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Abstract

A recent evaluation of three-loop nonplanar Feynman integrals contributing to Higgs plus
jet production has established their dependence on two novel symbol letters. We show
that the resulting alphabet is described by a Gy cluster algebra, enlarging the Cs cluster
algebra found to cover all previously known integrals relevant for this process. The cluster
algebra connection we find reveals new adjacency relations, which significantly reduce the
function space dimension of the non-planar triple ladder integral. These adjacencies may
be understood in part by embedding GG inside higher-rank cluster algebras.
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1 Introduction

Following the discovery of the Higgs boson, a new era of precision measurements has begun
at the Large Hadron Collider and its planned High-Luminosity upgrade. Interpreting these
measured observables, determining the parameters of the Standard Model as well as telling
apart the subtle signature of new physics from them, requires their theoretical description
to reach a commensurate level of accuracy. One of the key challenges to this end, remains
the computation of scattering amplitudes and their building blocks, Feynman integrals, at
higher orders in perturbative quantum field theory [1].

On the analytic front, that often provides a faster and stabler evaluation than the nu-
meric one, the method of choice for computing the master integrals (namely the solutions of
the linear integration-by-parts identities [2] among all Feynman integrals contributing to a
given process) are differential equations [3-5] in canonical form [6]. Working in dimensional
regularisation, where the dimension of loop momenta is D = 4 — 2¢, and focusing on bases
of integrals f which evaluate to the often sufficient class of multiple polylogarithms [7-9],
these canonical differential equations take the form

df (Zie) = ¢ [Z A, dlogai(,?)] f(Z:e). (1)

Here, 2z collectively denotes the kinematic variables the integrals depend on, such as external
momenta and internal masses, and d = > ; dz;0; is the total differential. Finally, each a;
is an algebraic function of the Z components known as a letter (of the symbol [10]), with
the entire set A = {«;} similarly denoted as the (symbol) alphabet, and A; are constant
matrices.

Despite the great success of the method, for a state-of-the-art application see e.g. [11],
this too becomes increasingly unwieldy as the perturbative order and number of kinematic
variables grow to meet experimental demands. Serious bottlenecks include analytically
solving the integration-by-parts identities in terms of an initial basis, as well as determining
the basis transformation that brings it to the form (1). However both can be circumvented
when the alphabet is known beforehand: This trades the symbolic calculation with a much
simpler, numeric one [12], thereby rendering the prediction of the alphabet by independent
means an attractive endeavor.

In this respect, mathematical objects known as cluster algebras [13] appear quite
promising. Cluster algebras have been first observed to describe the alphabet of six- and
seven-particle amplitudes in planar N' = 4 super Yang-Mills theory (SYM) [14], provid-
ing crucial information for computing these amplitudes to unprecedented loop orders by
bootstrap methods [15-29]"; and closely related generalisations are also seen to describe
higher-point amplitudes of the same theory [35—10]. Most importantly, in [11] it was discov-
ered that cluster-algebraic structures are not confined to idealised models: In particular, it

IBefore that, cluster algebras also appeared at the level of the amplitude integrand in this theory [30],
as well as enjoyed remarkable connections to other theoretical physics topics, for example thermodynamic
Bethe ansétze [31], moduli spaces [32] and electric/magnetic duality [33] of supersymmetric gauge theories,
or mirror symmetry [34].
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Figure 1: Examples of known integrals with one off-shell leg, p2 # 0, at (a) one (b) two and
(c) three loops. They are described by the Ay, Cy and Gy cluster algebras, respectively,
with the latter case proven in this work.

was demonstrated that cluster algebras also underlie the analytic structure of a host of di-
mensionally regulated Feynman integrals as well as processes in quantum chromodynamics
(QCD). Since then, their presence has been confirmed in more examples of integrals [412-50)]
and imprints of their relevance have also been observed in finite remainders of five-particle
QCD amplitudes [51-54]. A review of these developments may be found in Chapter 5 [55]
of the SAGEX review on scattering amplitudes [56].

While we will define cluster algebras in more detail in the next section, we can convey
their essence with examples of finite rank-two cluster algebras, which will play a central
role in what follows: These consist of cluster variables a,, for m integer, grouped into
unordered sets or clusters {a,,, a1}, which may be obtained as rational functions of the
variables of the initial cluster, {ai,as}, by virtue of the mutation operation,

L+ am .. .
ra if m is odd,
Am—1
Am+1 = 1+ ok (2)
™ if m is even,
Qm—1

where c is a positive integer with ¢ < 3. The three inequivalent cases L. = 1, 2, 3 correspond
to the Ay, C'5 and G4 cluster algebras respectively, echoing the Cartan classification of semi-
simple Lie groups of the same rank. For these cases, it’s easy to show that a;,4,20-1 = a;,
in other words there exist a finite number of nontrivial clusters and cluster variables. For
example, in the C5 case the latter are,

(3)

?

l+a2 1+a+a3 14+2a +a?+a3 1+a
ay ajay, aja’ as '

Oc, = {ah e 7%} = {017%7

The above (5 cluster algebra was found to describe one of the most prominent classes
of Feynman integrals studied in [41], which enter the calculation of amplitudes for Higgs
boson plus jet production from proton-proton collisions [57-59] in the heavy-top limit of



QCD [60-62]: These were all the known four-point integrals with one off-shell (or equiv-
alently massive) leg, including the complete set of two-loop master integrals [63, (1] as
well as L-loop ladders [65,60]; see figure 1b for a representative example. More precisely,
all these integrals where shown to obey differential equations of the form (1), where the
letters a; coincide (in certain kinematic parametrisation) with the Cy cluster variables a;
of eq. (3)! More three-loop planar integral families confirming the same cluster algebraic
structure were also later computed in [67,68].

Despite this encouraging evidence, a more recent calculation [09], see also [70], has
established that the Cy alphabet (3) is in fact too small to describe all integrals with the
same kinematics at three loops: In particular, it was found that the three-loop nonplanar
ladder integral family depicted in figure 1c additionally depends on two novel letters.
Does this result cast doubt on the applicability of cluster algebras for Feynman integrals?
The main contribution of this work is to demonstrate that the resulting alphabet in fact
corresponds to a Go cluster algebra. We find it remarkable that the alphabets of type As,
Oy, G5 become relevant at one, two and three loops, respectively.? In other words, the
parameter L in eq.(2) really seems to be the loop order!

In addition, we study adjacency restrictions of the form,

for some i, j, of the constant matrices appearing in the differential equations (1), for the
Go-alphabet integral family of figure lc. In the realm of planar AV = 4 SYM theory,
adjacency relations appear to encode how the cluster variables arrange themselves into
the clusters [71,72]. They can be in essence physically interpreted as a generalisation [20]
of the Steinmann relations [73-75] governing the discontinuities of Feynman integrals and
scattering amplitudes, and most importantly, they greatly facilitate bootstrapping the
latter by drastically reducing the size of the function space containing them.

For the nonplanar triple ladder integral of figure 1c, we find 20 inequivalent adjacency
relations of the form (4) after transforming the original alphabet of ref. [69] to the G5 cluster
variables obtained from eq. (2), whereas before the transformation a subset of 16 of these
relations were visible. In other words, the cluster algebra connection we find exposes new
adjacency relations, and we showcase how these restrict the allowed function space. While
these relations are not in one-to-one correspondence with how the G5 cluster variables are
distributed among clusters, we will also show that many of them can be understood by
embedding G5 inside the larger B3 or D, cluster algebras.

The rest of this paper is organised as follows. In section 2 we briefly introduce cluster
algebras and their finite type classification, before turning our attention to the rank-two
cases, which will be at the heart of this work. We also review how these can be embedded
into larger cluster algebras with the process of folding, and define the notion of an embedded
neighbour set, which will play an important role when analysing adjacency restrictions.

2Note that the space of polylogarithmic functions with an A, alphabet is contained in the space of
functions with a Cy alphabet, and the latter is in turn contained in the space of functions with a Go
alphabet.



Then, in section 3 we move on to discuss the alphabet containing all currently computed
four-point one-mass integrals through three loops, and, after reviewing certain general
procedures for proving the equivalence of alphabets, we apply them to demonstrate that
the alphabet in question is described by a G5 cluster algebra. Section 4 is dedicated to the
study of adjacency relations for the single topology with novel letters, the nonplanar triple
ladder. We present the adjacency restrictions we observe for the integral in question, we
explain them to a great extent with the help of embeddings to larger cluster algebras, and
we demonstrate that they indeed lead to a significant reduction in the size of the relevant
polylogarithmic function space. Finally, section 5 we present our conclusions and discuss
open questions for the future.

2 Basics of Cluster Algebras

2.1 Definitions and finite type classification

Here we give a brief introduction on the basics of cluster algebras. This relatively new
branch of contemporary mathematics, was originally motivated by the study of represen-
tation theory and the study of quantum groups [13, 76-78]. However, it appeared to be
very useful in many other directions both in terms of mathematics and physics [79-82].
For more details on its mathematical foundations one can follow [33,84].

For any positive n, a cluster algebra A of rank n is a commutative ring with unit and no
zero divisors. The structure includes a distinguished set of generators a :== {ay, as, ..., a,},
called cluster variables, which group into overlapping subsets called clusters. The cardi-
nality of each cluster is equal to the rank of the cluster algebra. The clusters and the
cluster variables are built constructively. One starts from an initial cluster and builds
the rest through an operation called mutation. The mutation rule is provided by a skew-
symmetrisable integer valued n x n matrix B called the ezchange matriz with components
b;;. Any pair of data (a, B) is called a seed. Mutation leads to new cluster variables and
new exchange matrices. Mutation can be performed on any cluster variable and transforms
the whole seed. More precisely, mutating (a, B) on the k-th variable (1 < k < n) we obtain
a new seed (a’, B') with

A forv =k or j =k,
Ca bij + [_bik]—i-bkj -+ bzk[bk]]+ otherwise,

(5)
where we denoted [b;;]+ = max(0, b;;). Moreover, the cluster variables mutate according to

/ a’lzl (H?:l agbik}-'— + H?:l agibik]-’—) lf L= k (6)

Consecutive mutations, in principle, produce new variables on each iteration. Note that
in any case the number of cluster variables remains the same. When this procedure ends,



namely when the cluster variables constitute a finite set, the cluster algebra is said to be
of finite type. On the contrary, cluster algebras with infinite distinct cluster variables are
said to be of infinite type.

In this work we will be interested in finite cluster algebras, whose classification is
identical to that of semisimple Lie algebras. To this end, one associates a symmetrisable
generalised Cartan matrix A(B) to the skew-symmetrisable exchange matrix B of the
cluster algebra in the following way

2, if i = j
Q5 = e . (7)
—|bi;|, ifi# g

It has been proven in [13,70], that cluster algebras are finite if and only if they contain
an exchange matrix B such that A(B) is a Cartan matrix of finite type. Therefore, the
classification of finite cluster algebras amounts to the classification of finite Cartan matrices
into types A,, B,,C,, D,, Eg, E7, Fy, Gs.

Before moving on to our main example of rank-two finite cluster algebras, let us define
two more concepts we will make use of in what follows. The content of a cluster algebra
can be visualised in its exchange graph, where each cluster is represented as a vertex, and
each mutation from a cluster to another as an edge between them. As an explicit example,
the exchange graph of the G5 cluster algebra may be found in figure 2 below. Finally,
the neighbour set of a cluster variable is the set of all cluster variables appearing with the
latter in some cluster.

2.2 The rank-two cluster algebras A,, C5, G,

As stated in the introduction, our main focus will be on the rank two cluster algebras of
types Ag, Cy, Go. These can be obtained by an initial seed with cluster variables {a;, as}

and exchange matrices given by
0 1

where L = 1,2, 3 corresponds to the Ay, Cs, G5 case, respectively. Indeed, by computing
the generalised Cartan matrix of eq. (7),

A(B) = (_2L _21) , (9)

we can recognise that it corresponds to the Cartan matrix of the aforementioned rank-two
Lie algebras.

Applying the mutation rule of eq. (5) to the exchange matrix (8), it is easy to check
that it only switches sign. Since the corresponding mutation rule for the cluster variables,
eq. (6), is invariant under this sign change, the latter equation then simplifies to the form (2)
we stated in the introduction.



As the cluster algebras in question are finite, starting with the initial cluster {ay,as}
and performing mutations generates a finite number of distinct clusters and variables, after
which we land back to the initial cluster. In the L = 2 or (5 case the collection of distinct
cluster variables from all clusters yields the set quoted in eq. (3), and similarly in the L = 3
or (G case we obtain,

L+ay 1+a+a3 14 ad+3a3 + 3a1a3 + 3a; + aS + 2a3 1+ a? + 2a1 + a3

(bGz :{(117(127 - - 2 3 2 )
(I] (1,](]2 (11(12 6616L2
3 2 3 .
1+ aj + 3a7 + 3a; + a; l+(1|} (10)
aas T ag

The color-coding is explained as follows: The subset of cyan variables is multiplicatively
equivalent to the A, cluster variables after the replacement

a9 —>a§/3, (11)

or in other words the logarithms of the variables span the same linear space.® Similarly, by
adding the blue variable to them one obtains a subset that is multiplicatively equivalent
to the (5 cluster algebra after the replacement

as — a§/3 : (12)

More explicitly, by dropping the purely G5 violet variables and using (12) in eq. (10), it is
easy to check that the numerators of the remaining variables match (up to overall rational
exponents) those of eq. (3).

Apart from the cluster variables per se, we will also be interested in how these arrange
themselves into clusters. This information is visualised in the exchange graph, as defined
in the previous subsection, and which for the case of G5 is depicted in figure 2. The fact
that the Cy and Ay cluster variables are contained, up to multiplicative equivalence, in
(G5, induces a relation between the two cluster algebras also at the level of their exchange
graphs: The C5 exchange graph can be obtained from the (G5 one by dropping any purely
(G5 variable as well as contracting the edges of the two clusters containing it, and similarly
for Ag.

From the exchange graph we may also easily infer that the G5 cluster variable a; may
be found together with a; ; and a;;; in some cluster. This is precisely the information
encoded in the notion of the neighbour set also defined at the end of the previous section,
which in this case reads,

nsag, (CL,L> = {Ojifl, a;, ai+1} 1= 1, Ce ,8. (13)

3As will be elaborated on below, polylogarithmic function spaces with cluster variables as letters are
defined up to this equivalence, hence our interest in it.



Figure 2: Exchange graph of the (G5 cluster algebra, with the expressions for the letters a;
given in eq. (10) in the order they appear. Removing as, a; (and ag) and fusing the clusters
containing them essentially yields the Cy (A,) cluster algebra, as discussed in the text.

2.3 Folded cluster algebras and embedded neighbour sets

Every non-simply laced Lie algebra, or its corresponding Dynkin diagram, may be obtained
from a simply laced one from a procedure known as folding. In particular, we have

A1 — Gy, Dy — Go, 14

Dyi1 — By, Eg¢— Fy, (14
and the same procedure also carries over to the associated cluster algebras [31]*. Conversely,
this provides an embedding of a skew-symmetrisable cluster algebra inside a a larger cluster
algebra. We will make use of this type of embedding for G5 in subsection 4.2, where we will
see that it has implications for the adjancency relations of the form (4) for the differential
equations of the three-loop nonplanar ladder integral.

In the rest of this subsection, we review how to fold cluster algebras, also using the
A3z — Cy example to illustrate the general process. We will also show how folding nat-
urally extends the notion of neighbour sets to embedded neighbour sets, see in particular
Definition 1 below. The reader interested primarily in the cluster-algebraic structure of
alphabets, rather than of adjacency relations, may thus choose to directly skip to the next
section.

At the level of Dynkin diagrams, folding may be thought of as an identification between
different nodes that are mapped into each other by an (outer automorphism) symmetry
leaving the entire diagram invariant. At the level of a cluster algebra, this symmetry is
in turn with respect to permutations of the rows of the exchange matrix;®> Folding of the

4From the relation (7) between Cartan and exchange matrices, it also follows that (non-)simply laced
Lie algebras are associated to skew-symmetric (skew-symmetrisable) cluster algebras.
5As the exchange matrix we begin with is skew-symmetric, also its columns will respect the same



cluster algebra essentially amounts to equating the cluster variables associated to the rows
in question, and only considering simultaneous mutations of these variables (and usual
mutations of the rest) [91].

In this manner, one produces the subset of the seeds of the skew-symmetric cluster
algebra, whose exchange matrix will respect an analogous permutation symmetry. As
a consequence, these clusters will also have the same number of cluster variables equal
after the aforementioned replacement, and we may use the count of distinct variables as
a criterion to select the subset in question when starting from the entire skew-symmetric
cluster algebra. Furthermore, from the cluster variable mutation rule (6), it is evident that

az[ibik]+a‘gibjk}+ L= agibik]++[ibjk}+ . (15)
In other words, the identification of two cluster variables implies that their corresponding
rows in the exchange matrix need to be replaced by the sum of the two, also appropri-
ately eliminating rows so as to end up with a rectangular matrix. All in all, from these
considerations we obtain the following general folding procedure.

Folding cluster algebras:

1. Start with a skew-symmetric ADFE cluster algebra appearing on the left of any arrow
in eq. (14), and pick a seed whose exchange matrix is symmetric under a certain
permutation of its rows.

2. Equate the cluster variables related by this permutation, and select the subset of all
clusters containing the same numbers of equal cluster variables.

3. In each of the selected clusters, for each collection of equal cluster variables, replace
the corresponding rows of the exchange matrix with a single row summing them up.
Eliminate the columns of the matrix as well as the duplicate cluster variables having
the same position as the eliminated rows.

4. The seeds thus obtained are seeds of the skew-symmetrisable cluster algebra at the
other end of the arrow in eq. (14).

Let us see this procedure at work in the example of A3 — C5 folding. We start with the
As seed with cluster variables and exchange matrix, respectively,

B 0 -1 0
{ao,a1,a2}, B= |1 0 1|, (16)
0 -1 0

and for our purposes it will be sufficient to consider two more seeds of the cluster algebra,

0 1 0
{Hal,al,@} CB=|-1 0 1], (17)
o 0 —1 0

symmetry.

10



0 1 O
{1+a17a171+a1} 7 B//: -1 O -1 , (18)
o 2 0 1 0

obtained by mutating first ag and then ay in (16). The matrix B in the latter formula
is symmetric under the exchange of the first and third row and column, so according to
step 2 above we may set ag = ao. This renders equal two cluster variables not only in this
seed but also in the seed of eq. (18), and so we select these seeds. On the contrary the
three cluster variables of the seed (17) remain distinct and so we discard it (also notice
that, unlike the two seeds we selected, the exchange matrix of this seed does not have a
permutation symmetry).

We now proceed to produce the Cy seeds corresponding to eqgs. (16) and (18) by identi-
fying the equal cluster variables as described in step 3 above. In both selected clusters the
permutation symmetry is with respect to the first and third row, and we may choose to
replace the latter with the sum of the two. This eliminates the first row, and consequently
also the first column of the matrix, as well as the first cluster variable. Therefore folding
egs. (16) and (18) yields

{ar, a2}, B= {_02 (1)} ; (19)

1+aq "o 0 —1
{a'h as }7 B = 2 0 ) (20)

respectively, and it’s easy to show that both are indeed seeds of the C5 cluster algebra:
The first of the above equations is nothing but the C5 initial seed with an exchange matrix
equal to eq. (8) with L = 2, whereas the second equation the seed obtained by mutating
as in the former.

Similarly, carrying out this procedure for all 14 of the A3 seeds selects 6 of them, which
are found to be equal to the (5 seeds as expected by the coarsening of the G5 exchange
graph shown in figure 2. It also follows that the set of cluster variables of the folded cluster
algebra is directly obtained from that of the unfolded cluster algebra we begin with, after
the variable identification discussed in step 2 above. For the A3 example at hand, it is in
particular simple to check that its set of cluster variables,

? )

1+a; 14apay 1+a; 14+ a1+ agas 1+ a; + agas 1+2a1+a§+a0a2
ap, a1, a2, ) ) ) )
o a1 a2 Qpay @102 Qpa1a2

indeed reduces to that of Cy, eq. (3), after the A3 — C5 folding replacement ag = as and
the elimination of duplicate elements.

Before concluding this section, let us present a final related concept that will be very
useful when analysing adjacency relations in section 4. As the folding procedure we have
described may be thought of as an embedding of a skew-symmetrisable cluster algebra
inside a larger cluster algebra, it also allows us to generalise the notion of the neighbor set
defined at the end of subsection 2.1, and also illustrated in the example of the G5 cluster

11



algebra in eq. (13). Namely, cluster variables that do not appear together in clusters of
the folded cluster algebra, may appear together in clusters of the larger cluster algebra
containing it. This gives rise to the notion of an embedded neighbor set, which may be
formally defined as follows.

Definition 1 (Embedded neighbor set) Let a; € A and f; € F be cluster variables of
two cluster algebras related by folding A — F', which in particular equates a; = f; for some
indices j and all indices i. Then the embedded neighbour set of F C A is given by

nSFCA(fi) = UnSA(aj) (21)

aj=f;

In other words, we first compute the neighbor sets for the variables of the cluster algebra
A, and then set of some of them equal, as dictated by folding. For the subset of variables
that become equal to the cluster variables of F' after this replacement, we take the union
of their neighbour sets, where the same replacement is also applied.

To make the embedded neighbour set definition more transparent, we apply it to our
Az — (5 example. The As neighbour sets are,

1+CL1 1—|—a0a2 1+a1+a0a2
n8A3<a0) = 4 Qo, a1, Gz, ) )

a2 ay 7 a1G2
I14+ar 1+ay
TLSA3(G1) = 4 Qo, a1, A2, )
Qo a9
B 1—|—CZ1 1—i—a0a2 1—|—a1—|—a0a2
TLSA3 (a2) — Qap, a1, , A2, ) )
Qo ay Aoy

1+a; 14+a; 14+a; 1+ a; +apas 1+ 2a; + a? + apay

nsa, = 4 a1, ’ , A2, 5 )
Qo ag ) Ao Apa1G2
1+ [013Y05) . 1+ [013Y05) 1+ a1 + GgGo 1+ a1 + agas 99
NS A, = 9 Qo, a2, ) ; ) ( )
ai ai Ao a1a2

1+a, l4+a; 1+a; 1+a;+apay 1+ 2a; +a? + agas

nsa, = 9 Gp, aq, ) 5 ) )
(05} ag a9 a1a9 apa1Qa9
ns ltaytagaz | _ 1+ ay a 1+ apas 14+ a1 + agao 1+ ai + agas 1+2a1+a%+a0a2
Az aoal ao s 02, a ) aoay ) a0y apaias )
ns 1+2a1+a%+a0a2 o 1 + ai 1 + a 1 + ai + apasg 1 + ai + apao 1+2a1+a%+a0a2
As @0a1a2 - ao ’ a9 ’ aogay ’ a1a9 ’ aoa1a2 ’

ltastagas | l4+a 1+apas 1+a;+apaz 1+ a1+ aoas 1420, +a2+agas
nsa, azaq =y @o, ) ) ) ) agaiaz .
5] ai apay a1G2

Upon the identification ag = ay that performs the A3 — C5 folding, two more pairs of
cluster variables become equal to each other (those appearing on the left-hand side of lines
4-7 and 5-9 above). We observe that the neighbour sets of the cluster variables that are

12



identified with each other also coincide, and altogether the Cy C A3 embedded neighbour
sets thus become,

1 + ay
nSCQCAg(al) =\ a1, az, a
2

Gy, az, ;

l+a; 1+a5 1+a;+a’
NSCycAs (az) = as a 4102 )

1 + a? 14+a2 1+a+a
NSCyC As (Tz) = {az, 2, ! 2 , (23)

1 ay a0z

1+a1
nSCQCAg a =
2

1+ 2a; + a? + a?
NSeyc As a1a2 =
2

1+ a; +a3
aias

ai, az,

?

l+a; 1+a +a2 1+2a; +a?+ad
as ajay aja3 ’

l+a; 1+a +a3 1+42a; +a?+a
a = aiay aa3 ’

’ ’ ’ 2

l+a; 1+a5 1+a +ai 1+ 2a; +a®+ a
a .
2, ay a,as aja’

NSCyCAs (

Notice in particular that some of these neighbour sets are larger than the usual C5 neigh-
bour sets of the same cluster variables. Indeed the latter always contain three elements, as
every (5 cluster variable appears in two clusters related by a mutation.

3 Nonplanar 3-loop 1-mass Ladder: Alphabet

P2 P4

d

.

b Dp3

Figure 3: The B1 topology producing new letters.

Our goal will be to understand the cluster-algebraic structure of three-loop four-point
integrals with one external leg offshell /massive, and everything else massless. Many integral
families with these kinematics have been recently calculated in [67-70], and all of them
continue to be described by a Cy cluster algebra relevant at two loops [11], except the
nonplanar topology shown in 3. As its alphabet contains that of all the other integrals,
from now on we will thus restrict our attention to this nonplanar triple ladder.

We choose to label the external momenta as shown in the figure, with p? = p3 = p3 = 0
and p? # 0. The kinematic variables of the process are thus

s=(p1+p2)’t=(p+p3). 05, (24)

13



and, following the conventions of [69], the symbol alphabet for the canonical differential
equations (1) of all currently known integrals with these kinematics is contained in

<I>0:{040,041,...,048}:{pi,s,t,—pi—ks—kt,—pi—l—s,s—l—t,

—(pi — 8)* +pit, s* — pi(s — 1)} (25)

Without loss of generality, we can always render the alphabet dimensionless by dividing
out with one of the dimensionful letters, which is taken as the overall scale of the Feynman
integral. In our case we will take this overall scale to be ay = p3, and in particular define
the dimensionless version of the kinematic variables (24) as

—5 —t
2n=—s, Z=—s. (26)
—Pi —1
The dimensionless alphabet in terms of these variables finally becomes,
b = {21,22,1* 21 — 22,1* 31,1* 2945 21 +ZQ,1 —2Z] +Z% — 29, %1 —Z% —22}, (27)

where we again use colour-coding to denote the letters that first appear at one, two and
three loops.

We would like to explore whether the alphabet (27) has a cluster-algebraic interpreta-
tion. To this end, we will first need to review and refine the general framework for proving
the equivalence of different sets of alphabets.

3.1 General procedure for equivalence of alphabets
Our starting point is the well-known fact that under linear transformations of the form
dloga; = Z M;; dloga’} (28)
j

where M;; are the elements of a square invertible rational matrix, the canonical differential
equations (1) preserve their general form. Specifically, they transform to

df(Z¢) =€ [Z A dlogag(a] f(Ze), (29)

where

A=Y AM;. (30)
J

Therefore, any two symbol alphabets {«;} and {«}} are considered equivalent if they are
related by a transformation of the form (28), or in other words alphabets are only defined
up to the equivalence relation {a;} ~ {a}}, rather than uniquely.
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Provided the alphabets {a;} and {a}} depend on the same variables Z, one may easily
check if they are equivalent in a numerical fashion, see e.g. [25]: One forms the list

L(%) = {log|ay (Z)], ..., log|an (2)|, log|a} (Z)] - .., log|aly (Z)]} (31)

where the absolute value is placed so as to throw away any sign information which is not
relevant for symbol letters, and for definitiveness we have specified the size of the two
alphabets to be N. Next, one evaluates this list for (at least) 2N random values of the

variables, 2, ..., 2N and from them construct the matrix
L(zY)
R= : (32)
L(E(QN))

Then, checking whether the two alphabets are equivalent or not boils down to the compu-
tation of the rank of this matrix,

rank(R) =N < {a;} ~{al}. (33)

More often, however, we are interested in comparing alphabets that depend on different
variables, {a;(Z)}, {a(Z’}. In other words, we also need to find the transformation

7' = §(2) (34)

so as to be able to carry out the equivalence test (31)-(33). The key idea here is that if the
variables Z are themselves letters, then their general form is also constrained by eq.(28)5. If
this requirement holds, and {«;} ~ {a/}, then taking the exponential of the latter relation
for the variables Z yields,

N
2t e{a} = z;l:cmHaj(Z)”mf, m=1,...,d, (35)
=1

where for concreteness we have assumed that the number of independent variables of both
alphabets is d.

The above formula provides us with a systematic way to establish the equivalence of two
alphabets {«;(2)}, {a4(Z’)}, both having size N and d independent variables: We perform
the transformation (35) on the alphabet {a}(Z")} for a range of different values ¢, 1,
construct the matrix R as in eqs (31)-(32) and compute its rank. Per eq.(33), if for certain
values of ¢, n,,; this rank equals NN, then these determine the transformation (34), and
prove the equivalence of the two alphabets.

Of course, if such a variable transformation and alphabet equivalence is discovered
numerically as described above, in the end it may also be checked analytically to further

5The requirement that the variables are themselves letters is not a limitation in practice, as we can
always pick a subset of algebraically independent letters as variables.
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confirm its correctness. Input parameters of the method we have described include the
ordering of the two alphabets, the range of values we scan for ¢,,, n,;, the range and
type of numbers (integer/rational/real) for the random kinematic points, as well as the
numerical precision of the rank evaluation. Finally, it is worth noting that this method
can also be straightforwardly generalised so as to also look for the inclusion of one alphabet
inside the other.

3.2 Application: Ladder alphabet = (G, cluster algebra

We now move on to apply the general procedure we have described in the previous section,
in order to investigate whether the alphabet (27) of the nonplanar triple ladder integral is
equivalent to the G cluster algebra alphabet (10): Both have 8 letters and depend on two
variables, which are necessary conditions for their equivalence. Furthermore, the variables
21, 2z are also letters of the former alphabet, such that our method can be applied directly.

For simplicity, instead of the G5 alphabet (10) we choose the alphabet of its irreducible
factors (the two are equivalent by virtue of eq. (28)) as our {c/(ay,a3)}. Notice, in partic-
ular, that we pick a3 instead of ay as a variable, since only the former appears in the irre-
ducible factors. As the range of values for our scan we pick ¢, = £1 and n,,; = {—1,0,1}.
Finally, we choose integer random kinematic points, and compute the rank with 100 digits
of precision.

In this manner, we find the transformation

(1+a)(1+a;+a3)

aa ’

1+(11

3 )
Qs

21 =

(36)

Z9 =

and we also check analytically that it indeed proves the equivalence of the alphabets (27)
and (10). Concretely, the letters of the former, nonplanar triple ladder alphabet in terms
of the (G5 alphabet read,

asag  ag Q4 G G104 A30g8 Q7G4 4508

(I):{ ) )

az ' a3’ dd ay’ ai’ a3

}- (37)

Y Y

2 2
as as

4 Nonplanar 3-loop 1-mass Ladder: Adjacencies

4.1 Observed adjacency restrictions

In the previous section, we showed that the alphabet (27), controlling the three-loop one-
mass nonplanar ladder integral, is equivalent to the one of eq.(10), dictated by the Gs
cluster algebra. That is, the former alphabet is related to the latter by a transformation
of the form (28), and it is also interesting to investigate adjacency restrictions of the
transformed coefficient matrices A’ of this integral, eq. (30), in the G5 alphabet.
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We find that

i,j€{1,3,5 T} with i > j,
AlAL=AL- Al =0 for , (38)
j=i+3,i=3,...,6 with j ~j—8,

namely we obtain 12+8=20 adjacency restrictions. These contain the 6 restrictions ob-
served previously for the Cy subalphabet of Gy [11], see also [36], plus another 14 relations
involving either or both of the new, purely G letters as, a7 in eq. (10).

We note that 16 of these restrictions were visible in the original alphabet (27). Namely
our cluster-algebraic analysis already has the benefit of revealing new adjacency restric-
tions, and in subsection 4.3 we will explore how such adjacency restrictions reduce the size
of the relevant function space.

In N = 4 SYM theory, adjacency restrictions have been observed to be in 1-1 correspon-
dence with the distribution of variables within clusters, encoded in their neighbour sets. In
the language of canonical differential equations, this ‘cluster adjacency’ [71] correspondence
could be stated as,

39 cluster containing a;, o,

or equivalently a; & ns(o;) .

Note that for such cluster adjacency restrictions the order of the matrix product doesn’t
matter, since all statements on the right-hand side of the double arrow are independent of
the order. Another way to say this, is that o; & ns(a;) < a; € ns(q).

This independence from the order of the matrix product is certainly something that
our observed adjacencies (38) respect. But do they precisely match the N' = 4 cluster
adjacency predictions (39)? To answer this, we need to apply it to the G5 neighbour sets,
which we have presented in eq. (13). Since these contain three consecutive Go cluster
variables, it follows that if A = 4 cluster adjacency were to hold, it would imply

AL-ALZ0 forj#Ad it T, (40)

namely 16+164-8=40 relations for j =7+ 2, j =+ + 3 and j = i + 4, respectively.

Hence the N' = 4 cluster adjacency predictions (40) don’t match our observed adja-
cencies (38), though the latter are certainly contained in the former. A similar situation
was also observed for the two-loop integrals for the same kinematics [11]. We can nev-
ertheless aim to explain these by embedding the G5 cluster algebras inside larger cluster
algebras with the method of folding, reviewed together with the newly introduced concept
of embedded neighbour pairs in section 2.3. The main idea is that since the larger cluster
algebra contains more clusters, the neighbor sets of the G5 variables inside of it will also
become bigger, such that their complements, the N' = 4 cluster adjacency restrictions (40),
will reduce in number, and may approach or coincide with the observed adjacencies (38).
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Figure 4: The three-dimensional cyclohedron with four square, four pentagonal and four
hexagonal faces is the exchange graph of the Bj cluster algebra. The G5 exhange graph of
figure 2 may be realised as a two-dimensional subspace thereof.

4.2 Intepretation by embedding G inside D,/ Bj cluster algebras

In section 2.3, we have recalled that both the (G5 and the Bj cluster algebras can be
embedded in the larger D, cluster algebra with the method of folding. As we will explain
below, due to their common ancestry, Go may also be considered as part of the Bj cluster
algebra, and this relation is visualised in figure 4. Per Definition 1, we find that in both
B3 and D, embeddings of G5 the corresponding neighbor sets become,

ns(a1)gy,cn, = ns(a1)e,cB, ={as, a1, a2},

+ a; — Q;y9, (41)
ns(a2)cycp, = ns(a2)G2CBg ={a1,as,a3,a4, 06,03},

where cyclic identification of the cluster variable indices is implied. Compared to the Gs
neighbor sets (38) we notice that for the variables with odd indices ay;_; they remain the
same, but for the variables with even indices ay; they double in size!

As a consequence, the embedding reduces the complement of the G5 neighbor sets, the
naive A = 4 cluster adjacency predictions (40) from 40 to 20+8=28 relations. Specifically,
it eliminates the following 12 of the restrictions of eq. (40),

Ab A5=0, i#j=1,...,4, (42)

which the nonplanar triple ladder integral indeed does not obey. On the other hand, the
embedding of G, inside the B3 or D, cluster algebras still predicts that the restrictions
of the second case in eq. (38) should hold for the entire range of ¢ = 1,...8, whereas the
integral obeys only half of these mixed odd/even index restrictions, for ¢ = 3,...6. In
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any case, we find it encouraging that the embedding procedure we have described modifies
the naive N/ = 4 cluster adjacency predictions (40) such that they approach the observed
adjacency restrictions of the integral, and it would be interesting to explore if more general
embeddings that go beyond what can be achieved by folding could also lead to a precise
match.

In the rest of this subsection, we provide more details on how the result (41) was
obtained. This closely mirrors the A3 — (5 folding example provided in subsection (2.3).
A choice for the cluster variables and exchange matrix of the Dy, initial seed is

0 -1
1 0
0 —
0

{d17d27d37d4}7 BD4 - (43)

— =
O O = O
o O = O

which clearly is symmetric in the permutation of any of the rows 1,3,4. Following the
folding procedure we described with respect to to the first and fourth row, specifically
eliminating the latter and the corresponding variable dy — dy, yields the B3 seed

0 -2 0
{di,ds,ds}, Bp,=|1 0 1]. (44)
0 -1 0

Similarly, applying the same procedure for all rows 1,3,4, and in particular eliminating the
latter two and their corresponding variables dy, d3 — dy, leads to the G5 seed

{di,ds}, Ba, = E’ _03} . (45)

Indeed, the above exchange matrix is equivalent to the Gy exchange matrix of eq.(8) with
L = 3 up to a simultaneous reordering of rows and columns, which in turn amounts to an
immaterial reordering of the variables of the cluster. In other words, one simply needs to
relabel

d1—>a2,d2—>a1. (46)

in order to match our previous conventions for the Gy cluster algebra, as e.g. in eq. (10)
and figure 2.

Notice that the G seed (45) may alternatively be obtained by folding the Bj seed (44),
adding the third to the first column and eliminating d3 — dy. It is in this sense that G is
also contained in G5 as depicted in figure 4. Because the B3 case is simpler, we will thus
present the calculation of the embedded neighbour sets of Gy with respect to the latter,
only commenting on where the D, case differs.

The Bj cluster algebra has 12 variables distributed to 20 clusters. Starting from the
initial seed (44), and mutating according to the rules (5)-(6), in our ordering conventions
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the cluster variables read,

do+1 dsdi+1 do+1 dsdi+dj+2dy+1 dsdi+da+1
di = dy 7 dy d3ds, ’ dods ’

(ng - {dla an d3a

dsd? +dy + 1 d3 + 3d% + 3dy + d2d3 + 1 d3d} + 3dadsd? + 2d3d? + di + 3d% + 3dy + 1

dyds ’ d3dyds ’ d3d3ds
2 72
dsdy +d6i2d;32d2 + 1} _ {dz}zlil 7
(47)
whereas their neighbour sets are given by,
nsp,(di) = {dy,ds, d3, d5, ds, ds }
nsp,(dz) = {dy, dy, d3, dy, dg}
nsp,(ds) = {dy,dy, ds, dy, ds,d7,dg}
nsp,(ds) = {ds, dy, d3, dg, d7, d1o}
nsp,(ds) = {dy,ds,ds, ds, dy }
nsp,(ds) = {d1, dz, ds, ds, ds, d1o, dra} | (48)
nsp,(dy) = {dy, dz, d3, dy, dig, du1, d12}
nsp,(ds) = {d1, ds, ds, ds, dy, d12,d11 }
nsp,(dg) = {ds, dy, d3, dr, dg, d11 }
n533<d10> = {d4, dyo, dg, dr, dm} )
n3B3<d11) = {and11>d7>d87d12} )
nsp,(dia) = {ds, di2, dg, dyo, di1, dr}

As mentioned already, the G5 cluster algebra in our conventions is obtained from Bj by the
replacement ds — d;, together with the relabeling (46). For the entire set of B3 variables,
this implies
di,ds — ag, dy = ay, dy,dg—as, ds —as, (49)
d7,diy — ag, dg,dg — ay  dio,d12 — ag.
According to definition 1, in order to obtain the embedded neighbor set of a given G,
variable, we need to take the union of the neighbour sets of all B; variables that reduce
to it under the folding (49). For example, only dy reduces to a;, and thus applying the
replacement (49) to its neighbour set in (48) gives,

nS(a1)G2cBg = {a17a2,a8}- (50)

On the other hand both d; and d3 reduce to as, so in order to compute its embedded
neighbour set one needs to perform the replacement (49) on the union of the neighbor sets
of the two B3 variables, thus obtaining

ns<a2)G2CB3 = {alaa'27a37a47a67a8}' (51)
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Both of the last two formulas agree with what we already presented in (41), and the
calculation proceeds also for the other neighbour sets in a similar fashion. Embedding G5
inside D, also yields the same final result; the only difference in intermediate stages, is
that the neighbour sets of D, variables that reduce to the same G4 variables, also coincide.

4.3 Adjacent G, polylogarithmic function counts

Let us close this section by analysing the extent to which the adjacency restrictions (38),
that we have discovered for the three-loop nonplanar ladder integral, reduce the size of
the relevant function space. In other words, we will construct the space of polylogarithmic
functions of (transcendental) weight w, satisfying the defining property,

df =3 g Vdlogay, (52)

where fi(w_l) are weight-(w — 1) functions of the same type (with the recursion terminating
with rational constants of weight 0 on the right-hand side) and a; are the symbol letters,
which in our case coincide the Gy cluster variables (10).

At weight w, this function space will contain the O(e€“) term in the expansion of all cur-
rently computed four-point one-mass integrals, when normalised such that this expansion
starts at O(e®). First constructing this space and then seeking to identify the integrals or
even directly the physical quantities they contribute to, is at the heart of the perturbative
analytic bootstrap programme for scattering amplitudes and beyond, see [55] for a recent
review. The success of this programme hinges on controlling the dimension of the function
space at each weight, such that its construction is computationally feasible, and that the
integral or physical quantity can be identified uniquely inside of it.

First of all, the dimension of the G5 polylogarithmic function space at weight w will not
be 8, because well-defined functions obey the property that double derivatives should yield
the same result irrespective of the order of differentiation. This requirement is equivalent
to the wntegrability condition,

A2 =0 — Z dfi(w_l) Ndloga; =0, (53)

which only allows particular weight-(w — 1) functions to appear on the right-hand side of
eq. (52). The construction of integrable polylogarithmic functions modulo transcenden-
tal constants, also known as symbols, has been automated in the Mathematica package
SymBuild [37], and applying it to our case yields the function counts shown on the first
line of table 1.

Then, a necessary condition such that the produced functions have physical branch
cuts, as dictared by locality and unitarity, is the first entry condition: The weight-one space
must only contain letters that are Mandelstam variables. In the dimensionless alphabet
of eq. (27), these correspond to the first three entries, and because of eq. (37) this is also
equivalent to,

First entry condition: f1 = {log 21, log 25, log(1 — 21 — 23)} ~ {log as, logas,logas} . (54)
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Weight 1 2 3 4 ) 6 7

No condition 8 46 232 1093 4944 21790 -
First entry 3 14 61 262 1113 4700 19755
Adjacency 3 14 54 196 684 2326 7796

Table 1: Dimension of the G5 cluster function spaces (modulo transcendental constants)
before and after constraints.

The function counts when the first entry condition is additionally imposed are shown in
the second line of table 17,

Finally, on top of integrability and the first entry condition, we may also impose the
additional adjacency restrictions (38), with the corresponding function space dimensions
shown in the third line of table 1. We notice that they start having an effect already at
weight 3, and that by weight 6 they have reduced the size of the integrable G5 functions
obeying just the first entry condition by more than a half. These results provide strong
indications that such adjacency restrictions may play an important role in future extensions
of the bootstrap programme to four-point one mass integrals or Higgs plus jet amplitudes
in the heavy-top limit.

5 Conclusions and Outlook

We have demonstrated that all four-point one-mass master integrals through three loops
computed to date are governed by a G5 cluster algebra, enlarging the C5 cluster algebra
previously seen to be relevant at two loops. In particular, the alphabet (24) entering their
canonical differential equations (1) was shown to be equivalent to the set of Gy cluster
variables (10) thanks to the variable transformation (36). We find it remarkable that the
Ag, Cy and G cluster algebras start becoming relevant at L = 1, 2 and 3 loops, respectively!

Focusing on the single integral with letters beyond those contained in the C5 cluster
algebra, shown in figure 3, we also looked for adjacency restrictions of the form A;-A; =0
for the constant matrices entering the canonical differential equations. We discovered that
using the G4 cluster variable form of the alphabet reveals new adjacency restrictions, yield-
ing a total of 20 instead of the 16 that were visible in the original alphabet. While the
observed adjacency restrictions do not coincide with the naive G, cluster adjacency ex-
pectations seen to hold in N' = 4 SYM theory, we showed that the two can be further
aligned by embedding G inside the larger B3 or Dy cluster algebras. We also illustrated
the power of the adjacency restrictions we have observed by constructing the Gy polylog-
arithmic function space, and noting that additionally imposing them leads to a significant

"Note that the first entry condition is necessary but not sufficient condition for ensuring physical branch
cuts. For the subspace of functions relevant for stress-tensor multiplet form factors in N'= 4 SYM theory,
sufficient conditions were given in [36], and were shown to further reduce the number of functions modulo
transcendental constants. As our focus is to gauge the power of the adjacency restrictions (38), we will
not consider such additional constraints here.
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reduction of its size.

Our work opens many exciting avenues for future inquiry. It would be very interesting
to understand how the pattern of relevant cluster algebras continues for the complete
set of master integrals at three as well as at higher loops, possibly entering the realm of
infinite cluster algebras and the need to tame their infinite in a physically sensible manner,
as was done in the case of cluster alphabets of N/ = 4 SYM amplitudes [35-39]. With
respect to adjacency restrictions, in [69] it was pointed out that one of the tennis-court
four-point one-mass master integrals, while still described by the C5 alphabet, does not
respect the subset of the observed adjacencies (38) when restricted to this subalphabet.
The authors of [38] comment that Schubert analysis can be used to determine certain
letters appearing in four-point one-mass master integrals, so it would be worthwhile to
investigate if it could also provide any insight on adjacency restrictions. More importantly,
could the cluster-algebraic structure of alphabets and adjacency restrictions be deduced
from first principles, and employed to make new predictions? Recent progress on efficient
methods for computing the Landau singularities of Feynman integrals [89-92], and for also
extracting symbol letters from them [93] or by related means [91-97], makes us optimistic
that this ambitious endeavour is within reach.
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