the concentration triangle of the 
three components. The values of the packing densities are given in percent. 

5. Conclusions 
The atomic structures of Zn and Na borophosphate glasses were investigated using 

scattering methods. Neutron scattering was successfully performed on glasses with up to 
8% boron atoms, which contains the strongly absorbing 10B isotope in natural abundance. 
The X-ray scattering of high-energy photons using the image plate technique was crucial 
for determining the Zn−O distances. Neutron scattering at the spallation source offered a 
large measuring range (large Qmax), which is a prerequisite for the high resolving power 
of pair distances. Detailed analyses of different lengths of P−O bonds became possible. 

The Zn−O coordination numbers were found to be a little larger than four and did 
not change significantly when changing the glass compositions. What is striking, how-
ever, is that the glasses along a line connecting the BPO4 and Zn(PO3)2 compositions (50 
mol% P2O5) showed the narrowest peaks of Zn−O distances. This indicates the formation 
of tetrahedral networks of PO4, BO4, and ZnO4 with mostly isolated ZnO4 units and no 
B−O−Zn bridges. The calculated amount of the ONB that is available for the Zn−O coordi-
nation supports this interpretation. For smaller P2O5 contents, the Zn share ONB which 
leads to distances of ~0.212 nm and thus, a broadening of the Zn−O peaks. The one sample 
of a P2O5 content larger than 50 mol% shows a subtle increase in NZnO that is accompanied 
by a broadened Zn−O peak as well. The two investigated Na borophosphate glasses have 
Na−O distances similar to those of a NaPO3 glass with coordination numbers of 4 to 4.5, 
while NaO5 and NaO6 polyhedra exist in the related crystals with Na−O distances that are 
a little larger. The first-neighbor distances of the B−O, P−O, and O−O pairs in the real-
space correlations confirm that only BO4 units co-exist with the PO4 in the borophosphate 
networks. 

Figure 12. The packing densities of the ZnO-B2O3-P2O5 glasses obtained from the mass densities
given in [22] are given as numbers near the sample positions in the concentration triangle of the three
components. The values of the packing densities are given in percent.

5. Conclusions

The atomic structures of Zn and Na borophosphate glasses were investigated using
scattering methods. Neutron scattering was successfully performed on glasses with up to
8% boron atoms, which contains the strongly absorbing 10B isotope in natural abundance.
The X-ray scattering of high-energy photons using the image plate technique was crucial
for determining the Zn−O distances. Neutron scattering at the spallation source offered a
large measuring range (large Qmax), which is a prerequisite for the high resolving power of
pair distances. Detailed analyses of different lengths of P−O bonds became possible.

The Zn−O coordination numbers were found to be a little larger than four and did
not change significantly when changing the glass compositions. What is striking, however,
is that the glasses along a line connecting the BPO4 and Zn(PO3)2 compositions (50 mol%
P2O5) showed the narrowest peaks of Zn−O distances. This indicates the formation of
tetrahedral networks of PO4, BO4, and ZnO4 with mostly isolated ZnO4 units and no
B−O−Zn bridges. The calculated amount of the ONB that is available for the Zn−O
coordination supports this interpretation. For smaller P2O5 contents, the Zn share ONB
which leads to distances of ~0.212 nm and thus, a broadening of the Zn−O peaks. The
one sample of a P2O5 content larger than 50 mol% shows a subtle increase in NZnO that is
accompanied by a broadened Zn−O peak as well. The two investigated Na borophosphate
glasses have Na−O distances similar to those of a NaPO3 glass with coordination numbers
of 4 to 4.5, while NaO5 and NaO6 polyhedra exist in the related crystals with Na−O
distances that are a little larger. The first-neighbor distances of the B−O, P−O, and O−O
pairs in the real-space correlations confirm that only BO4 units co-exist with the PO4 in the
borophosphate networks.

Two peaks of P−O bonds are visible for the binary phosphate glasses, which has
been commonly observed. They are assigned to the short P−ONB bonds and the longer
P−OB bonds. This behavior also exists for the ZnO-B2O3-P2O5 glasses whereby, however,
the first peak component includes the ordinary P−ONB bonds together with the bridging
bonds of the P−O−B linkages, according to their similar lengths. Though some B−O−B
bridges exist, the concomitant increase in the fraction of the longer P−OB bonds is small.
On the other hand, significantly larger fractions of the long P−OB bonds are found for the
Na2O-B2O3-P2O5 glasses. Some Na+ cations coordinate oxygens in a part of the P−O−B
bridges which elongates the corresponding P−O bonds. Thus, BO4 units formed in the Zn
borophosphate glasses are charge-balanced by mainly PO4 units while the charge balance
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of the BO4 in the Na borophosphate glasses is realized by the neighboring PO4 and the Na+

cations equally.
The property changes of the ZnO-B2O3-P2O5 glasses seem to be complex. The changes

with the B2O3 additions interfere with the known anomalies of the ZnO-P2O5 glasses that
have a minimum packing density at 50 mol% and a minimum glass transition temperature
at ~40 mol% P2O5.
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