


generating initial fits. Molecular docking software uses scoring
functions to describe the interactions between a protein and a
small molecule and identify physicochemically reasonable
ligand conformations within a given protein binding site.
One of the most common softwares, AutoDock Vina,11 was
shown to have among the best scoring functions for estimating
affinity and identifying correct conformations within a set of
decoys in the Critical Assessment of Scoring Functions 2016
report12 (CASF-2016). In the commercial software, Gem-
Spot,9 such a docking score is integrated with a goodness-of-fit
termthe cross correlation coefficient (CCC). This allows
only ligand conformations with a good fit to the map and
favorable docking score to be selected for further refinement.
While the CCC is the “gold standard” goodness-of-fit score for
fitting atomic structures in cryo-EM, there is evidence that the
Mutual Information (MI) score provides a comparable
measure of fit at high resolution and is more robust to a
decrease in resolution when fitting protein models to maps.13

However, data are lacking as to whether this can be applied to
small-molecule fitting.
Thus, far, the goodness-of-fit has been assessed mostly

between a density map simulated from the model and the
experimental cryo-EM density map. However, methodologies
where density-difference maps are used instead of the full map
have been employed. For example, to fit the BTB-1 ligand
bound to a human kinesin-8 motor domain at 4.8 Å
resolution14 and the GSK-1 ligand bound to Eg-5 at 3.8 Å
resolution,15 the molecular docking software GOLD,16

HADDOCK,17 and AutoDock Vina11 were used along with
difference maps for ligand fitting.
Recently, a technique for difference mapping based on local

scaling of the cryo-EM map amplitudes was shown to be
capable of identifying ligand density by subtracting an
apoprotein density map from a map of the protein−ligand
complex.18 However, there are no data that compare these
procedures to using the full map. Additionally, an integrative
automated workflow optimized for docking small molecules
utilizing density difference maps has not yet been proposed.
In the following paper, we describe ChemEMa software

package for docking small molecules into medium-to-high-
resolution cryo-EM structures. We first describe a novel
molecular docking scoring function (ChemDock) shown to
have a performance comparable to or better than that of the
AutoDock Vina scoring function. We then show the usefulness
of the MI score in fitting small molecules into cryo-EM
difference maps compared with the commonly used CCC,
especially for medium resolutions. Finally, we introduce
ChemEM, a fully automated flexible docking software, which
combines both ChemDock and the MI score to better identify
and refine ligand conformation in binding sites of cryo-EM
structures. ChemEM was validated using 32 experimental
structures of proteins bound to small molecules at resolutions
between 2.2 and 5.6 Å.

■ RESULTS

ChemEM Workflow. ChemEM docks small molecules to
cryo-EM maps using a two-stage approach (Figure 1). In Stage
1, an approximate fit of a ligand into the protein structure is
generated using a difference density map between the protein−

ligand complex map and a simulated protein map.
An initial fit is achieved by molecular docking using an

empirical scoring function integrated with the MI score. This
ensures that the generated conformation is both physicochemi-

cally acceptable and well-fitted to the difference map. In this
stage, the difference map acts as a constraint for the docking
algorithm, reducing the conformational space to be searched.
In Stage 2 (Figure 1), candidate conformations are refined

into the full cryo-EM density map using a flexible fitting
approach with the AMBER force field-14SB19 protein

Figure 1. Schematic overview of the ChemEM methodology for
docking small molecules, also in combination with cryo-EM maps. For
running docking with ChemDock, ligand and protein inputs are
needed. For running ChemEM, an additional density map input is
required. Additionally, the binding site centroid and radius must be
set by the user to identify protein residues that line the binding site.
For ChemEM, a local density difference map is created using the user-
supplied binding site definitions. For both ChemDock and ChemEM,
stage 1 generates initial fits of small molecules within the binding site
using either the ChemDock or ChemEM scoring functions. The
global search is an Ant colony optimization (ACO) algorithm, while
the local search is a Nelder−Mead minimization algorithm. Stage 2
refines the initial fits in the context of the binding site. Here, all
binding site residue side chains are treated as fully flexible. The
OpenFF Sage v2.0 force field is used for small-molecule para-
metrization, with protein parameters taken from the AMBER FF14SB
force field. For ChemDock workflow, only energy minimization is
applied. For the ChemEM workflow, the full density map term is
added to the scoring function, and a simulated annealing search
algorithm is used to identify final solutions.
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parameters and the OpenForceField Sage 2.0.020 parameters
for small molecules. This stage fine-tunes the initial fits
generated in Stage 1, while simultaneously refining the fit of
binding-site atoms.

Using the ChemEM Software. ChemEM is a software
platform specifically designed to simplify and automate the
process of fitting small molecules into cryoEM maps. To begin
using the software, users must provide four key elements: a
fitted protein structure in PDB format, a ligand file in SDF,
Mol2, or SMILES string format, a cryoEM density map in
MRC format, and the center point of the binding site to
expedite the calculation of difference maps (Figure 1).
Following the provision of these inputs, the software’s

pipeline is initiated, requiring no further intervention from the
user. However, in cases where certain structures necessitate
more comprehensive assessment, ChemEM provides the
flexibility for users to examine the preprocessed difference
maps before progressing to the docking phase.
In complex scenarios, such as when two or more ligands are

being fitted simultaneously to the same binding site, ChemEM
allows users to manually assign disconnected densities to a
specific ligand input (Figure S1). Furthermore, if high-quality
difference maps cannot be generated using the default
parameters, users have the option to adjust the number of
protein atoms and the density of the map that are considered
in the difference map calculations. This offers an effective
method to optimize the map for fitting.
When the performance of the ChemEM software was

benchmarked with the high-resolution data set, Stage 1 (Figure
1) showed an average processing time of 44.80 min (Figure
S2). The average time of refinement per solution in Stage 2
was seen to be 13.97 min. Using the low-resolution

benchmark, the average processing time for Stage 1 of the
algorithm was 52.62 min, and it took an average 5.95 min per
solution for the Stage 2 refinement. For Stage 1, in both the
high- and low-resolution cases, the time taken correlated with
the number of rotatable bonds in the ligand (Figure S2).

Evaluation of the ChemDock Scoring Function. The
density-independent part of the molecular docking scoring
function (termed the ChemDock score) for the ChemEM
scoring function included terms for hydrogen bonding,
hydrophobic interactions, π−π stacks, and steric and repulsive
terms (see Methods). The score was trained to estimate the
pKd of a given protein/ligand complex using 3,281 complexes
taken from the PDBBind data set (Tables S1 and S2).
The correlation between the ChemDock or AutoDock

Vina11 scoring functions and binding affinity was assessed
using a benchmark of 137 protein−ligand complexes, each
associated with an experimentally determined binding affinity.
The predicted binding affinities based on ChemEM had a
Pearson correlation of 0.69 to the experimental binding
affinities compared with 0.63 for AutoDock Vina.
We next looked at the ability of ChemDock to identify a

correct conformation given a decoy set and rank decoys given
their root-mean-square deviation (RMSD) from the reference
structure (the PDB deposited structure). For each of the 137
protein−ligand complexes, up to 100 ligand decoys from
CASF-2016 data set (with increasing RMSD values from the
reference structure) were ranked by both ChemDock or
AutoDock Vina scoring functions (Figure 2). ChemDock was
able to rank a correct conformation (defined as ≤2.0 Å from
the reference conformation) within the top 1, 2 and 3 ranked
decoys in 81.88%, 89.13% and 97.1% of cases, respectively.
The performance of ChemDock was comparable to that of

Figure 2. A comparison of the ChemDock score to the Autodock Vina docking score. (A) The percentage of cases where a conformation was
ranked in the top 1 (black), 2 (dark gray), and 3 (light gray) positions by both scoring functions. (B) The binding funnel analysis for both the
ChemDock (Black line) and AutoDock Vina (red dashed line) scores. The average Spearman correlation between the RMSD and either scoring
function when only solutions <2, 3, 4, 5, 6, 7, 8, 9, or 10 Å RMSD were included in the RMSD-decoy benchmark. (C) ChemDock solutions (pink)
from the high-resolution benchmark (PDB: 7JJO, 7CFM) and the low-resolution benchmark (PDB: 6K42, 5WEL). The PDB deposited solutions
are also shown (dark blue) along with protein binding site elements (light blue). The resolutions and RMSD between solutions are also indicated.
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Vina, where Vina ranked a correct conformation in the top
third, second, or first ranks in 95.65, 92.03, and 83.33% cases,
respectively (Figure 2A).
In order to further probe the ChemDock scoring function,

the binding funnel analysis introduced in CASF-2016 report12

(see Methods) was utilized. The analysis showed a good
correlation between the ranking of conformations based on
ChemDock and Vina scoring functions within a given RMSD
threshold from the reference conformation, especially for
conformations within <3.0 Å threshold (Figure 2B). However,
the ChemDock correlation was more robust than that of Vina
further away from the reference conformation (∼6−10 Å).

Docking Small Molecules with the ChemDock
Scoring Function. To run docking experiments, the
ChemDock scoring function was integrated with an Ant-
Colony Optimisation (ACO) algorithm.21 A “high-resolution”
benchmark was constructed, consisting of 20 PDB protein−

ligand complexes derived from cryo-EM experiments at 2.2−

3.0 Å resolution (Table S3). All deposited ligands were
removed from the structures and redocked starting from a
random conformation in the same binding site using the
ChemDock software. A correct conformation (<2 Å from the
reference conformation) was generated 85% of the time, a
good conformation (<1.5 Å) in 70% of cases, and excellent
conformation (<1.0 Å) in 15% of cases (Figure 3A). When the
same ligands were docked with Autodock Vina, a correct
conformation was found in 70% of cases, good in 60%, and
excellent in 25%. The quality of the final solutions was

analyzed using the conformational torsional strain energy22 (a
measurement of the quality of conformations). Overall, the
solutions generated with ChemDock were seen to be of better
quality than those generated with Autodock Vina, with a mean
minimum RMSD of the top solution (over the entire
benchmark) and average torsional energy units (TEU) of
1.44 Å and 5.90 TEU compared to 1.93 Å and 6.53 TEU
(Table S4).
To test the accuracy of the ChemDock software on a wider

range of structures, docking experiments were repeated using
12 structures from lower-resolution cryo-EM maps (3.0−4.5 Å,
Table S3). ChemDock generated a correct conformation in
83% of cases, while good and excellent solutions were found 50
and 16% of the time, respectively (Figure 3C). Autodock Vina
generated a correct conformation in 58% of cases, with 33%
being good and 8% excellent. The mean minimum RMSD
from the deposited solution was 1.72 Å for ChemEM and 2.55
Å for Autodock Vina. However, the solutions generated by
autodock Vina showed a better mean strain energy of 7.68
TEU compared to 8.32 TEU for ChemEM (Table S5).
Finally, we assessed the ability of ChemDock to rank

generated ligand solutions. We found that the rank of the
ChemDock solution with the lowest RMSD to the reference
solution occurred on average within the top 15% of generated
solutions for both high-resolution (Table S6) and low-
resolution (Table S7) benchmarks.

Integrating ChemDock with Cryo-EM Density (Chem-
EM). We investigated the performance of two goodness-of-fit

Figure 3. A statistical overview of docking the high- and low-resolution benchmarks with AutoDock Vina, ChemDock and ChemEM. (A)
Percentage of cases from the high-resolution benchmark where docking/fitting produced a correct (<2 Å RMSD from the deposited solution),
good (<1.5 Å), or excellent (<1.0 Å) solution. (B) Correlation between the CCC (left) and the strain energy (right) of the PDB deposited
solutions with that of the final ChemEM refined solutions. (C) Percentage of cases from the low-resolution benchmark where docking and fitting
produced a correct, good, or excellent solution. (D) Low-resolution benchmark correlations between PDB deposited and ChemEM refined
solutions for the CCC (left) and strain energy (right).
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metrics, CCC and MI, for fitting small molecules by using a
simulated benchmark. Density difference maps were simulated
from the X-ray structure corresponding to 285 protein/ligand
complexes from the CASF-2016 database12 at a 2.5−8.5 Å
resolution range (every 0.5 Å). For each case, the CASF-2016
decoy set was ranked by either MI or CCC.
At each resolution tested, for both MI and CCC, there was a

strong negative correlation between the RMSD and the
goodness-of-fit metric (Table S8); however, MI had a higher
correlation. This difference was statistically significant in the
4.5−8.5 Å range. The Pearson correlation coefficient for the
MI score remained relatively consistent for each resolution
while decreasing for the CCC. This indicated that the MI score
was more robust to changes in the resolutions of the difference
density maps, inline with previous reports using the MI score
to fit protein structures.13

Next, the ChemEM workflow was tested for fitting small
molecules into the experimental cryo-EM maps mentioned
above at both high- and low-resolutions. The first part of the
workflow fits small molecules to the experimental difference
density maps using the ACO algorithm.21,23 To identify an
optimal weight to integrate the MI score with the molecular
docking score, this step was performed without minimization.
The ChemDock score was calibrated to estimate pKd, with

values typically ranging from 0 to 10. To determine a
representative range for the MI score, we calculated it for
3,204 solutions at various stages of the ChemEM algorithm.
These solutions differed in RMSD from the ground truth
structures. In practice, these MI score values generally lie

between 0 and 0.1 (Figure S3). As a result, we tested MI
weights of 10, 50, and 100. These correspond to scaling the MI
score to 10% (0.1×), 50% (0.5×), and 100% (1×) of the
molecular docking score’s magnitude, respectively.
Using the high-resolution benchmark showed the docking

score alone identified a correct ligand conformation in 75% of
cases, while the MI score alone identified a correct
conformation in only 55% of cases (Figure 4A). The success
rate of this initial fit rose to 85% when MI was integrated with
the docking score at a weight of 50 (Figure 4A). This was
accompanied by an increase in solution accuracy compared to
using docking or MI scores alone, with 60% of cases generating
a solution ≤1.5 Å and 25% within 1 Å of the deposited
solutions (Figure 4A).
To ascertain whether the MI weight of 50 was applicable at

resolutions >3.0 Å, the experiment was repeated using the
lower resolution experimental benchmark. Once again a
combination of the MI and docking score identified the
most correct solutions (83%) compared to each score alone
(75 and 42% correct cases, respectively; Figure 4C). However,
only 25% were identified at an RMSD of ≤1.5 Å from the
deposited ligand.
Assessing the rank of the ChemEM solution with the lowest

RMSD to the reference solution showed that the solution with
the lowest RMSD appeared in the top 5% of solutions on
average for the high-resolution benchmark (Table S9) and the
top 10% for the low-resolution benchmark (Table S10).
Finally, the ChemEM scoring function performed better

using difference maps compared to full maps. For the high-

Figure 4. Results of fitting with the ACO and the ChemDock score (docking), MI alone, or the ChemEM score with MI score weights of 10, 50,
and 100. (A) Number of cases where a correct solution was generated when the analysis was run for the high-resolution benchmark using density
difference maps. (B) Correct cases when the high-resolution benchmark and full maps were used. (C) Number of cases where a correct solution
was generated when the analysis was run for the low-resolution benchmark using density difference maps. (D) Correct cases determined using the
full maps and low-resolution benchmark.
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resolution benchmark, no additional correct solutions were
generated at any MI weight when using full maps compared to
docking alone (Figure 4B). However, integrating MI did
improve the solution quality, resulting in 45% good and 15%
excellent solutions with an MI weight of 10 (Figure 4B). With
lower resolutions, using full maps resulted in a lower number
of correct solutions when integrating MI (compared to
docking alone), with the best MI weights (10 and 50)
resulting in only 66% of cases having a correct solution.
Furthermore, the solutions were of a lower overall quality
compared to that of docking alone (Figure 4D).

Flexible Fitting to Full Maps. For each case in the high-
and low-resolution benchmarks, the best initial fits were
generated using density difference maps and the ChemEM
scoring function with an MI weight of 50. Following this
molecular docking protocol, the solutions were further refined
into the full map with a flexible fitting protocol (Methods,
Figure 1).
In all 20 cases of the high-resolution benchmark, a good

solution was generated, with an excellent solution found 75%
of the time (Figure 3A). The CCC of the refined solutions (in
the original full map) correlated well with that of the reference
solutions, with a mean CCC of 0.023 ± 0.008 standard

deviation for the reference conformations and 0.022 ± 0.008
standard deviation for the refined solutions (Figure 3B).
However, the quality of the conformations generated by
ChemEM was notably better than that of the deposited
solutions with mean strain energies of 4.86 and 6.47 TEU,
respectively (Figure 3B).
The workflow was repeated by using the 12 low-resolution

protein−ligand complexes. Following four rounds of flexible
fitting, 92% of solutions were correct (Figure 3C). This was
accompanied by an increase in the quality of solutions, with
67% good solutions and 17% excellent. The mean CCC was
0.022 ± 0.01 and 0.023 ± 0.01 for the refined and reference
conformations, respectively (Figure 3D). The strain energies
over the whole data set were inline with the published
structures with a mean of 5.61 TEU compared to 5.64 and 5.99
TEU in the reference structures and high-resolution controls,
respectively (Figure 3D and Table S5).
Finally, we assessed the sensitivity of the ChemEM score to

varying levels of map sharpening using two distinct cases from
the EMDB: a high-resolution example (PDB: 6X1A, EMD:
21994) and a low-resolution one (PDB: 6U8S, EMD: 20691),
both of which had their half-maps deposited. We applied two
widely used postprocessing methods to these maps: B-factor

Figure 5. Specific examples of ChemDock (Docking) and ChemEM (refined) solutions for the high-resolution benchmark compared to the
deposited solutions when (A) isoprenaline was fit to the β-Adrenergic receptor protein (PDB: 7JJO, EMD: 22357). (B) Small molecule
PF06882961 bound to the human glucagon-like peptide-1 receptor (PDB: 6 × 1A, EMD: 21994) (C) Two fragment molecules and two molecules
of dimethyl sulfoxide (DMSO) were fitted to the human pyruvate kinase protein (PDB: 6TTI, EMD: 10577).
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sharpening24 in RELION25 and sharpening-like feature
enhancement with DeepEMhancer.26 Subsequent recalcula-
tions of the ChemEM scores for solutions generated with the
deposited maps revealed that for the high-resolution case, the
recalculated scores displayed a Pearson correlation coefficient
of 0.99 with the original scores for both postprocessing
techniques (Figure S4). The low-resolution case demonstrated
a slightly diminished, yet substantial, correlation of 0.91 for
DeepEMhancer and 0.92 for B-factor sharpening (Figure S4).
These results indicated that ChemEM may display some
robustness against variations stemming from map sharpening
or blurring techniques. However, while these results are
promising, it is essential to note they represent a limited data
set.

Analysis of Specific Examples. High-resolution bench-
mark (≤3.0)As discussed above, the ChemEM software was
able to find meaningful solutions for most of the 20 high-
resolution structures that agreed well with the deposited
ligands. In a few cases, using ChemEM led to only modest
improvements in the RMSD from the reference conformation
compared with docking alone. However, in most cases, it led to
much-improved fits, with a mean CCC of 0.022 ± 0.008 for
the best solutions, compared to 0.019 ± 0.007 using docking
alone (Table S4). Additionally, the mean ligand strain energies
decreased from 8.12 to 4.86 TEU (Table S4). For example, in
the case of Isoprenaline bound to an avian β-Adrenergic
receptor protein27 (PDB: 7JJO, EMD: 22357), the docking
solution had an RMSD of 0.72 Å compared to 0.64 Å when the
MI score and flexible fitting protocol were included (Figure

5A). The similarity in quality of both solutions in the context
of the cryo-EM density was confirmed by looking at the CCC
and ligand map Q-scores28 (a map-based metric for assessing
the quality and accuracy of models fitted into cryo-EM maps),
where the ChemDock solution had a CCC of 0.036 and a map
Q-score of 0.722 compared to a CCC of 0.037 and map Q-
score of 0.731 for the ChemEM solution.
However, in the case of PF06882961 bound to the human

glucagon-like peptide-1 receptor29 (PDB: 6X1A, EMD:
21994), docking with ChemDock failed to find a correct
ligand conformation, with RMSD of 2.09 Å from the reference
conformation for the best solution (Figure 5B), a CCC of
0.017, a map Q-score of 0.349, and a strain energy of 13.41
TEU, compared with a CCC, map Q-score, and strain energy
of 0.032, 0.811, and 13.38 TEU for the reference structure.
When the cryo-EM map was used for fitting, ChemEM was
able to generate a correct solution with an RMSD, CCC, map
Q-score and strain energy of 0.89 Å, 0.03, 0.768, and 11.18
TEU (Figure 5B).
Low-resolution benchmark (>3.0−4.5 Å)For the 12 lower

resolution complexes, the docking software with ChemDock
score was also able to find meaningful solutions within the top-
scored solutions that agreed well with the reference ligands.
Similar to the high-resolution cases, using the full ChemEM
protocol (MI and flexible fitting) generally led to improvement
in the RMSD from the reference conformation. An example of
the benefit of including the MI score was in the case of CGP
54626 bound to the GABAB

30 receptor at 3.52 Å (PDB:
7CUM, EMD: 30472), where docking alone was not able to

Figure 6. Specific examples of ChemDock and ChemEM solutions for the low-resolution benchmark compared to the deposited and high-
resolution “ground truth” solutions (gt high) when the (A) molecule CGP 54626 was fit to Human GABAB (PDB: 7CUM, EMD: 30472). (B)
Molecule of Flavin mononucleotide was fit to bacterial respiratory complex I (PDB: 6ZIY, EMD: 11231) at a resolution of 4.25 Å. (C) Flavin
mononucleotide molecule bound to mammalian respiratory complex I (PDB: 5LDX, EMD: 4041) at a resolution of 5.6 Å. (D) Jasplakinolide was
fit to actin (PDB: 6T24, EMD: 10366).
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yield a correct solution (Figure 6A). The full ChemEM
protocol improved the fit significantly, resulting in a
conformation close to the high-resolution reference conforma-
tion (1.38 Å) and markedly better fit to the density than the
cryo-EM deposited structure (Figure 6A) (Qscore ChemEM:
0.526, Qscore deposited: 0.442).
The ChemEM workflow produced accurate fits, even at the

lower end of the resolution range tested. One example was the
case of Flavin mononucleotide bound to the bacterial
respiratory complex I31 (PDB: 6ZIY, EMD: 11231) at 4.25
Å resolution. Following refinement, the CCC was 0.005, equal
to that of the deposited solution, and a map Q-score of 0.427
was comparable to that of the deposited solution of 0.438.
Additionally, the strain energy was better than the high-
resolution control structure and comparable to the reference
ligand (Figure 6B). The workflow was only systematically
tested on lower resolution structures at 3.00−4.5 Å resolution
range, as at worse resolutions, it was difficult to identify
structures with ligands that had high-resolution control
structures deposited in the PDB. However, one interesting
case to test was a homolog of the above structurethe Flavin
mononucleotide bound to the mammalian respiratory complex
I32 at 5.6 Å resolution (PDB: 5LDX, EMD: 4041). At this
resolution, it was still possible to fit the ligand in a correct
conformation, although it was necessary to reduce the MI
weight to 10. The final solution had an RMSD of 1.25 Å and
correlated well with the conformation seen in the reference and
high-resolution structures. The CCC and map Q-score of the
ChemEM solution were 0.023 and 0.234, showing a similar fit
to that map as the reference solution (CCC: 0.022, map Q-
score: 0.241, Figure 6C). However, the ChemEM solution had
a notably better strain energy than that of the reference
solution (strain energy ChemEM: 8.06 TEU, strain energy
reference: 14.72 TEU, Figure 6C). When the same ligand was
fitted using only ChemDock, the RMSD of the best solution
was 1.71 Å, and the CCC and TEU were 0.022 and 12.36,
respectively, worse than the solution generated when the cryo-
EM map was included.
As described above, the ChemEM methodology resulted in a

solution similar to the reference conformations in all cases of
the high-resolution benchmark and all but one of the low-
resolution cases. This refers to the case of Jasplakinolide-bound
actin33 at 3.7 Å resolution (PDB: 6T24, EMD: 10366).
Jasplakinolide is a large ligand with 47 heavy atoms, and
although the aromatic moieties were accurately placed in the
density, the large acyl-ring did not converge to the correct
solution (Figure 6D).

Multiligand Fitting. One example within the high-
resolution benchmark described the use of the human pyruvate
kinase protein34 (PDB: 6TTI, EMD: 10577) for fragment
screening using cryo-EM. The binding site contained multiple
ligands, with two “fragment” molecules and two molecules of
dimethyl sulfoxide (DMSO).
All four ligands were fitted by using the ChemEM workflow

(Figure 5C). The final conformations had an average RMSD of
1.38 Å from the reference structure, over all four ligands. The
individual RMSDs of the fragment molecules were 0.38 and
1.17 Å. In comparison, the two DMSO molecules were less-
well fitted, with RMSDs of 1.88 and 2.09 Å.
The CCC across all four ligands was 0.016, slightly lower

than that of the reference (CCC: 0.019). However, for the two
fragment molecules, the CCCs were the same (0.011 and
0.009), and the map Q-scores were comparable (ChemEM:

0.745 and 0.686, reference ligands: 0.767 and 0.792).
Furthermore, the torsional strain energies of both the refined
fragments and reference fragments were comparable, with
TEUs of 1.14 and 1.89, and 1.12 and 1.17, respectively. The fit
of the DMSO molecules was less good with CCCs of 0.006
and 0.005, compared to 0.01 and 0.09 in the reference
structure; this was confirmed by comparing map Q-scores with
scores of 0.554 and 0.513 in the ChemEM solution compared
to 0.725 and 0.757 in the reference structure. However, the
two molecules were still placed in the correct region in the
map.

■ DISCUSSION

There is currently a requirement for a diverse range of software
to accurately and automatically fit small molecules to cryo-EM
structures due to significant developments in this technique
over the past decade, making it increasingly relevant to drug
discovery. ChemEM is a novel method that meets these needs
by combining small-molecule docking with density fitting by
using difference maps. The method, which can be used with or
without the cryo-EM data (as a “classical” docking method),
was assessed on a benchmark of cryo-EM protein−ligand
complexes at 2.2−4.5 Å resolution with corresponding X-ray
structures. This resolution range is consistent with what is
currently required in the field, with 22.5% of maps deposited
within the EMDB in 2022 at resolutions better than 3.0 Å and
47.8% between 3 and 4 Å range. Additionally, ChemEM was
able to produce accurate fits for an individual test case at a
lower resolution (5.6 Å).
The ChemEM ChemDock scoring function was derived to

take account of the physicochemical features of protein−ligand
interactions. It was shown to outperform AutoDock Vina
scoring function when estimating the relative affinity of
compounds and had a comparable performance when
identifying a correct ligand conformation from an incorrect
one (Figure 2A). Importantly, ChemDock had improved
performance in the binding funnel analysis over AutoDock
Vina (Figure 2B). It has been suggested that docking scores
that can perform well on this task are good candidates for
“blind” docking scoring functions.12

When the ChemDock score was combined with a search
algorithm, a correct conformation was generated 85 and 83%
of the time for the benchmarks derived from high- and low-
resolution structures, respectively, a marked improvement
compared to AutoDock Vina (Figure 3). Additionally, when
both scoring functions failed to reach a correct solution, the
solutions generated by ChemDock were generally closer to the
reference (Tables S4 and S5), which was useful when
ChemDock was combined with the cryo-EM data.
To achieve this, the cryo-EM density difference map was

used and the MI score was added to the ChemDock score
(ChemEM). It has previously been shown that MI-based
scores are generally more discriminatory than CCC-based
scores for fitting proteins to cryo-EM maps.35,36 Our results
support these findings, showing that when fitting small
molecules to density maps at resolutions of 2.5−8.5 Å, MI
has a higher discriminatory power than CCC (Table S8).
When we used difference maps with ChemEM in stage 1 of

the algorithm (Figure 1), there were additional correct
solutions generated compared with those generated when
using full maps (Figure 4). These solutions were also generally
closer in RMSD to the ground truth. This improved accuracy is
likely due to difference maps emphasizing the most relevant
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density for the search algorithm. Although we have previously
used cryo-EM difference maps for ligand docking,14,15 a
systematic comparison with using full-density maps has not
been undertaken. Our study shows that the advantage of using
difference maps at 2.2−3.0 Å resolution is reduced when fitting
ligands in lower-resolution densities (3.0−4.5 Å), and this
effect holds true with full maps. This is due to an increased
search space, leading to more false positive solutions being
identified.
At lower resolution, our investigation indicated that more

onus should be placed on the physicochemical properties
rather than the goodness-of-fit to derive a good solution. This
was exemplified when the ChemEM score was used for fitting
without refinement: in the high-resolution benchmark, a
greater MI weight of 100 resulted in the same number of
correct solutions identified with a weight of 50 (Figure 4).
Whereas, for the lower resolution benchmark when the
contribution of the MI score was increased to 100, the
number of correctly identified solutions decreased (Figure 4).
Naturally, this was a consequence of less information being
present in the map. However, the fact that this effect starts to
occur at resolutions close to 3.0 Å is somewhat surprising.
Once initial fits are identified with ChemEM (Stage 1,

Figure 1), the addition of refinement in the density in
combination with the OpenFF Sage v2.0.0 force field (Stage 2,
Figure 1) improved the quality (TEU, RMSD < 1.5/1.0 Å) and
success rate (RMSD < 2.0 Å) of solutions (Figure 3A,C). This
improvement was most pronounced for the high-resolution
benchmark (Table S4). However, even in the low-resolution
benchmark, only one case failed to identify the correct solution
(Figure 6D). In one low-resolution instance (PDB: 7CUM,
EMD: 3047226) where the deposited cryo-EM structure
appeared to be incorrect (Figure 6A), ChemEM identified a
solution more aligned with the high-resolution control
structure (PDB: 4MR7). This solution not only had closer
RMSD proximity to the high-resolution control but also
boasted a higher map Q-score compared to that of the
deposited cryo-EM solution. Additionally, as seen for
generating the initial fits with ChemEM, the best results after
refinement for the lower resolution benchmark were achieved
when the contribution of the map component within the score
was lower in comparison to the high-resolution cases (Table
S4). One important point to note is that when fitting into maps
at resolutions worse than 3.0 Å, having less information present
in the map will affect not only the accuracy of the ligand
placement in the map but also of the protein side-chain
placement. This in turn may affect the density-independent
part of the scoring function as misplaced side chains may lead
to improper bonds being scored between the protein and
ligand. The flexible fitting stage (Stage 2, Figure 1) of the
ChemEM workflow aims to minimize these errors by allowing
the protein side chains to move during refinement.
Furthermore, adding the density not only increased the

number of solutions where a correct case was generated but
also improved their rank. This explains why there was a greater
improvement in the ranking of the best solutions in the high-
resolution benchmark (Tables S6 and S9) over the lower-
resolution benchmark (Tables S7 and S10).
In addition to the resolution of the map, the quality of the

generated solutions (as assessed by RMSD to the reference
solution) is limited by the number of rotatable bonds
contained within the ligand (Figure S5). As the number of
rotatable bonds increases, the RMSD from the reference

increases. This effect was seen in both the high- and low-
resolution benchmarks and was found to be independent of the
resolution. It is most likely a consequence of the increased
search space needed to evaluate solutions with a larger number
of rotatable bonds. This issue is somewhat taken into
consideration within the ChemEM workflow, as the number
of iterations of the ACO algorithm will increase as a function
of the number of rotatable bonds to account for the greater
search space needed.
As explained above, our benchmark only included cases

better than 4.5 Å resolution except for a single case at 5.6 Å
resolution (Figure 6C), where it was possible to use ChemEM
to dock a Flavin mononucleotide to the mammalian respiratory
complex I, yielding a solution that fits the map better than the
PDB-deposited solution.32 While fewer structures at this
resolution contain small molecules, ∼14% of the total EMDB
deposited maps in 2022 were between 4 and 6 Å resolution. At
this resolution range, a good fit could only be achieved by
reducing the MI weight from 50 to 10 in the ChemEM score.
However, including the map with a low weight was still helpful.
This may indicate that at relatively low resolutions, there may
still be some benefit to including the map in docking small
molecules, even though more weight is needed to be placed on
force field scores.
Finally, the ChemEM software was extended for the

automated simultaneous fitting of multiple ligands (Figure
5), which was computationally feasible, owing to the use of
difference maps. This feature was shown to work relatively
well, with 3 of 4 ligands fitted correctly. Future work would
extend this feature for the parallel fitting of other binding site
components, for example, ions.

■ EXPERIMENTAL SECTION

Computational Data Sets. Data to train the ChemDock scoring
function were taken from the PDBBind-v2020 refined data set.37 This
data set consists of 5316 protein−ligand atomic models derived from
X-ray crystallography at resolutions better than 2.5 Å. PDB files that
failed to load into the software or those that formed part of the CASF-
2016 data set were removed from the training set, leaving 3281
complexes in the final training set.
The data set for testing the scoring function was taken from the

CASF-2016 data set consisting of 285 protein−ligand atomic models
from X-ray crystallography experiments, at resolutions better than 2.5
Å.12 When comparing the ChemDock scoring function to the
Autodock Vina scoring function any files that failed to load into the
ChemDock software or the Open Drug Discovery Toolkit (ODDT)
software38 (used for Autodock Vina rescoring) were discarded from
the data set. For the remaining ligands in the test set, the Tanimoto
coefficient was calculated in comparison to those in the training set
using RDKit. When ligands in the test set exhibited high similarity
(>0.85 Tanimoto coefficient) to those in the training set, the protein
similarity was assessed using Clustal Omega.39 If the protein’s percent
identity exceeded 70%, the corresponding protein−ligand complex
was excluded from the test set. The final data set contained 137
protein−ligand complexes.
The investigations of the CCC and MI goodness-of-fit scores used

all 285 protein models in the CASF-2016 data set.12 Additionally, for
each case in the CASF-2016 data set, up to 100 ligand decoys were
included. These decoys were ligand conformations obtained from
molecular docking software that had RMSDs distributed from 0.0 to
10.0 Å from the deposited conformation.12 Simulated maps were
generated from the deposited protein and ligand models in USCF-
Chimera40 using the “molmap” command. For each complex, maps
were generated at resolutions from 2.5 to 8.5 Å in 0.5 Å increments.
Simulated density difference maps were generated between the full
map and the deposited protein model (without the ligand) using a
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local density difference mapping methodology18 implemented in
TEMPy2.41

Two experimental data sets were generated, one containing high-
resolution structures (≤3.0 Å, “high-resolution” benchmark) and a
second containing lower resolution structures (3.0 Å < resolution
≤4.5 Å, “low-resolution” benchmark). For the high-resolution
benchmark, 20 protein−ligand complexes from the Protein Data
Bank42 (PDB) that had an associated Cryo-EM map in the Electron
Microscopy Databank1 (EMDB) were selected. Similarly, 12 protein−

ligand complexes were selected for the low-resolution benchmark;
however, for the low-resolution structures to be included a high-
resolution control (≤3.0 Å, representing the ground truth structure
for experiments conducted with this data set) structure of the same
protein−ligand complex had to be available in the PDB. Experimental
density difference maps were generated using the deposited maps and
protein models for each case, using the same methodology used for
the simulated maps.
The reason we chose not to systematically test cases at worse

resolution was that we wanted to have a high-resolution control
structure for each low-resolution case (3−4.5 Å) and could not find
cases beyond this resolution range. However, one case above this
resolution was chosen where a control structure was available (PDB:
5LDX, EMD: 4041).32

ChemDock Scoring Function. The density-independent docking
scoring function was designed to predict the pKd of a given protein−

ligand complex. The score contained terms for atom−atom
attraction/repulsion, hydrogen bonding, π−π stacking, hydrophobic
interactions, and ligand intramolecular interactions (eq 1):

w w w w w

w w w w

w w

ChemDock VG VG VS HB HB

HPI Arm Arm ligand

ligand ligand bias

1 1 2 2 3 4 dist 5 angle

6 7 dist 8 angle 9 vg1

10 vg2 11 vs

= + + + +

+ + + +

+ + + (1)

Here, we keep the general term for scoring atom−atom steric
interactions for Vina.11 This score is the combination of two Gaussian
functions (eq 1, VG1, VG2) and a repulsion function (eq 1, VS). This
function was also used to score the intramolecular interactions
between nonconsecutive atoms of the ligand (eq 1, ligand-VG1,
ligand-VG2, ligand-VS).
Hydrogen bonding was accounted for using two geometric

parameters H-bond-Donor−Acceptor distance (eq 2, HBdist) and H-
bond-Donor-Hydrogen−Acceptor angle (eq 3, HBangle). The distance
score was a function of the van der Waals overlap of the hydrogen-
bonded atoms.

d d d
d

HB ( ) 1 if 0.7, 0 if 0, else
0.7

1dist = { > }

(2)

where d = dij − ri − rj; where, dij is the distance between atomic
centers of protein atom i and ligand atom j, and ri/rj is the van der
Waals radii of atom i or j, respectively.
The term used to describe the hydrogen bond angle was a linear

interpolation between 0 and 1 for hydrogen bond angles between 90°

and 180° (eq 3).

HB ( ) 0 if 90, else
90

90
angle = { < }

(3)

To score hydrophobic interactions the hydrophobic matching
algorithm was used, first outlined in SCORE.43 This scored the local
environment for a given hydrophobic atom. Hydrophobic atoms were
defined as any carbon atoms that were bound exclusively to any
carbon atom or hydrogen.
The environment that a hydrophobic atom is placed in was scored

as the sum of the logP (a measure of hydrophobicity) of all atoms
within 6.0 Å of the hydrophobic atom, as in X-CSCORE44 and
SCORE.43 Values for logP were taken from XlogP3;45 however, unlike
X-CSCORE and SCORE, the hydrophobic score (eq 4, HPI) was the
sum of the logP values for each hydrophobic atom in the ligand (as

opposed to a binary 1 or 0 score if the hydrophobic atom is or is not
within a local hydrophobic environment).

j p iHPI( ) log ( )
i

n

1

=

=
(4)

where j is a given hydrophobic atom and n is the set of atoms within
6.0 Å of atom j.
To investigate the preferred geometry of π−π stacking interactions,

the Tough-D1 data set46 was used. This data set contained 3079
protein−ligand complexes where the ligand was stabilized by at least
one aromatic ring. For all protein−ligand aromatic π−π stacking
interactions, data regarding the angle between interacting aromatic
rings and the distance between ring centers was extracted. The data
were split into two sets, one set containing distance and angle data for
π−π P-stacks (angle >45°) and one for π−π T-stacks (angle <45°).
From this data, the aim was to estimate the probability of a π−π
stacking interaction being true given the ring-plane angle and ring
center−ring center distance values.
To do this, probability density functions were derived by fitting the

data to 106 common distributions with the Python package Fitter.
Each fit was scored by using the residual sum-of-squares criteria. The
distributions that best describe the angle data for both P-stack and T-
stack data sets were seen to be beta normal distributions, with sum of
the square residuals of 0.0037 and 0.0023, respectively. For the
distance data in the P-stack set, an exponential normal distribution
was seen to fit the data best with the sum of the squared residuals
being 0.29, while for the T-stack distance data, a skewed normal
distribution was seen to fit the data best, where the sum of the
squared residuals was seen to be 0.13.
For inclusion in the scoring function, the aromatic score was

defined as follows:

Arm ( , , )
( ) (1 )

( ) ( )
angle

1 1

=
+

(5)

where θ is the angle between two planes, α and β are constants set
based on the angle value, and Γ is the gamma function: Γ(n) = (n −

1)!
The score for the aromatic distance was dependent on the plane−

plane angle. If the angle was lower than or equal to 45°, the
interaction was scored using the equation:

d
k k

d k
d k

Arm ( )
1

2/
exp(

1

2/
/ )erfc(

1/

2
)dist 2=

(6)

where d was the ring center−ring center distance, k is a constant, and
erfc was the complementary error function. If the angle was greater
than 45°, the aromatic distance is scored as

dArm ( )
exp( )erfc( )

2

d a d

dist

( )

2

( )

2

2

2

=

(7)

Where d was the ring center−ring center distance, σ and μ were
constants, and erfc is the complementary error function.
The final ChemDock scoring function was a summation of the

weighted terms of all atom−atom pairs within the binding site (eq 1).
Additionally, a bias term (bias) was included to bring the magnitude
of the score in line with the expected pKd values.

Fitting the Weights in ChemDock Scoring Function. Each
term in the scoring function had to be fitted to a weight. This fitting
was done using a linear regression to the experimentally determined
pKd values from the PDBBind-v2020 data set.37

A 5-fold validation methodology was used for the regression.
Briefly, the individual scoring terms were precalculated with the
ChemEM software for each protein−ligand complex in the final
PDBBind-v2020 refined data set.37 The order of the cases in the data
set was randomized and split into 5 approximately equal sets of each
containing 609 complexes. The weights were fit five times using four
of the sets, leaving a unique set each time for validating the
parameters. The weights for the scores were determined by linear
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regression to the experimentally determined pKd values (Table S1).
Following the linear regression, the weights for each scoring term
were averaged from the values in each round (Table S2).

ChemEM Scoring Function. When fitting into density maps, the
MI score was included in the calculation. When combined with the
density independent part of the scoring function, the MI score was
weighted by a constant, wMI (eq 8).

wChemEM ( MI) ChemDockMI= + (8)

To identify the weight for the MI score in the ChemEM scoring
function, docking of both the high- and low-resolution benchmarks
was conducted in the absence of any further refinement. The weight
that gave the best results at both high and low resolution was seen to
be a weight that scaled the MI score to approximately 0.5× the
magnitude of the density independent part of the scoring function (a
value of 50, Figure 4). This value was used for all of the further
experiments with the full ChemEM scoring function.

ChemDock Scoring Evaluation. To evaluate the ChemDock
and AutoDock Vina scoring functions, the 285 protein−ligand
complexes in the CASF-2016 benchmark set12 were used. For scoring
with ChemDock, the supplied protein PDB files were uploaded into
the ChemEM software along with the native ligand and each ligand in
the associated RMSD benchmark for each case (in MOL2 format).
For each protein, all benchmark ligand decoys (RMSD benchmark)
were scored individually using the ChemDock scoring function with
no additional docking applied. To score protein−ligand complexes
with AutoDock Vina, the Open Drug Discovery Toolkit (ODDT)38

and an “in house” python script were used. The ODDT was used as
AutoDock Vina does not currently support scoring without docking.
Of the 285 cases, 132 failed to load into the ODDT leaving 153 for
evaluation.
To evaluate the program’s ability to rank correct ligands, the

RMSD benchmark was used. For both ChemDock and AutoDock
Vina, the solutions in the RMSD benchmark were scored and ranked
accordingly. The number of occurrences of either scoring function
ranking a correct ligand (defined as <2.0 Å from the deposited
conformation) at position 1, 2, or 3 was calculated.
For the binding funnel analysis, the RMSD benchmark was split

into subsets containing all the ligands for that case that had an RMSD
below a certain cutoff. The cutoffs were slowly raised in steps of 1.0 Å
from 2.0 to 10.0 Å. At each cutoff, for each case, the subsets were
ranked by either the AutoDock Vina or ChemDock score and their
respective RMSDs, and the Spearman correlation was calculated.
To evaluate the correlation between the predicted and

experimental values, a Pearson correlation coefficient was calculated
between the ChemDock or AutoDock Vina scores for the
experimental protein/ligand complex and experimental affinity values
supplied with the CASF-2016 benchmark set.
All correlation coefficients were calculated using the SciPy python

software and an “in-house” python script.
Molecular Docking Search Algorithm. ChemEM and Chem-

Dock used a min−max Ant Colony Optimisation (ACO) Algorithm
combined with the Nelder−Mead local minimizer, as in PLANTS.21

Briefly, for a given ligand a table of probabilities was constructed
corresponding to the position of the ligand with 6-degrees of freedom
(x, y, z rotation and translation) and n degrees of freedom for each
rotatable bond. A ligand is constructed based on the values in the
table and locally minimized with the Nelder−Mead algorithm. The
probabilities evolve as the algorithm searches through various
solutions with values close to high scoring conformations given a
higher chance of being picked. The number of iterations of the search
algorithm was proportional to the number of rotatable bonds within a
ligand as in.21 When ChemDock was run for molecular docking, the
output solutions of the ACO were energy minimized within the
binding site using OpenMM.47 During this step, all side-chains at the
surface of the pocket were treated as flexible. Protein parameters were
taken from the AMBER FF14SB19 with small-molecule parameters
from the OpenFF Sage 2.0.0.20 Minimization was conducted with the
“minimizeEnergy” function in OpenMM with the tolerance set to 10
kJ/mol and allowed to run until convergence. For fitting small

molecules in cryo-EM density maps, the algorithm was sped up by
segmenting the supplied density map around the center of the binding
site, into a cubic map containing all voxels within a specified distance
(30 Å by default). This segmented map was used to generate the
difference maps for molecular docking (see above).
Docking solutions were further refined by using simulated

annealing into the segmented full map. Once again, both the
AMBER FF14SB19 and Sage OpenFF 2.0.020 were used. Additionally,
the full map was added to the potential (eq 9) biassing atom
movements toward areas of high density. The weight of the map
potential was controlled by a constant k. Here, experiments were
conducted using three values of k, 25, 50, and 75 (Table S11).

E kD x y z( , , )map
= (9)

where D(x,y,z) is the normalized density value at position x,y,z within
the full map.
Following minimization, the system’s temperature was gradually

raised from 0 to 300 K in 1 K increments. At each increment, the
simulation was equilibrated for 1000 steps.
Once the desired temperature was reached, the system was heated

from 300 to 315 K by temperature steps of 1K. Again, at each
temperature step, the system was allowed to advance 1000 steps (with
a step size of 1 fs), before being cooled to 300 K in the same manner.
This continued for a defined amount of cycles (4 by default) before
yielding the final solutions.
For both minimization and simulated annealing atoms not within

binding sites or forming part of the protein backbones were not
minimized/refined. These atoms were kept in place using a harmonic
pinning potential whose strength (kpin), was 500 kJ/mol.
The final solutions were grouped by their RMSD (<2.0 Å), where

each group was represented by the solution with the highest
ChemEM/ChemDock score.

Molecular Docking Experiments and Small-Molecule Fit-
ting. For molecular docking experiments, SMILES strings for the 32
ligands in the benchmark were extracted from the PDB chemical
repository. Protein models were preprocessed by removing solvent
and ligands. The binding site was defined from the native structure as
the centroid of the deposited ligand, a radius of 12.5 Å was used for
ChemDock experiments, and a box size of 12.5 Å was used for
docking with AutoDock Vina. When using the ChemEM software,
protein models were input as preprocessed PDB files, while ligands
were supplied as a SMILES string. For AutoDock Vina, preprocessed
protein files were prepared using the “DockPrep” command in UCSF
Chimera. Ligands for AutoDock Vina were prepared by first
generating a 3D conformation in RDKit using SMILE strings.
These ligands were then prepared into PDBQT files using the
Chimera “DockPrep”.
For multiligand docking experiments, the ChemEM software was

extended to receive multiple inputs within a single binding site.
Ligands were given as individual SMILES strings. Regarding the
difference map inputs and center of binding sites, there are two
options; the first was to give a difference map and binding site
centroid as an input. The second option (used for experiments
reported here) is to give multiple difference map inputs and binding
site centroids. The search space for each ligand was then defined from
the assigned difference density, with the center of the ligand binding
site for a specific ligand being the center point of the assigned
difference density. To fit multiple ligands into the binding site
simultaneously, the scoring function was extended such that
interligand interactions were accounted for in the same manner as
protein−ligand interactions when using the ChemDock score.
To perform multiligand docking, first ligand density within the

difference map was assigned to a given ligand and disconnected
difference densities were extracted from the whole difference map
using a map processing function contained in ChemEM (Figure S1A).
Briefly, this command grouped regions of density together, where the
boundaries were defined as voxels with any adjacent voxel below a
given threshold (0.0 by default). The densities assumed to correspond
to individual ligands were extracted from the whole map and all voxels
in a given disconnected density were vectorised and the centroid for
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the binding site for that ligand was determined by the centroid of the
vectorised points (Figure S1B).
To evaluate the solutions given by the docking/fitting programs the

RMSD to the reference structure was calculated using the symmetry-
corrected RMSD implemented in the python package SpyRMSD.48

For each experiment, the RMSDs given represented the mean
minimum RMSD, and this was defined as the average of the solutions
for each case with the lowest RMSD to the reference structure.
Additionally, the strain energy of ligand conformations was

calculated using the method outlined in Gu et al.22 Calculation of
the cross-correlation coefficient was conducted using the python
package TEMPy2,41 using full maps downloaded from the electron
microscopy data bank.1

Computational Hardware. All analyses were conducted on a
system equipped with an Intel(R) Xeon(R) Gold 6248R CPU (96
cores, 3.00 GHz base frequency), 196GB RAM, 512GB SSD, and an
NVIDIA Quadro RTX 6000 GPU.
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SDF, structure data file; SMILES, simplified molecular input
line entry system; STD, standard deviations; TEMPy2, toolkit
for the analysis of macromolecular electron microscopy maps
in Python version 2; TEU, torsional energy units represent
deviation from preferred ligand torsion angles; VG1/VG2,
scoring term using the AutoDock Vina Gaussian 1/2 to score
ligand atom-protein atom interactions; VS, scoring term using
the AutoDock steric term to score ligand atom-ligand atom
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D.; Liang, Y.-L.; Glukhova, A.; Venugopal, H.; Christopoulos, A.;
Furness, S. G. B.; Miller, L. J.; Reedtz-Runge, S.; Langmead, C. J.;
Gloriam, D. E.; Danev, R.; Sexton, P. M.; Wootten, D. Differential
GLP-1R Binding and Activation by Peptide and Non-Peptide
Agonists. Mol. Cell 2020, 80 (3), 485−500.e7.
(30) Kim, Y.; Jeong, E.; Jeong, J.-H.; Kim, Y.; Cho, Y. Structural
Basis for Activation of the Heterodimeric GABAB Receptor. J. Mol.
Biol. 2020, 432 (22), 5966−5984.
(31) Gutiérrez-Fernández, J.; Kaszuba, K.; Minhas, G. S.; Baradaran,
R.; Tambalo, M.; Gallagher, D. T.; Sazanov, L. A. Key Role of
Quinone in the Mechanism of Respiratory Complex I. Nat. Commun.
2020, 11 (1), 4135.
(32) Zhu, J.; Vinothkumar, K. R.; Hirst, J. Structure of Mammalian
Respiratory Complex I. Nature 2016, 536 (7616), 354−358.
(33) Pospich, S.; Merino, F.; Raunser, S. Structural Effects and
Functional Implications of Phalloidin and Jasplakinolide Binding to
Actin Filaments. Structure 2020, 28 (4), 437−449.e5.
(34) Saur, M.; Hartshorn, M. J.; Dong, J.; Reeks, J.; Bunkoczi, G.;
Jhoti, H.; Williams, P. A. Fragment-Based Drug Discovery Using
Cryo-EM. Drug Discovery Today 2020, 25 (3), 485−490.
(35) Farabella, I.; Vasishtan, D.; Joseph, A. P.; Pandurangan, A. P.;
Sahota, H.; Topf, M. TEMPy: A Python Library for Assessment of
Three-Dimensional Electron Microscopy Density Fits. J. Appl.
Crystallogr. 2015, 48 (Pt 4), 1314−1323.
(36) Joseph, A. P.; Lagerstedt, I.; Patwardhan, A.; Topf, M.; Winn,
M. Improved Metrics for Comparing Structures of Macromolecular

Journal of Medicinal Chemistry pubs.acs.org/jmc Article

https://doi.org/10.1021/acs.jmedchem.3c01134
J. Med. Chem. 2024, 67, 199−212

211



Assemblies Determined by 3D Electron-Microscopy. J. Struct. Biol.
2017, 199 (1), 12−26.
(37) Wang, R.; Fang, X.; Lu, Y.; Wang, S. The PDBbind Database:
Collection of Binding Affinities for Protein−Ligand Complexes with
Known Three-Dimensional Structures. J. Med. Chem. 2004, 47 (12),
2977−2980.
(38) Wójcikowski, M.; Zielenkiewicz, P.; Siedlecki, P. Open Drug
Discovery Toolkit (ODDT): A New Open-Source Player in the Drug
Discovery Field. J. Cheminform. 2015, 7, 26.
(39) Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T. J.; Karplus, K.; Li,
W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; Thompson, J.
D.; Higgins, D. G. Fast, Scalable Generation of High-Quality Protein
Multiple Sequence Alignments Using Clustal Omega. Mol. Syst. Biol.
2011, 7, 539.
(40) Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.;
Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. UCSF Chimera–a
Visualization System for Exploratory Research and Analysis. J.
Comput. Chem. 2004, 25 (13), 1605−1612.
(41) Cragnolini, T.; Sahota, H.; Joseph, A. P.; Sweeney, A.;
Malhotra, S.; Vasishtan, D.; Topf, M. TEMPy2: A Python Library
with Improved 3D Electron Microscopy Density-Fitting and
Validation Workflows. Acta Crystallogr. D Struct Biol. 2021, 77 (Pt
1), 41−47.
(42) Berman, H.; Henrick, K.; Nakamura, H.; Markley, J. L. The
Worldwide Protein Data Bank (wwPDB): Ensuring a Single, Uniform
Archive of PDB Data. Nucleic Acids Res. 2007, 35, D301−D303.
(43) Wang, R.; Liu, L.; Lai, L.; Tang, Y. SCORE: A New Empirical
Method for Estimating the Binding Affinity of a Protein-Ligand
Complex. Molecular modeling annual 1998, 4 (12), 379−394.
(44) Wang, R.; Lai, L.; Wang, S. Further Development and
Validation of Empirical Scoring Functions for Structure-Based
Binding Affinity Prediction. J. Comput. Aided Mol. Des. 2002, 16
(1), 11−26.
(45) Cheng, T.; Zhao, Y.; Li, X.; Lin, F.; Xu, Y.; Zhang, X.; Li, Y.;
Wang, R.; Lai, L. Computation of Octanol-Water Partition
Coefficients by Guiding an Additive Model with Knowledge. J.
Chem. Inf. Model. 2007, 47 (6), 2140−2148.
(46) Brylinski, M. Aromatic Interactions at the Ligand-Protein
Interface: Implications for the Development of Docking Scoring
Functions. Chem. Biol. Drug Des. 2018, 91 (2), 380−390.
(47) Eastman, P.; Pande, V. S. OpenMM: A Hardware Independent
Framework for Molecular Simulations. Comput. Sci. Eng. 2015, 12 (4),
34−39.
(48) Meli, R.; Biggin, P. C. Spyrmsd: Symmetry-Corrected RMSD
Calculations in Python. J. Cheminform. 2020, 12 (1), 49.

Journal of Medicinal Chemistry pubs.acs.org/jmc Article

https://doi.org/10.1021/acs.jmedchem.3c01134
J. Med. Chem. 2024, 67, 199−212

212


