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A B S T R A C T   

Cellular cryo-electron tomography (cryo-ET) has emerged as a key method to unravel the spatial and structural 
complexity of cells in their near-native state at unprecedented molecular resolution. To enable quantitative 
analysis of the complex shapes and morphologies of lipid membranes, the noisy three-dimensional (3D) volumes 
must be segmented. Despite recent advances, this task often requires considerable user intervention to curate the 
resulting segmentations. Here, we present ColabSeg, a Python-based tool for processing, visualizing, editing, and 
fitting membrane segmentations from cryo-ET data for downstream analysis. ColabSeg makes many well- 
established algorithms for point-cloud processing easily available to the broad community of structural bi
ologists for applications in cryo-ET through its graphical user interface (GUI). We demonstrate the usefulness of 
the tool with a range of use cases and biological examples. Finally, for a large Mycoplasma pneumoniae dataset of 
50 tomograms, we show how ColabSeg enables high-throughput membrane segmentation, which can be used as 
valuable training data for fully automated convolutional neural network (CNN)-based segmentation.   

1. Introduction 

In situ cryo-ET has emerged as a powerful method to visualize and 
analyze the 3D structure of cells and sub-cellular architecture (Mahamid 
et al., 2016; Pfeffer et al., 2017; Wilfling et al., 2020; Lučić et al., 2013). 
The 3D volume of a (sub)cellular region, called a tomogram, is recon
structed from 2D projection images acquired on a transmission electron 
microscope in many different orientations (Pyle and Zanetti, 2021; 
Volkmann, 2010). Macromolecular complexes can be identified in the 
tomogram, their spatial arrangement can be analyzed in the native 
environment, and their structure can potentially be determined to near- 
atomic resolution (Lučić et al., 2013; Pfeffer et al., 2017; Wilfling et al., 
2020; Mahamid et al., 2016; Tegunov et al., 2021). Cryo-ET has also 
proven particularly useful in tracing the abundant cellular membranes 
in 3D (Zabeo and Davies, 2022; Lamm et al., 2024; Wietrzynski et al., 
2020). Membrane segmentations can be used to analyze a variety of 
membrane properties such as shape, curvature, or volume to understand 
morphological changes and biological function. These properties can be 
analyzed with existing software packages (Salfer et al., 2020; Barad 
et al., 2023). Membrane segmentations can be also exploited to extract 

associated membrane proteins (Lamm et al., 2022; Martinez-Sanchez 
et al., 2020). 

However, obtaining these insights comes with numerous challenges. 
The cryo-ET reconstructions are often noisy or incomplete due to several 
factors such as (i) the crowded cellular environment, (ii) the missing 
wedge, (iii) low signal-to-noise ratio, or (iv) artifacts from, i.e., non- 
vitreous ice or edges of the carbon support film. Due to these compli
cations, segmentation and subsequent analysis of cryo-ET data is still a 
difficult task and a major bottleneck for automated high-throughput 
analysis of large datasets (Lučić et al., 2013; Pyle and Zanetti, 2021; 
Wu et al., 2019). Current membrane segmentation methods are still far 
from being fully automated and due to the effort required, many to
mograms remain unsegmented rendering them not useful for large-scale 
statistical analyses. 

Various tools and algorithms exist to simplify or partially automate 
the segmentation of membranes from cryo-ET data. Traditional methods 
include template matching or a watershed algorithm (Lebbink et al., 
2007, 2008; Tasel et al., 2016; Luengo et al., 2017). A prevalent tool for 
membrane segmentation, TomoSegMemTV, uses the tensor voting (TV) 
method (Martinez-Sanchez et al., 2014; Tong et al., 2004). In the 

* Corresponding author. 
E-mail address: jan.kosinski@embl.de (J. Kosinski).  

Contents lists available at ScienceDirect 

Journal of Structural Biology 

journal homepage: www.elsevier.com/locate/yjsbi 

https://doi.org/10.1016/j.jsb.2024.108067 
Received 12 July 2023; Received in revised form 17 January 2024; Accepted 3 February 2024   

mailto:jan.kosinski@embl.de
www.sciencedirect.com/science/journal/10478477
https://www.elsevier.com/locate/yjsbi
https://doi.org/10.1016/j.jsb.2024.108067
https://doi.org/10.1016/j.jsb.2024.108067
https://doi.org/10.1016/j.jsb.2024.108067
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsb.2024.108067&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Journal of Structural Biology 216 (2024) 108067

2

TomoSegMemTV pipeline, a tomogram is filtered, and ridges are 
enhanced and filtered based on their surfaceness properties. This pipe
line and the algorithms are also available as a parallelized imple
mentation for high-performance computing (HPC) systems (Moreno 
et al., 2022). While the overall performance of the tool is relatively high, 
it requires tuning many parameters of the pipeline based on the specifics 
of the tomogram such as the Gaussian filter widths, the size of the 
neighborhood considered for the tensor voting algorithm, as well as the 
intensity and surfaceness thresholds. In all cases, the output membrane 
segmentation often requires laborious manual cleaning with a tool like 
Amira (Stalling et al., 2005). More recently, two convolutional neural 
networks (CNNs) have been developed for particle (Moebel et al., 2021; 
de Teresa-Trueba et al., 2023) and membrane segmentation (de Teresa- 
Trueba et al., 2023; Lamm et al., 2024). While these show promise to 
eventually fully automate the segmentation process, even a state-of-the- 
art CNN requires large amounts of annotated training data to achieve 
high-quality segmentations. 

To alleviate the above limitations, we developed ColabSeg, an 
interactive tool for visualizing, editing, and processing membrane seg
mentations as point clouds from outputs like the tensor voting tool 
TomoSegMemTV (Martinez-Sanchez et al., 2014) or CNNs (de Teresa- 
Trueba et al., 2023; Moebel et al., 2021). ColabSeg converts the cryo- 
ET segmentation into point clouds and enables access to a range of 
well-established computer-vision algorithms used in processing point 
clouds, such as statistical and eigenvalue-based edge outlier removal 
(Bazazian et al., 2015) without the need for scripting. It also provides 
tools to fit vesicles of various shapes and extended membranes for hole- 
free geometric calculations. The Jupyter notebook in which ColabSeg 
can be used enables easy remote visualization of the data and is 
platform-independent. The tool aims to alleviate the tedious and time- 
consuming task of generating ground truth data for training neural 
network-based approaches which can drastically improve performance. 
Furthermore, simple and commonly used analysis features are provided. 

In this manuscript, we first introduce the general framework, and the 
software workflow and structure. We explain the features and the 
foundation of the tools provided for processing and editing segmenta
tion files and showcase the different features of the software on four 
sample tomograms. Next, we show how ColabSeg can be used to 
generate a large set of training data for a 3D U-Net in DeePiCt (de Teresa- 
Trueba et al., 2023). Finally, we discuss possible shortcomings and 
future directions and give an outlook on how this work might serve as a 
stepping-stone towards a general CNN for segmentation where no 
further human intervention is required. 

2. Methods 

2.1. Implementation details 

ColabSeg is written in Python with accompanying libraries NumPy 
(Harris et al., 2020) and SciPy (Virtanen et al., 2020). Features and al
gorithms of several state-of-the-art point cloud processing libraries, such 
as Open3D (Zhou et al., 2018) or pyntcloud, are directly used in 
ColabSeg. The GUI is written using ipywidgets together with py3Dmol 
(Rego and Koes, 2015) to view the point clouds, which can be rendered 
in any Jupyter notebook. The platform-independent nature of a Jupyter 
notebook ensures this software package can be run on any cluster or 
desktop computer with a working Python and Jupyter notebook instal
lation. It can also be installed and used, in principle, remotely on a 
JupyterHub instance or with a Google Colab notebook. In this way, a 
notebook can also be run on an external cluster or server and subse
quently viewed on a local desktop computer via an ssh connection on- 
the-go without copying large amounts of data to a local machine. The 
usage of the tool and its steps are outlined below. 

2.2. Exemplary workflow for segmenting a reconstructed tomogram 

In the following, we describe an exemplary workflow of how to use 
ColabSeg starting from a tomogram generated using any reconstruction 
method, e.g. weighted back projection or SIRT (Fig. 1). In step 1, the 
tomogram is processed using existing segmentation software according 
to its specifications (Fig. 1, step I). This could be a CNN-based seg
mentation from a tool like MemBrain-Seg (Lamm et al., 2024) or the 
output from the well-established tensor voting tool TomoSegMemTV 
(Martinez-Sanchez et al., 2014; Moreno et al., 2022). ColabSeg provides 
a wrapper and GUI for TomoSegMemTV with optimized settings, which 
proved useful for running TomoSegMemTV for a number of example 
applications (the exact settings are detailed in the SI), and additionally a 
GUI for the recently developed MemBrain-seg tool (Lamm et al., 2024). 
Thus, a reconstructed tomogram is the only required input. All reported 
settings worked best for binned tomograms with a pixel size of approx. 
26 Å, but an acceptable performance was achieved 13 Å as well. We note 
that a 13-26 Å pixel size is preferred to keep the computational load in 
an acceptable range. We also provide further instructions for tuning the 
performance of TomoSegMemTV starting from these optimized settings 
(see SI). Similar settings appear universally useful, as has been reported 
by Barad et al. (2023) during the preparation of this manuscript. The 
quality of the overall segmentation and processing with ColabSeg 
strongly relies on the results of TomoSegMemTV. Therefore optimizing 
the outputs here has been essential for quality. 

We find that permissive thresholds in both the membrane detection 
and thresholding step in the settings (see SI) are advantageous to achieve 
more detailed and complete segmentations, even of smaller membrane 
features. While in this case more noise and false positives are often 
picked up, many of these excess segments can be removed using the 
functions of ColabSeg at a later stage. Manual and semi-automated 
removal of artifacts or false-positive is considerably faster than post- 
segmentation manual addition of missing features. 

In step 2, ColabSeg accepts an MRC file containing a segmentation 
(binary mask). In this file, background voxels are assigned a value of 
zero, while foreground voxels are assigned positive integer values. The 
integer value of each voxel corresponds to the cluster they were assigned 
to. Such clustered segmentations can be generated using Tomo
SegMemTV’s connected component algorithm (Fig. 1, Step II), or other 
software following a similar output format. ColabSeg implements a 
Density-based spatial clustering of applications with noise (DBSCAN) 
algorithm, which can be used to refine the clusters, or to determine new 
clusters from binary segmentations at a later stage. Colabseg is also 
capable of reading precomputed point clouds from text files from 
alternate sources, as well as the vertices from STL files. Then, based on 
the segmentation, ColabSeg computes a separate point cloud for each 
cluster, disregarding voxels that are labeled zero. Point clouds are sim
ply collections of XYZ coordinates in space that describe the surface of 
an object. The advantage of working with coordinates is the ease of 
visualization and drastic compression of the information as the zero- 
valued voxels are no longer stored. 

The point clouds and clusters can be directly visualized in the 
notebook using an interactive py3Dmol viewer (Rego and Koes, 2015). 
Point cloud coordinates are imported as dummy atoms. Importantly, to 
avoid memory issues due to a large number of points, the point cloud is 
downsampled for visualization purposes. The degree of downsampling is 
adjusted automatically depending on the overall count of points in the 
point cloud, where the point cloud visualized is limited to < 200.000 by 
only showing every n-th point to allow for sufficiently smooth visuali
zation in a Web browser. This downsampling procedure does not alter 
the underlying point cloud data. 

In step 3, the point cloud derived from the segmentation can be 
cleaned and further refined using several utilities (Fig. 1, Step III). 
Detailed usage is described below and shown with different examples. 
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This entails rapidly merging and deleting clusters, which is also possible 
in e.g., Amira, but avoids having to switch the software throughout the 
workflow and requiring another desktop software (Stalling et al., 2005). 
Clusters can be further split at this stage using the DBSCAN clustering 
algorithm. Point clouds can be filtered using a statistical outlier method 
or eigenvalue-based edge detection. The edges of point clouds can be 
trimmed to reduce noisy patches, which occur primarily where the edges 
of the lamellae in the tomograms were originally located. All methods 
can be combined to achieve a high-quality segmentation. 

In step 4, idealized planar and spherical shapes can be fitted to planar 
membranes and spherical viruses or vesicles (Fig. 1, step IV). These two 
methods allow the fitting of a broad range of structures in biological 
samples and can be used to fill holes in existing segmentations, as 
required for quantitative spatial analysis. The details and usage are 
described below with the real biological sample data. 

Finally, in step 5, it is possible to use the output segmentations for 
commonly used analysis procedures. These include surface normal 

estimates for, e.g., constrained particle picking, loading and analyzing 
macromolecule-membrane distances, and analyzing radii and properties 
of fitted spheres. Accompanying data and plots can be written to a file. 
This enables some commonly used properties to be quickly analyzed 
from within ColabSeg. Additional features, such as membrane curvature 
can be analyzed with third-party software such as pycurv or the mor
phometrics toolkit (Barad et al., 2023; Salfer et al., 2020) 

ColabSeg allows saving the processed segmentations in various for
mats. Most commonly, MRC files can be written for use in further 
analysis pipelines. Additionally, the segmentations can be written as 
XYZ points or text files for subsequent custom analysis or visualization in 
other software packages such as VMD (Humphrey et al., 1996). It is also 
possible to save and load custom ColabSeg state files in HDF5 file format 
at any time during processing to save intermediate steps. All selections 
and settings of the GUI are saved and can be reconstructed from this file. 

Fig. 1. Overview of the Colabseg software and workflow. The demo tomogram contains eight HIV virions (EMDB ID: 13079) (Mattei et al., 2018) and is shown on the 
left (*an image filtered with the Gaussian filter provided in TomoSegMemTV is shown for better visibility). (I) The tensor voting workflow (Martinez-Sanchez et al., 
2014) is applied to the reconstructed tomogram. This can be accessed and run in the provided GUI. The segmentations of the virions included included the matrix 
protein layer next to the membrane which needed further curation. (II) The segmentation in MRC format is then converted to a point cloud file. (III) Within the 
ColabSeg visualizer and editor, the point cloud can be processed, and any artifacts or undesired clusters can be removed using eigenvalue-based edge detection, 
statistical outlier removal, trimming, and reclustering tools. (IV) Fits can be applied to the clusters to interpolate spheres or extended planar membranes to fill holes 
and extrapolate beyond the data for accurate measurements. The final segmentation can be saved to disk from the main menu as XYZ coordinates in text file format or 
as binary mask in MRC file format. Alternatively, an HDF5 state file of the session can be saved throughout the editing process to resume editing later. (V) The 
segmentations and fits can be analyzed for some commonly used quantities, such as macromolecule-membrane distances. 
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2.3. Advanced features for editing and cleaning point clouds 

ColabSeg provides access to numerous point cloud processing algo
rithms commonly used in computer graphics to refine and correct false 
positives and split clusters. To demonstrate a possible use of these al
gorithms, we prepared a synthetic demo dataset consisting of a point 
cloud with two intersecting planes, representative of membranes, and 
Gaussian noise added to some of the points (Fig. 2). TomoSegMemTV 
(Martinez-Sanchez et al., 2014) and other tools often include numerous 
false positives outside the cellular region, such as ice contaminants or 
fiducial markers. Additionally, at the edge of the tomogram or cellular 

slice (in the case of lamellae prepared by focused ion beam milling), the 
data is ambiguous, resulting in some noise in the corresponding seg
mentation. Moreover, point clouds are occasionally falsely grouped by 
the connected component algorithm provided by TomoSegMemTV 
(Martinez-Sanchez et al., 2014) due to noise. 

To remedy such issues, we provide statistical outlier removal based 
on the implementation in Open3D (Zhou et al., 2018) (Fig. 2). The free 
parameters include the number of the k-nearest neighbors, which are 
used to calculate the average distance for a given point. The threshold is 
given by the standard deviation from the distribution of distance, where 
lower values result in stricter cutoffs. Points that constitute background 
noise are removed. 

We also provide a more advanced eigenvalue-based outlier removal 
methodology. Bazazian et al. (2015) show that the eigenvalues of the 
covariance matrix that are defined by each point’s k-nearest neighbors 
are an effective way of filtering points constituting an edge with a sharp 
change in curvature. For most examples in biological systems which are 
flat, extended membranes such as plasma membranes, nuclear enve
lopes, and other large structures, this method works particularly well 
(see below Fig. 4C). Since membranes are most commonly represented 
in smooth extended surfaces, most artifacts manifest as unordered, 
highly distorted point clouds. This analysis outperforms other methods 
for edge detection such as PCA analysis or triangulation-based methods 
combined with clustering, as reported in Bazazian et al., 2015. It does 
not rely on the initial clustering step, which would add additional free 
parameters to the analysis and depend highly on the point cloud density. 
In our test case (Fig. 2) the intersection of the two planes is easily filtered 
with this approach. Good results are also observed for spherical vesicles 
or tubular structures if large enough continuous pieces of the membrane 
are captured in the reconstructed volume (Fig. 4). 

To enable the re-clustering of clusters initially assigned through the 
connected-component algorithm in TomoSegMemTV, we provide the 
DBSCAN algorithm (Ester et al., 1996) which is implemented in the 
open3D library (Zhou et al., 2018). The DBSCAN algorithm is commonly 
used for clustering 3D point clouds which can be arbitrary non-convex- 
shaped clusters, that are in close proximity and contain noise. The al
gorithm is furthermore agnostic to the number of clusters (Ester et al., 
1996), analogous to a connected component algorithm in Tomo
SegMemTV. In our test case (Fig. 2) the initial single cluster can now be 
split into four separate clusters. This approach was also chosen for some 
of the applications shown below (Fig. 4B). In real applications, tuning of 
the parameters also enables the filtering of outlier points (Ester et al., 
1996). 

TomoSegMemTV (Martinez-Sanchez et al., 2014) and other tools 
often include numerous false positives outside of the cellular region. 
These can easily be removed by trimming the edge using a corre
sponding tool in ColabSeg (Supporting Information Fig. S4). Removing 
points at the respective upper and lower bound drastically improves the 
quality of the segmentation. Finally, in case the cellular or lamellae 
regions are not corrected for a tilt offset at the reconstruction step, this 
can be done in ColabSeg by performing a plane fit through all points of 
the membrane and subsequently aligning with the z-axis (SI Fig. S4). 

2.4. Fitting procedures for hole filling 

Many analyses of cryo-ET data rely on spatial measurements such as 
Euclidian distances, e.g., from nearest membranes. Here complete, hole- 
free membrane representations are required to achieve correct and 
robust results. However, many segmentations have holes or missing 
pieces that impede these calculations, which is another reason for many 
researchers to resort to manual segmentations. Therefore, we provide 
access to radial basis function (RBF) plane fits for extended membranes 
and sphere fits for vesicles (Fig. 4B) - two common geometries for 
membrane structures found in tomograms. These enable extrapolating 
and filling missing pieces in segmentations for accurate calculations. 
Within the GUI, one or multiple segments can be selected, and the fit is 

Fig. 2. Overview of implemented point cloud processing and cleaning features 
using a synthetic MRC file. Shown are snapshots from the ColabSeg 3D viewer. 
A selected cluster is shown in red. (A) The initial file consists of two intersecting 
planes with 10000 points having Gaussian noise added to them. The initial 
synthetic MRC file has a cross shape. (B) Statistical outlier removal for data 
cleaning as implemented in the Open3D library. (C) Eigenvalue-based edge 
filtering example. (D) DBSCAN algorithm for cluster separation. All features can 
be combined in various order to solve more complex segmentation issues 
resulting from inaccuracies in the tensor voting. The view render in ColabSeg 
dynamically downsamples the number of points to avoid speed and mem
ory issues. 
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automatically performed. The SciPy (Virtanen et al., 2020) RBF fit and 
’lstsq’ function are used to perform the fits for near-planar membranes. 
To fit spheres, ellipsoids and cylinders to point clouds, an initial estimate 
of the shape parameters is obtained using the eigenvectors and eigen
values of the point cloud’s covariance matrix. The initial parameters are 
subsequently numerically optimized using Nelder-Mead optimization 
implemented in SciPy ((Virtanen et al., 2020), v1.10.1). 

2.5. Analysis Functionality 

ColabSeg is shipped with several analysis features for the segmen
tations that are commonly used in biological studies (Fig. 3) The 
spherical fits can be analyzed to yield distributions of vesicle radii. Such 
analyses for instance hav been beneficial for the understanding of viral 
morphology or synaptic vesicles. ColabSeg allows the generalization of 
estimated membrane normals on the approximated surface of the clus
ters to enable restrained particle picking, a feature that has been suc
cessfully used to identify various membrane coats. ColabSeg also allows 
loading protein coordinates from other sources, such as template 
matching, deep-learning methods, or manual annotation, and calcu
lating minimal distance distributions with respect to a target membrane. 

Such analyses are commonly performed for a broad range of biological 
systems (Lembo et al., 2023; Ferreira et al., 2023). 

2.6. Napari integration and validation 

ColabSeg provides integration with Napari (2023), which enables 
visualizing the point clouds and fits in the context of the input tomo
grams (see documentation). To this end, ColabSeg provides simple on- 
click conversion of the data structures directly to Napari-readable ob
jects and automatic loading of the segmentations, fits, and loaded pro
tein positions in Napari. Napari can then be used to visualize the input 
tomograms overlaid with ColabSeg segmentations. Additionally, users 
can use Napari internal features, e.g., to manually edit individual points 
in the point clouds, or to interface with other tomography visualization 
and analysis tools such as blik (Gaifas et al., 2023). Point clouds edited in 
Napari can also be imported back to ColabSeg. 

2.7. Using ColabSeg to generate training data for the CNN of DeePiCt 

The membranes of ten Mycoplasma pneumoniae tomograms (Xue 
et al., 2022) were segmented manually using Amira (version 2022.1, 

Fig. 3. Examples of fitting and analysis functionalities in ColabSeg. (A) Sphere fits for eight HIV virions. The fits are shown in blue. The original segmentation 
derived from the cryo-ET data is shown in grey. An example virion cluster and the corresponding fit are selected in dark red and blue, respectively. Top view 
snapshots from the ColabSeg viewer are shown before and after the processing. The output from the radii plotting analysis feature is shown on the right. (B) Radial 
basis function fit on two outer membranes of a Mycoplasma pneumoniae cell. The initial segmentation is shown in grey and the fits in blue. One example cluster and 
corresponding fit are shown in dark red and blue. The fit was trimmed to only include points within 50 Å of the input data. The analysis constitutes the estimated 
normals on the surface of the cluster. The red arrows visualize the calculated normals which can be written to disk. (C) An example of two adjacent plasma 
membranes as reported in ref. (Lembo et al., 2023). Fits are shown in blue. Actin filaments sampled as equidistant points loaded from the analysis tab are shown in 
green. The protein-membrane distances were computed using the analysis tab. 
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Thermo Fischer). In addition, membranes in 50 tomograms were 
segmented using TomoSegMemTV (Martinez-Sanchez et al., 2014) and 
cleaned using ColabSeg (detailed below). The DeePiCt 3D U-Net (de 
Teresa-Trueba et al., 2023) was trained using three different types of 
training sets and varying amounts of tomograms in the respective set: i) 
using five manually segmented tomograms from Amira, ii) using 5, 10, 
25, or 50 outputs from TomoSegMemTV directly without cleaning or 
curation, or iii) 5, 10, 25, 50 tomograms semi-automatically curated 
with ColabSeg. The remaining five manually segmented tomograms not 
used for training were used for validation. The DeePiCt model was 
trained at a pixel size of 13.6 Å with box size and overlap of 64 and 6 
pixels, respectively. The default U-net convolutional network of DeePiCt 
(de Teresa-Trueba et al., 2023) was used, with a depth of 2 and 16 initial 
convolutions. In each epoch, 80% of the data was used for training and 
validated using the dice coefficient against the remaining 20% of the 
data. A total of 300 epochs were run for training each model, but 
training normally converged within the first 50 epochs. The resulting 
models were used to predict the membrane in the validation set, and the 
output was filtered to a binarized map using a threshold of 0.4, 
excluding any cluster containing less than 1000 voxels. 

3. Results and Discussion 

3.1. Biological examples for editing and fitting segmentations 

We tested ColabSeg to refine membrane segmentations from various 
cryo-ET datasets. Our examples span HIV virions (Mattei et al., 2018), 
the inner membrane complex (IMC) of Plasmodium falciparum (Ferreira 
et al., 2023), and Mycoplasma pneumoniae cells (Xue et al., 2022; Teg
unov et al., 2021). Additionally, an early version of the tool has been 
used to segment plasma membranes and analyze membrane-actin dis
tance distributions(Lembo et al., 2023). Each example brings diverse 
challenges in membrane segmentation which are difficult to address 
with fully automated tools or are too laborious to be performed solely 
manually due to the number of tomograms in each of the datasets. 
Starting from reconstructed tomograms, we use ColabSeg together with 
TomoSegMemTV (Martinez-Sanchez et al., 2014) to arrive at fitted 
target segmentations (Fig. 4). 

First, we explored an HIV virions dataset (EMDB ID: 13079, (Mattei 
et al., 2018)). We used TomoSegMemTV to segment viral membranes 
with a low threshold (Fig. 4A). While segmenting viruses is in principle 
straightforward, in this case, a layer of viral matrix proteins is picked up 

Fig. 4. Application of ColabSeg on biological example systems. (A) the separation and fit of individual HIV virions (EMDB ID: 13079, (Mattei et al., 2018) and 
removal of a false positive detected matrix protein layer, (B) the extraction of the Plasmodium falciparum inner membrane complex (IMC), a narrow double bilayer 
structure, for further analysis as used in Ferreira et al. (2023), and, (C) the clean-up and artifact removal (carbon edge) from a Mycoplasma pneumoniae tomogram. All 
panels show (from left to right) a central slice from the reconstructed tomogram (shown is the filtered first step of the TomoSegMemTV pipeline) (i), the raw output of 
the TomoSegMemTV tool without further curation, selection, or cleaning (ii), the TomoSegMemTV output, imported in ColabSeg and visualized as a point cloud (iii), 
and the final processed and fit point cloud for further use in analysis (iv). Here, grey points indicate the processed data, blue the fits, and red highlights a cluster of 
interest. Each sample data set combines the use of multiple ColabSeg features including cluster merging, deletion, edge filtering, statistical outlet removal, and 
various fits to achieve the represented output. The detailed workflow for each of the images is outlined in the provided user guide. 
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by TomoSegMemTV as membrane, which requires curation and addi
tional processing steps . Also in some instances, the membranes of two 
independent virions in close proximity touched and were determined as 
one cluster by the TomoSegMemTV connected component algorithm. 
Therefore, filtering using the statistical outlier tool and reclustering with 
the DBSCAN algorithm was necessary. We also used ColabSeg to remove 
clusters that are not virion membranes. Subsequently, we applied a 
sphere fit to all virions. These could enable further distance measure
ments and the use of the fit parameters for spherically constrained 3D 
subtomogram averaging (Förster et al., 2005). 

Next, we used the tools from ColabSeg to extract the inner membrane 
complex (IMC) of Plasmodium falciparum to enable accurate measure
ments of their distance to microtubules (Fig. 4B) (Ferreira et al., 2023). 
The IMC is an intricate double membrane structure in Plasmodium fal
ciparum which forms below the plasma membrane and plays an impor
tant role in the life cycle of the parasite (Ferreira et al., 2021). Here, we 
first ran TomoSegMemTV to extract the main features (plasma and 
intracellular membranes, and microtubules), and then used a combi
nation of edge-filtering, edge trimming, statistical outlier removal, and 
DBSCAN re-clustering to select and segment both bilayers of the IMC 
(Ferreira et al., 2023). Workflows using solely TomoSegMemTV resulted 
in either patchy membranes or large amounts of excess noise, which 
would have interfered with the measurement (Fig. 4B). Moreover, pro
nounced structures, such as the microtubules, were picked up by 
TomoSegMemTV, which also had to be removed - a common occurrence 
with the TomoSegMemTV. In particular, segmentations of tomograms 
acquired from thick lamella profited from the edge trimming procedure, 
in most cases removing a bulk of false positive noise. We then used the 
RBF fit function to fill any holes in the membranes to avoid errors in the 
distance measurements. We repeated this workflow for a total of 73 
tomograms, of which the best were used for further processing. These 
measurements were then used to show the high degree of consistency in 
membrane-microtubule distances, indicating the presence of a linker, 
which would not have been possible without accurate segmentation of 
the IMC (Ferreira et al., 2023). 

We also demonstrate the utility of the eigenvalue-based edge 
filtering on a difficult-to-segment tomogram from a data set of Myco
plasma pneumoniae (Fig. 4C). Occasionally, edges of the grid support film 
or other high contrast features are falsely picked up in the segmentation 
process resulting in false positive detection of membranes (Fig. 4C, left 
(i, ii)). When using TomoSegMemTV, this leads to artifacts where the 
Mycoplasma pneumoniae membrane and carbon support are detected as 
one continuous cluster and so far had to be separated or segmented 
manually. Using the eigenvalue edge filtering we can remove such ar
tifacts from the segmentations (Fig. 4C, right (iii, iv)): the edge detection 
removed points along the distinct edge where the feature intersects with 
the membrane. Subsequently, we were able to split these two clusters by 
using the DBSCAN clustering algorithm and using the RBF fit function to 
fill the resulting hole (Fig. 4C, right). We used Colabseg to segment over 
50 tomograms for use as training data for the DeePiCt neural network. 

These examples demonstrate the utility and ease of use of ColabSeg 
for a variety of tasks. By combining different features of the software, we 
were able to resolve a broad range of issues resulting from the initial 
segmentations and could enable accurate analysis of many tomograms 
in a short amount of time. Overall, we note that ColabSeg is strongly 
dependent on the initial segmentation. The quality of the segmentations 
such as the output from TomoSegMemTV (Martinez-Sanchez et al., 
2014), is a decisive factor for the successful segmentation of membranes. 
For this reason, we tested various settings for TomoSegMemTV and 
provided the best ones to the user. We found TomoSegMemTV performs 
particularly well with a permissive threshold in the membrane ’sur
faceness’ step to capture all membrane features irrespective of their size. 
Additionally, thick cellular regions have a particularly low signal-to- 
noise ratio and usually result in poorer segmentations, which are diffi
cult to clean. In most cases, some manual intervention will be required 
to clean the remaining segmented clusters, and ColabSeg greatly 

facilitates this task. More recent deep learning-based tools with a focus 
on membrane segmentations, such as MemBrain-Seg (Lamm et al., 
2024) can also be used for segmentation and do not require parame
trization and can handle noisy tomograms given the training dataset is 
sufficiently varied. 

3.2. Training data generated by ColabSeg improve deep learning 
performance 

ColabSeg was developed not only to ease the semi-automated seg
mentation and directly enable analysis of the data, but also to generate 
data for training convolutional neural network (CNN) approaches faster 
and increasing throughput of cryo-ET data analysis. Recently, open- 
source software solutions for the segmentation of tomograms using 2D 
and 3D U-Nets have been made available (de Teresa-Trueba et al., 2023; 
Moebel et al., 2021). The quality of the segmentations from the CNNs 
strongly depends on the available training data. To date, most CNNs 
designed for cryo-ET rely on very few (one to ten) segmented tomograms 
as training data, which are often generated by manual segmentation 
with software like Amira. The resulting trained models then only 
perform well for a narrow scope of similar data, if at all. To achieve 
larger transferability and higher quality segmentation, we propose using 
the ColabSeg pipeline to quickly generate a sufficiently large training set 
for CNN-based approaches. 

To test this, we used the ColabSeg pipeline in conjunction with the 
recently developed DeePiCt network (de Teresa-Trueba et al., 2023). 
First, we use TomoSegMemTV and ColabSeg to segment several hun
dreds of tomograms from Mycoplasma pneumoniae, filtering artifacts and 
false positive cases with the methods introduced above. By doing so, we 
prepared several hundred segmentations of tomograms for use as 
training data. Next, we trained DeePiCt on several different subsets of 
the raw segmentations, the cleaned segmentationss, and some manual 
segmentations described above to assess differences in performance. A 
set of 5 manually segmented tomograms were used as a validation data 
set. 

We found that using a large number of segmented tomograms for 
training drastically improves the performance of the network for the 
same validation dataset (Fig. 5). Importantly, a network trained on a 
dataset consisting of segmentations curated with ColabSeg out
performed a network on a small dataset segmented manually using 
Amira. Similarly, using the outputs segmented solely with Tomo
SegMemTV performed less favorably and resulted in more false positives 
than when the data was inspected and cleaned with ColabSeg. Curation 
of the best cluster by visual inspection with ColabSeg would improve the 
quality of the predictions, highlighting the necessity to visually inspect 
and process the segmentations. With this larger training data set, we 
were able to reliably filter out artifacts present due to the segmentation 
of the support film edge, which is visible in many tomograms. The 
corresponding DeePiCt model could reliably segment membranes from 
unseen data at a level similar to manual annotation. 

Mycoplasma pneumoniae is a comparably straightforward test system. 
Since it is a small bacterium and contains no complex membrane-bound 
organelles, the segmentation task is significantly easier than for other 
cell types. Similarly, viruses such as HIV, influenza A virus, Ebola, or 
other isolated membrane-bound structures can easily be analyzed using 
ColabSeg. However, curation of inputs from TomoSegMemTV was still 
necessary to achieve satisfactory results. Eukaryotic cells pose an even 
bigger challenge for accurate segmentation, for example, the highly 
curved membranes such as tubular endoplasmic reticulum or the cristae 
of mitochondria. Here, a combination of computer-aided and manual 
segmentation in ColabSeg will enable gathering training data of suffi
cient quality for accurate CNN-based segmentation of such cellular 
structures. 
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4. Conclusions and Outlook 

We presented ColabSeg, a Jupyter notebook-based GUI for visual
izing, editing, and post-processing segmentations of membranes in cryo- 
ET data. We enable users to generate initial segmentations with Tomo
SegMemTV or MembrainSeg implemented in our tool, quickly filter 
relevant segments, remove noise as well as generate fits to fill holes and 
perform downstream quantitative measurements. We provide numerous 
algorithms used in point cloud processing accessible in a simple inter
face without requiring any scripting. Advanced users can build semi- 
automatic workflows by using the provided classes and the accompa
nying image-processing libraries. We show that even though some semi- 
and fully automatic methods for segmentation exist, user intervention 
and curation are still necessary to arrive at high-quality segmentations. 
We demonstrated the usefulness of ColabSeg on a range of use cases, that 
address a broad range of scientific questions (Ferreira et al., 2023; 
Lembo et al., 2023). Finally, we show how ColabSeg can be used in 
conjunction with a CNN, DeePiCt, for generating sufficient training data 
for more accurate automated segmentation. 

Currently, ColabSeg is primarily designed and set up to visualize and 
process membrane segmentations, but it also enables visualization of the 
coordinates of macromolecules that have been acquired from other 

sources, such as manual picking or template matching. In the future, the 
GUI could be extended in a straightforward way to include visualization 
of the accompanying structural models. Since the underlying 3D visu
alization software, py3Dmol, was intended to represent proteins and can 
handle complex representations (Rego and Koes, 2015), it might also 
become a useful tool to visualize and analyze protein complexes, mea
sure their arrangement, and analyze their properties in segmented cryo- 
ET data. Our first set of functionalities to alleviate analysis tasks related 
to membrane segmentation is an initial step in this direction. 

The backend functionality can easily be adapted to interface with 
other visualization software packages with some minor changes to the 
interface. ColabSeg provides a lightweight Napari integration that en
ables transferring results between Napari and ColabSeg, and visualizing 
the segmentations together with the raw tomograms. This also enables 
interacting with other Napari extensions and using their functionality. 
Developers can find API documentation and instructions to expand the 
GUI in a straightforward way in the user guide. The lightweight design 
of the software and browser-based visualization possibilities might be 
deployed on web servers or on Google Colab for easy access and analysis. 
This might make sharing these algorithms, and developing and 
deploying online servers for the processing of data easier. 

In the future, ColabSeg in conjunction with other segmentation 
methods will hopefully speed up the process of membrane segmentation 
and as a result, help generate a larger annotated set of cryo-ET data. 
Although the speed of user-assisted segmentation will always depend on 
prior user experience with the particular software and the level of fa
miliarity with tomogram analysis in general, we envision this tool as a 
stepping stone to lower the barrier for experimentalists to annotate their 
raw tomograms and thus populate a growing body of data for use as 
training data for deep learning methods such as DeePiCt, DeepFinder or 
MembrainSeg (de Teresa-Trueba et al., 2023; Moebel et al., 2021; Lamm 
et al., 2024), which is still lacking to date. Eventually, CNN models will 
be trained on sufficiently broad data such that near error-free and fully 
automated segmentation should be available in the future. 

5. Software Availability 

ColabSeg is available under an Apache License 2.0 license from 
GitHub (https://github.com/KosinskiLab/colabseg) free of charge and 
can be installed as a Python package. It can be used from a Jupyter 
notebook or Colab notebook (setup required by the user). Third-party 
contributions are welcome as pull requests on GitHub. 
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resolution structures of HIV-1 Gag cleavage mutants determine structural switch for 
virus maturation. Proc. Natl. Acad. Sci. U.S.A. 115 (40), E9401–E9410. https://doi. 
org/10.1073/pnas.1811237115. 

Moebel, E., Martinez-Sanchez, A., Lamm, L., Righetto, R.D., Wietrzynski, W., Albert, S., 
Larivière, D., Fourmentin, E., Pfeffer, S., Ortiz, J., Baumeister, W., Peng, T., Engel, B. 
D., Kervrann, C., 2021. Deep learning improves macromolecule identification in 3D 
cellular cryo-electron tomograms. Nat. Methods 18 (11), 1386–1394. https://doi. 
org/10.1038/s41592-021-01275-4. 

Moreno, J.J., Garzón, E.M., Fernández, J.J., Martínez-Sánchez, A., 2022. HPC enables 
efficient 3D membrane segmentation in electron tomography. J. Supercomput. 
https://doi.org/10.1007/s11227-022-04607-z. 

Napari contributors, napari: a multi-dimensional image viewer for python, 2023, 
https://doi.org/10.5281/zenodo.3555620. 

Pfeffer, S., Dudek, J., Schaffer, M., Ng, B.G., Albert, S., Plitzko, J.M., Baumeister, W., 
Zimmermann, R., Freeze, H.H., Engel, B.D., Förster, F., 2017. Dissecting the 
molecular organization of the translocon-associated protein complex. Nat. Commun. 
8 (1), 14516. https://doi.org/10.1038/ncomms14516. 

Pyle, E., Zanetti, G., 2021. Current data processing strategies for cryo-electron 
tomography and subtomogram averaging. Biochem. J. 478 (10), 1827–1845. 
https://doi.org/10.1042/BCJ20200715. 

Rego, N., Koes, D., 2015. 3Dmol.js: Molecular visualization with WebGL. Bioinformatics 
31 (8), 1322–1324. https://doi.org/10.1093/bioinformatics/btu829. 

Salfer, M., Collado, J.F., Baumeister, W., FernándezBusnadiego, R., Martínez- 
Sánchez, A., 2020. Reliable estimation of membrane curvature for cryo-electron 
tomography. PLoS Comput. Biol. 16 (8), 1–29. https://doi.org/10.1371/journal. 
pcbi.1007962. 

Stalling, D., Westerhoff, M., Hege, H.C., 2005. Amira: A highly interactive system for 
visual data analysis. Vis. Handb. https://doi.org/10.1016/B978-012387582-2/ 
50040-X. 

Tasel, S.F., Mumcuoglu, E.U., Hassanpour, R.Z., Perkins, G., 2016. A validated active 
contour method driven by parabolic arc model for detection and segmentation of 
mitochondria. J. Struct. Biol. 194 (3), 253–271. https://doi.org/10.1016/j. 
jsb.2016.03.002. 

Tegunov, D., Xue, L., Dienemann, C., Cramer, P., Mahamid, J., 2021. Multi-particle cryo- 
EM refinement with M visualizes ribosome-antibiotic complex at 3.5 Å in cells. Nat. 
Methods 18 (2), 186–193. https://doi.org/10.1038/s41592-020-01054-7. 

Tong, Wai-Shun, Tang, Chi-Keung, Mordohai, P., Medioni, G., 2004. First order 
augmentation to tensor voting for boundary inference and multiscale analysis in 3d. 
IEEE Trans. Pattern Anal. Mach. Intell. 26 (5), 594–611. https://doi.org/10.1109/ 
TPAMI.2004.1273934. 

Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., 
Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., 
Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., 
Carey, C.J., Polat, I., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., 
Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A. 
H., Pedregosa, F., van Mulbregt, P., Vijaykumar, A., Bardelli, A.P., Rothberg, A., 
Hilboll, A., Kloeckner, A., Scopatz, A., Lee, A., Rokem, A., Woods, C.N., Fulton, C., 
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