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1 Introduction

Collisions of protons at the Large Hadron Collider (LHC) at the energy and luminosity frontier, provide
a unique opportunity to study the strong, quantum chromodynamics (QCD), and electroweak (EW)
interactions in unprecedented detail. Run 1 of the LHC left a legacy of pioneering Standard Model (SM)
measurements, covering the inclusive production of photons, jets, massive single gauge bosons and pairs
of gauge bosons and the first electroweak production processes were established. Hadronic event shapes
and the substructure of jets were studied, as well as processes at energy scales below where perturbative
QCD (pQCD) is applicable. Precision studies of 1-hadrons and first measurements of fundamental SM
parameters (, mass, Weinberg angle and the strong coupling constant) were performed. With the start of
the LHC Run 2 in 2015, partial data samples were used to probe the energy dependence of the cross-sections
of basic SM processes and establish some rarer processes for the first time. From 2018 onwards, with the
full Run 2 data sample available, ATLAS is able to probe new kinematic regions previously inaccessible
to measurements and perform more differential measurements. New rare processes, especially in the
electroweak sector, are accessible and the measurement of their differential distributions have allowed
ATLAS to perform model-independent searches for new physics.

For Run 2, the LHC increased the centre-of-mass energy (
√
B) in ?? collisions from 8 to 13 TeV. A

significant increase in the beam intensity allowed more luminosity to be collected, but also led to a significant
increase in the mean number of ?? interactions per bunch crossing (pile-up), with correspondingly higher
particle multiplicities and trigger rates. This effect was only partially offset by the reduction of the bunch
spacing from 50 ns to 25 ns and required the development of many new techniques to mitigate the adverse
effects of these conditions on the measurements.

In parallel with the increased statistical and systematic precision and the increased energy reach, the
accuracy of theoretical predictions have substantially advanced for both Monte Carlo (MC) simulations [1]
and fixed-order calculations. Regarding the former, the combination of next-to-leading order (NLO) in
pQCD with a parton shower (PS) is now considered the standard for most analyses and the first predictions at
next-to-next-leading order (NNLO) merged with a PS (NNLO+PS) are available. Substantial modelling and
computational progress has also been achieved in multi-leg MC generators that combine matrix elements
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(ME) of various orders in pQCD with a PS [2, 3]. New developments aim for next-to-leading-logarithmic
(NLL) PS accuracy [4]. Higher-order EW corrections are increasingly included in MC generators and
fixed-order predictions [5–7]. For fixed-order calculations of 2 → 2 processes, NNLO is now the standard
and often combined with next-to-next-to-leading logarithmic (NNLL) order as NLL/NNLL resummation.
First NNLO calculations for 2 → 3 processes [8, 9] and N3LO and N3LL calculations for 2 → 2
processes [10] have been published. In addition, different settings of model parameters optimised to
reproduce experimental results based on the LHC Run 1 data are used in the simulation of QCD phenomena
at low energy scales [11, 12]. While infrared-safe algorithms are routinely used for inclusive jets at the
LHC, a variety of such algorithms has now also been developed for flavoured jets [13–15].

The measurements described in this paper, unless stated otherwise, are based on the ?? data sample
recorded at

√
B = 13 TeV corresponding to an integrated luminosity of 140.1 ± 1.2 fb−1 [16]. Some results

are based on ?? and lead–lead (Pb+Pb) data recorded at lower nucleon centre-of-mass energies. This
review covers measurements published until spring 2024.

This paper is organised as follows. The ATLAS detector and its performance are described in Sections 2
and 3, respectively. Section 4 describes the total, elastic and inelastic ?? cross-section measurements.
Measurements of inclusive production of charged particles down to low energies are discussed in Section 5.
Sections 6 and 7 summarise measurements with inclusive jets and isolated photons, respectively. Section 8
presents the measurements of single gauge (, or /) bosons, while the measurements involving the
production of two and three gauge bosons are summarised in Sections 9 and 10, respectively. Measurements
involving photon–photon interactions are summarised in Section 11. These photon-induced measurements
utilise ?? collisions, but also Pb+Pb collision data recorded in 2015 and 2018. Measurements of
fundamental parameters of the SM are presented in Section 12. Sections 13 and 14 discuss the studies
of heavy-flavour hadrons, including charmonium and exotic states. Finally, Section 15 summarises the
conclusions of the paper.

2 ATLAS detector in Run 2 of the LHC

The ATLAS detector [17] at the LHC covers nearly the entire solid angle around the collision point.1 It
consists of an inner tracking detector surrounded by a thin superconducting solenoid, electromagnetic (EM)
and hadron calorimeters, and a muon spectrometer incorporating three large superconducting air-core
toroidal magnets. ATLAS is also equipped with several forward detectors that monitor collision conditions,
provide instantaneous luminosity estimates and measure particles scattered at small angles.

The inner-detector system (ID) is immersed in a 2 T axial magnetic field and provides charged-particle
tracking in the range of |[ | < 2.5. The high-granularity silicon pixel detector covers the vertex region and
typically provides four measurements per track, the first hit normally being in the insertable B-layer (IBL)
installed before Run 2 [18, 19]. It is followed by the silicon microstrip tracker, which usually provides
eight measurements per track. These silicon detectors are complemented by the transition radiation tracker
(TRT), which enables radially extended track reconstruction up to |[ | = 2.0. The TRT also provides

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector
and the I-axis along the beam pipe. The G-axis points from the IP to the centre of the LHC ring, and the H-axis points upwards.
Cylindrical coordinates (A, q) are used in the transverse plane, where q being the azimuthal angle around the I-axis and A is the
distance from the IP in the transverse plane. The pseudorapidity is defined in terms of the polar angle \ as [ = − ln tan(\/2).
Angular distance is measured in units of Δ' ≡

√

(Δ[)2 + (Δq)2.
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electron identification information based on the fraction of hits (typically 30 in total) above a higher
energy-deposit threshold corresponding to transition radiation.

The calorimeter system covers the pseudorapidity range of |[ | < 4.9. Within the region |[ | < 3.2, EM
calorimetry is provided by barrel and endcap high-granularity lead/liquid-argon (LAr) calorimeters, with
an additional thin LAr presampler covering |[ | < 1.8 to correct for energy loss in material upstream of
the calorimeters. Hadron calorimetry is provided by the steel/scintillator-tile calorimeter, segmented into
three barrel structures within |[ | = 1.7, and two copper/LAr hadron endcap calorimeters. The solid angle
coverage is completed with forward copper/LAr and tungsten/LAr calorimeter modules optimised for EM
and hadronic energy measurements, respectively.

The muon spectrometer (MS) comprises separate trigger and high-precision tracking chambers measuring
the deflection of muons in a magnetic field generated by the superconducting air-core toroidal magnets.
The field integral of the toroids ranges between 2.0 and 6.0 T m across most of the detector. Three
layers of precision chambers cover the region |[ | < 2.7. They consist of layers of monitored drift tubes,
complemented by cathode-strip chambers in the forward region, where the background is highest. The
muon trigger system covers the range of |[ | < 2.4 with resistive-plate chambers in the barrel, and thin-gap
chambers in the endcap regions.

The ALFA detector [20] is a specific part of the ATLAS experiment designed to measure the trajectory of
elastically scattered protons during dedicated runs with special LHC optics. Because the elastic scattering
typically leads to deviations in the proton trajectory by very small angles, these detectors are placed close
to the beam and far from the IP. Two stations with scintillating fibre detectors are placed on either side of
the central ATLAS detector, located at distances of ±237 m (inner stations) and ±245 m (outer stations)
from the IP. The detectors are housed in ‘Roman pots’ (RPs), an upper one and a lower one, which are
movable and can approach the circulating beam in the vertical direction to within 1 mm.

The ATLAS forward proton (AFP) spectrometer [21] is designed to measure protons emerging intact from
the interactions with significant energy loss, for example, from photon-induced ?? interactions. The AFP
system consists of four tracking units located along the beam pipe at ±205 m and ±217 m from the IP,
referred to as near and far stations, respectively. Each station houses a silicon tracker comprising four
planes of edgeless silicon pixel sensors. Movable RPs at each station insert the tracker along the G direction
in the beam pipe. Data taking with the AFP commences once the trackers are at a position where the
innermost silicon edge is within 2 mm of the beam centre during stable beams.

The ATLAS zero-degree calorimeters (ZDC) consist of four longitudinal compartments on each side of the
IP, each with one nuclear interaction length of tungsten absorber, with the Cherenkov light read out by
1.5 mm quartz rods. The detectors are located 140 m from the IP in both directions, covering |[ | > 8.3.
They detect neutral particles such as neutrons emitted from interacting nuclei.

The ATLAS minimum-bias trigger scintillators (MBTS) consist of scintillator slats positioned between the
ID and the endcap calorimeters, with each side having an outer ring of four slats segmented in azimuthal
angle, covering 2.07 < |[ | < 2.76, and an inner ring of eight slats, covering 2.76 < |[ | < 3.86.

The ATLAS LUCID-2 detector [22] consists of 32 photomultiplier tubes for luminosity measurements and
luminosity monitoring. Its two modules are placed symmetrically at about ±17 m from the IP.

Interesting events are selected by the first-level trigger system (L1) implemented in custom hardware,
followed by selections made by algorithms implemented in software in the high-level trigger (HLT) [23].
The first-level trigger reduces the rate of accepted events from the 40 MHz bunch crossing rate to below
100 kHz, which the high-level trigger further reduces to record events to disk at about 1 kHz.
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Most of the analyses described in this report use events recorded with single-lepton (electron or muon),
single-photon or single-jet triggers [24–27]. Figure 1(a) shows the evolution of the single-electron trigger
efficiency as a function of pile-up during Run 2. The trigger efficiency was almost independent of the
pile-up towards the end of Run 2.

Some measurements make use of dilepton and diphoton trigger configurations, benefiting from lower ?T

thresholds compared to the corresponding thresholds of single-object triggers. In particular, the � hadron
physics programme of ATLAS is mostly based on events triggered by the presence of two muons at L1
that are subsequently reconstructed in the HLT and successfully fit to a common vertex. Starting from
late 2016, a new topological processor was introduced, allowing a selection based on various kinematic
properties of L1 objects to be applied. To reduce the L1 dimuon trigger rates, the two triggering L1
muon objects were required to satisfy both Δ' and invariant mass criteria. With those improvements the
?T thresholds on muons in such triggers were maintained mostly at the level of 4–6 GeV during Run 2
(with the lowest-threshold running typically at the end of LHC fills when the instantaneous luminosity
drops sufficiently). Certain analyses still gain much of their sensitivity from earlier data where most of
events were collected with the triggers having 4 GeV threshold for both the muons. Figure 1(b) shows
the dimuon invariant mass distribution for events collected by various triggers of this type. To further
reduce the dimuon trigger rate at HLT and to achieve as low a muon ?T as possible, some triggers used the
information about other ID tracks to reconstruct the full final states of particular � hadron decays, such as
�0
B → �/k(`+`−)q( + −).

An extensive software suite [28] is used in data simulation, in the reconstruction and analysis of real and
simulated data, in detector operations, and in the trigger and data acquisition systems of the experiment. To
cope with a fourfold increase of the peak LHC luminosity from 2015 to 2018, and a similar increase in the
number of interactions per beam-crossing to about 60, trigger and offline reconstruction algorithms were
optimised to control the rates and retain a high efficiency for physics analyses.

10 20 30 40 50 60

>µ<

0.75

0.8

0.85

0.9

0.95

1

T
ri
g

g
e

r 
E

ff
ic

ie
n

c
y

ATLAS  = 13 TeVspp data 2015-2018, 

Single electron trigger combination

Offline tight, isolation FCTight

2015 2016 2017 2018

(a)

2 4 6 8 10 12
) [GeV]−µ+µ(m

410

510

610

710

E
n
tr

ie
s
 /
 1

0
 M

e
V

low-m φ ψJ/ B S)n(ϒ
) > 6 GeV

2
µ(

T
p) > 11 GeV, 

1
µ(

T
p

) > 6 GeV
2

µ(
T

p) >   6 GeV, 
1

µ(
T

p

) > 4 GeV
2

µ(
T

p) >   6 GeV, 
1

µ(
T

p

) > 4 GeV
2

µ(
T

p) >   4 GeV, 
1

µ(
T

p

) > 6 GeV
2

µ(
T

p) > 11 GeV, 
1

µ(
T

pDimuon triggers: 

ATLAS
Data 2018

 = 13 TeVs
-158.45 fb

(b)

Figure 1: (a) Evolution of the single-electron trigger efficiency as a function of the pile-up during Run 2 [24]. (b)
Distribution of the offline dimuon invariant mass for events collected by various dimuon triggers corresponding to
different mass ranges (shown in different colours) and different muon ?T thresholds (different shades) in 2018 data
taking [25]. The dashed line represents the events collected by the lowest unprescaled dimuon trigger that is inclusive
of the full mass range of interest.
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3 Run 2 detector performance

Several upgrades were made to the ATLAS detector between Run 1 and Run 2. A major improvement
of the ID system was the installation of a fourth pixel layer, the IBL [18, 19], together with a new beam
pipe in 2014. The IBL provides a hit measurement at an average radius of 33.3 mm, significantly closer to
the interaction point than the closest pixel layer in Run 1 (radius of 50.5 mm). It improves significantly
the track and vertex reconstruction performance at higher instantaneous luminosities during Run 2 and
mitigates the impact of radiation damage to the previous innermost layer of the pixel detector, resulting in
improved tagging of jets containing 1-hadrons (1-tagging), g-lepton identification, and reconstruction of
inclusive and exclusive 1- and 2-hadron decays. The improvement in reconstructing the transverse impact
parameter of charged-particle tracks, defined as the shortest distance between a track and the beam line in
the transverse plane, is shown in Figure 2.

In addition, the reconstruction and calibration of physics objects in ATLAS benefited from several
improvements made prior to or during Run 2. Electrons and photons are reconstructed in ATLAS from
clusters of energy deposits in the EM calorimeter cells [30]. Electrons are additionally required to have
a matching track reconstructed in the ID. The identification of electrons and photons was revisited in
Run 2 to capitalise on the improved cell clustering procedure. Muons are identified using information from
various parts of the detector, the ID, the MS, and the calorimeters [31]. The performance of the electron,
photon and muon reconstruction and identification algorithms was improved to be almost insensitive to the
harshening data-taking conditions with increasing pile-up.

Jets in ATLAS are reconstructed using two different input types: topo-clusters formed from energy deposits
in calorimeter cells [32], and an algorithmic combination of charged-particle tracks with those topo-clusters,
referred to as the ATLAS particle-flow reconstruction method [33]. Figure 3(a) provides a comparison of
the relative jet energy resolution for particle-flow jets and jets reconstructed using only calorimeter-based
energy information. The latter was the primary jet definition used in ATLAS physics results by the end
of Run 2. The resulting improvement in the jet energy resolution at low ?T is clearly visible. Similarly,
systematic uncertainties in the jet energy scale (JES) can reach a sub-percent level for a large range of
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Figure 2: Transverse impact parameter resolution for reconstructed charged-particle tracks measured in 2015 and
2012 data as a function of (a) track ?T and (b) track [ [29]. The lower panels show the ratios of 2015 to 2012.
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The total cross-section at the LHC is measured via elastic scattering using the optical theorem:

ftot = 4c Im [ 5el (C)] |C→0 , (1)

which relates ftot to the elastic-scattering amplitude extrapolated to the forward direction 5el(C), with C
being the four-momentum transfer squared. The total cross-section can be extracted in different ways using
the optical theorem. ATLAS uses the luminosity-dependent method that requires a measurement of the
luminosity to normalise the elastic cross-section, fel. With this method, ftot is given by the formula:

ftot =
16c

1 + d2

dfel

dC

�

�

�

�

C→0

, (2)

where d represents a small correction arising from the ratio of the real to the imaginary part of the elastic-
scattering amplitude in the forward direction. The d-parameter is sensitive not only to the high-energy
evolution of the total hadronic cross-section but also to the fundamental structure of the elastic-scattering
amplitude. Traditionally, the elastic-scattering amplitude at energies well above 100 GeV is believed to be
dominated by the C-channel Pomeron exchange (see e.g. Ref. [37]). In QCD the Pomeron is represented
by a two-gluon colourless state with spin–parity–charge quantum numbers JPC = 0++. The additional
possible presence of a three-gluon colourless state with JPC = 1−− , the ‘Odderon’ [38], can also influence
the value of the d-parameter. Thus, measurements of the d-parameter at the highest energy of the LHC are
essential.

ATLAS previously reported a measurement of fel and consequently ftot at 7 and 8 TeV [39, 40]. The
measurements were performed with the ALFA sub-detector of ATLAS. However, those measurements
did not extend to the region of very small |C |-values where the differential cross-section is sensitive to the
d-parameter. Such small |C |-values require measurements of angles in the microradian range, which in turn
need even smaller divergence of the beam at the IP.

A new ATLAS measurement of ftot using ?? collision data at
√
B = 13 TeV, corresponding to an integrated

luminosity of 340 μb−1 [41] extends |C | by an order of magnitude lower compared to previous ATLAS
results. For the first time, the ATLAS measurement reaches the region of small scattering angles where the
Coulomb interaction plays an important role. The necessarily small divergence of the beam at the IP is
achieved by using very high-V∗ optics2 (V∗ = 2.5 km), producing a large beam spot size but very small
beam divergence. From a fit to the differential elastic cross-section, the total cross-section and d-parameter
are determined to be:

ftot(?? → -) = 104.7 ± 1.1 mb, d = 0.098 ± 0.011.

The new ATLAS measurement of d is compatible within uncertainties with the recent TOTEM meas-
urement [42], but the TOTEM value of the total cross-section is about 5% higher, which corresponds to
approximately two standard deviation (f) tension assuming uncorrelated uncertainties. A similar difference
was already observed at 7 and 8 TeV [39, 40]. The difference has been traced back to the normalisation of
the differential elastic cross-section as measured by ATLAS and TOTEM.

The new data for ftot and d are compared with previous measurements (including lower-energy data),
and the energy evolution of these data is analysed in the context of model studies of the evolution in
Figure 4. This study shows that the commonly accepted energy evolution as implemented in the COMPETE
model [37] is in tension with the 13 TeV elastic-scattering data. Further research is needed to understand
whether the low value of d can be attributed to the Odderon or other effects in strong interactions [43].

2 The V-function determines the variation of the beam envelope around the LHC ring and depends on the focusing properties of
the magnetic lattice.
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Figure 4: Measurements of (a) ftot and (b) the d-parameter at different centre-of-mass energies compared with
different model predictions [41].

The ATLAS analysis of ftot at 13 TeV also measures the inelastic cross-section, using the relation
finel = ftot − fel. The result is fALFA

inel = 77.4 ± 1.1 mb. This result using ALFA proton spectrometers can
be compared with the ATLAS measurement of the inelastic cross-section using two sets of scintillation
counters in a data sample corresponding to an integrated luminosity of 60 μb−1 collected in 2015 [44]. In
inelastic interactions, one or both protons dissociate as a result of coloured (non-diffractive) or colourless
(diffractive) exchange. The counters are insensitive to elastic ?? scattering and diffractive dissociation
processes in which neither proton dissociates into a system, - , of mass <- > 13 GeV. The measurement
is performed in such a fiducial region, and the result is extrapolated to the total inelastic cross-section
using models of inelastic interactions: fMBTS

inel = 78.1 ± 2.8 mb. The two ATLAS measurements of finel

and other LHC measurements at 13 TeV [45, 46] are compatible within uncertainties, while the ALFA
measurement is the most precise of the four available LHC measurements.

5 Production of charged particles in p p interactions

Measurements of charged-particle distributions in ?? collisions probe the strong interaction in the non-
perturbative regime of QCD characterised by small momentum transfers. In this region, charged-particle
interactions are typically described by QCD-inspired models implemented in MC event generators and
measurements are used to constrain the free parameters of these models. An accurate description of
low-energy strong interaction processes is, for example, essential for simulating single ?? interactions to
estimate the effects of pile-up at high instantaneous luminosity in hadron colliders.

5.1 Charged-particle distributions

Inclusive measurements of primary charged particles with ?T > 500 MeV in ?? collisions at
√
B = 13 TeV,

using data corresponding to an integrated luminosity of approximately 170 μb−1 are performed by
ATLAS [47]. A follow-up ATLAS analysis [48] extends the measurements to particles with ?T > 100 MeV.
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While this nearly doubles the overall number of particles in the kinematic acceptance, the measurements are
rendered more difficult due to multiple scattering and imprecise knowledge of the material in the detector.
The results are defined only by the final state and include all processes in ?? interactions and no attempt is
made to correct for certain types of process such as diffraction. Corrections for detector effects are made to
present these measurements as distributions of primary charged particles in a well-defined fiducial phase
space region: events are required to have at least one primary charged particle with ?T > 500 MeV, or two
with ?T > 100 MeV, and absolute pseudorapidity |[ | < 2.5 to be within the geometrical acceptance of the
tracking detector.

The measured charged-particle multiplicities are shown in Figure 5. The data are compared with predictions
from various MC generators. The results highlight clear differences between MC models and the measured
distributions. Among the models considered, EPOS [12] reproduces the data the best, Pythia 8 [49] give
reasonable descriptions of the data and Qgsjet-ii [50] provides the worst description of the data.
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Figure 5: (a) Primary charged-particle multiplicities as a function of pseudorapidity in events with at least one
primary charged particle with ?T > 500 MeV and |[ | < 2.5 [47]. (b) Primary charged-particle multiplicities as a
function of transverse momentum in events with at least two primary charged particles with ?T > 100 MeV and
|[ | < 2.5 [48]. The dots represent the data and the curves the different MC model predictions. The lower panels
show the ratios of the predictions to the data.
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5.2 Underlying event studies

A typical ‘hard’ ?? collision studied at the LHC consists of a short-distance process and accompanying
activity collectively termed the underlying event (UE). Mechanisms that produce the UE include partons not
participating in the hard-scattering process (beam remnants), radiation processes and additional hard and
semi-hard scatters in the same ?? collision, termed multiple parton interactions (MPI). Phenomenological
models are required to describe these processes using several free parameters determined from experiment.

It is impossible to uniquely separate the UE from the hard scattering process on an event-by-event basis,
but observables can be defined that are particularly sensitive to the properties of the UE. Typically, an
object with high transverse momentum such as a / boson or the leading ?T charged-particle is identified.
The UE activity is then characterised relative to the scale of the momentum transfer in the hard interaction
and the azimuthal distribution of energy and particle flow.

The ATLAS measurements of UE activity at
√
B = 13 TeV exploit distributions constructed using charged

particles with |[ | < 2.5 and with ?T > 500 MeV, in events with at least one such charged particle with
transverse momentum above 1 GeV [51], or in events containing two muons originating from the decay
of a singly produced / boson [52]. These measurements use the established form of UE observables, in
which the azimuthal plane of the event is segmented into several distinct regions with differing sensitivities
to the UE (Figure 6). In particular, the two transverse regions, defined relative to the leading particle
(either the / boson or the highest ?T track), are differentiated on an event-by-event basis by their scalar
sum of charged-particle ?T. The one with the larger sum is labelled trans-max and the other trans-min.
The trans-min region is most sensitive to the UE activity because it contains less activity from hard jets.
Several distributions are studied to understand the UE activity, including mean densities of charged-particle
multiplicity and the mean scalar ?T sum of charged particles per unit [–q.

The topology of the tracks in the event can be further characterised by the transverse thrust

)⊥ =

∑

8 | ®?T,8 · =̂|
∑

8 | ®?T,8 |
, (3)

Z boson

Toward

Away

Transverse

hadronic recoil

Tr
an

sv
er

se

60°

120° 120°

60°

(a)

Isotropic Event Balanced Event

T =1ThrustT T

(b)

Figure 6: (a) Illustration of away, transverse, and towards regions in the transverse plane defined relative to the
direction of a high transverse momentum object (a / boson, for example). (b) Illustration of an isotropic and a
balanced event topology in the transverse plane with their corresponding values of thrust.

12



〉 φδ ηδ
/ 

c
h

 N〈

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Data
PYTHIA 8 A14
PYTHIA 8 A2

PYTHIA 8 Monash
Herwig7
Epos

ATLAS
-1 = 13 TeV, 1.6 nbs| < 2.5η> 0.5 GeV, | 

T
p

> 1 GeV lead

T
p

Trans-min region

 [GeV]lead

T
p

5 10 15 20 25 30

M
o

d
e

l 
/ 

D
a

ta

0.8

1

(a)

>
 [
G

e
V

]
φδηδ/

T
 p

Σ
<

0.5

1

1.5

2

2.5

3

3.5
 stat. error⊕syst. 

Data 2015

PowhegPythia8

Sherpa

Herwig++

ATLAS
-1=13 TeV, 3.2 fbs

T≤0.75

trans-min

[GeV]
T

Zp
0 50 100 150 200 250 300 350 400 450 500

R
a

ti
o

0.6

0.8

1

1.2

1.4

(b)

Figure 7: (a) Mean density of charged-particle multiplicity as a function of leading charged-particle ?T in the
trans-min azimuthal region [51]. (b) Mean scalar ?T sum of charged particles as a function of the / boson ?T for
)⊥ ≥ 0.75 in the trans-min azimuthal region [52]. The lower panels show the ratios of the predictions to the data.

where the thrust axis =̂ is the unit vector that maximizes )⊥. The transverse thrust has a maximum value of
one for a back-to-back dĳet topology and a minimum value of 2/c for a circularly symmetric distribution
of particles in the transverse plane, as illustrated in Figure 6.

Examples of measured UE distributions are shown in Figure 7. The prominent features are a turn-on effect,
i.e., the rising activity as a function of the hard-scatter scale (here the / boson ?T or leading charged
particle ?T), and a saturation of the activity at higher values of ?T. Comparisons with predictions from
several commonly used MC generator configurations indicate that for most observables the models show
significant deviations from the data distributions regardless of the observable. In particular, events with
higher values of )⊥ show that the simulation of contributions other than MPI to the UE activity needs to be
improved.

6 Inclusive production of jets

Precise measurements of processes with jets are crucial in understanding physics at hadron colliders.
In QCD, jets are interpreted as resulting from the fragmentation of quarks and gluons produced in a
short-distance hard scattering process. Jet cross-sections provide valuable information about the strong
coupling constant, Us, and the structure of the proton. In addition, jet formation is a complex multi-scale
problem, including important contributions from QCD effects that cannot be described by perturbation
theory alone. In the measurements described below, jets are identified using the anti-:C algorithm [53, 54]
with a radius parameter value of ' = 0.4, unless stated otherwise.
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6.1 Inclusive jet and dĳet cross-section measurements

Inclusive jet and dĳet cross-sections are measured in ?? collisions at
√
B = 13 TeV in ATLAS [55]. The

measurements use a data sample with an integrated luminosity of 3.2 fb−1 recorded in 2015. The inclusive
jet cross-sections are measured double-differentially as a function of the jet transverse momentum and
rapidity. The double-differential dĳet production cross-sections are presented as a function of the dĳet
mass and the half absolute rapidity separation between the two leading jets. Figure 8 shows the measured
inclusive jet and dĳet cross-sections and the corresponding ratios of the predictions to the data for the
inclusive jet measurement. Overall, fair agreement between the measured cross-sections (that span several
orders of magnitude) and the fixed-order NNLO pQCD calculations, corrected for non-perturbative and
electroweak effects, is observed. For example, in the case of jet cross-sections in individual jet rapidity bins
independently, the ?-values are in the percent range. However, when considering data points from all jet
transverse momentum and rapidity regions in the inclusive jet measurement, a significant tension between
data and theory is observed. Resolving this tension requires a good understanding of the correlations of the
experimental and theoretical systematic uncertainties in jet ?T and rapidity.

6.2 Event shapes and azimuthal correlations in multĳet events

Event shapes are a class of observables that describe the dynamics of energy flow in multĳet final states.
These observables are sensitive to different aspects of the theoretical description of these strong-interaction
processes. They are usually defined to be infrared and collinear safe, which enables their calculation in
pQCD. They can therefore be used to precisely test pQCD calculations and additionally to extract the
value of Us. Hard, wide-angle radiation is studied by investigating the tails of the event-shape distributions.
These configurations are sensitive to higher-order corrections to the dĳet cross-section. Other regions of
the event-shape distributions provide information about anisotropic, back-to-back configurations, which are
sensitive to the details of the resummation of soft logarithms in the theoretical predictions.

Event-shape observables are measured in ?? collisions at the LHC by the ALICE, CMS and ATLAS
Collaborations [56–60]. In the ATLAS study at

√
B = 13 TeV, different event-shape variables are

investigated to probe the properties of the multĳet energy flow at the TeV energy scale [61]. The
distributions of event-shape observables are normalised to the inclusive two-jet cross-section to reduce
correlated experimental uncertainties. Measurements are compared with fixed-order matrix elements
matched to parton shower MC predictions. An example of such an event-shape distribution, shown in
Figure 9, is the transverse thrust, g⊥ = 1 − )⊥, where )⊥ is defined according to Eq. (3). Lower values
of g⊥ indicate a back-to-back, ‘dĳet-like’ configuration, and higher values of g⊥ indicate a larger energy
flow orthogonal to the thrust axis. All the predictions qualitatively describe the main features of the
data, but none of them gives a good description of all distributions within the experimental uncertainties.
The discrepancies between data and all the MC samples investigated show that further refinement of the
current MC predictions is needed to describe the data in some regions, particularly at high jet multiplicities.
Moreover, these discrepancies show that these data provide a powerful testing ground for the understanding
of the strong interaction at high energies.

A particularly interesting event-shape observable is the transverse energy–energy correlation (TEEC)
function, defined as the transverse-energy-weighted distribution of the azimuthal differences between jet
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Figure 8: The measured (a) inclusive jet and (b) inclusive dĳet cross-sections at
√
B = 13 TeV, shown as a function

of the jet transverse momentum or dĳet invariant mass in several jet rapidity bins [55]. (c) The ratios of NLO and
NNLO pQCD predictions to the measured inclusive jet cross-sections. The theory uncertainties are shown by the
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where the expression is valid for a sample of # multĳet events, labelled by the index =, and the indices
8, 9 and : run over all jets in a given event. Here, i8 9 is the angle in the transverse plane between jet 8
and jet 9 and X(G) is the Dirac delta function, which ensures q = i8 9 . The normalisation to the total dĳet
cross-section, f, ensures that the integral of the TEEC function over cos q is unity.
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The TEEC function is sensitive to gluon radiation and shows a clear dependence on the strong coupling
constant. The recent publication of the NNLO corrections to three-jet production in ?? collisions [8]
provides an important improvement in the theoretical precision of predictions of these observables. In
particular, the theoretical uncertainties due to the choice of the renormalisation and factorisation scales are
significantly reduced as compared to NLO calculations. This allows more precise tests of pQCD and an
important reduction of the uncertainty in the determination of the Us.

The new ATLAS analysis of TEEC performed at
√
B = 13 TeV [62] extends previous measurements [63,

64] to higher energy scales & and improves the experimental precision. High-energy multĳet events
are selected by requiring the scalar sum of ?T of the two leading jets, �T2, to be above 1 TeV, and the
data are binned in this variable to study the scale dependence of these observables. The agreement
between data and NNLO pQCD predictions is good, thus providing a precision test of QCD at large
&. A simultaneous fit to all TEEC distributions across different kinematic regions yields a value
Us(</ ) = 0.1175 ± 0.0006 (exp.) +0.0034

−0.0017 (theo.). Figure 10 presents Us extracted from these fits
differentially as a function of &, showing a good agreement with the energy-scale dependence of Us

predicted by the renormalisation group equation and with previous analyses.

A novel class of event shape observables was recently proposed to quantify the isotropy of collider
events [65]. These observables, broadly called event isotropy, measure how ‘far’ a collider event is from a
symmetric radiation pattern in terms of a Wasserstein distance metric [66]. This distance is evaluated by
solving optimal transport problems, using the ‘energy-mover’s distance’ [67]. Event isotropies are shown
to have increased sensitivity to isotropic multĳet events when compared to other event shapes such as the
transverse thrust. They are capable of exposing a remote region of QCD phase space that is difficult to
model and relevant to many searches for physics beyond the SM (BSM).

ATLAS has measured cross-sections in multĳet events at
√
B = 13 TeV differentially relative to three

event-isotropy observables in inclusive bins of jet multiplicity (#jet) and �T2 [68]. The measured data
are compared with the predictions of several state-of-the-art MC event generators. Figure 11 shows an
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jet multiplicities [61]. The panels on the right show the ratios between the MC and the data distributions.
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example event isotropy variable measured by ATLAS in the region of �T2 ≥ 1 TeV and #jet ≥ 5. Overall,
agreement between the unfolded data and the simulated events tends to be best in balanced, dĳet-like
arrangements and deteriorates in more isotropic configurations.

6.3 Properties of jet formation and structure

The study of the internal structure of jets has become a very active area of research at the LHC. The large
difference between the energy scale of the hard-scattered parton and the measured final-state hadrons
creates a wide phase space for jet fragmentation processes. To fully probe different regions of this phase
space, a multitude of jet-substructure measurements is required.

Basic properties of track-based jet fragmentation functions in ?? collisions at
√
B = 13 TeV are measured

by ATLAS [69]. Multiple jet properties, including the charged-particle multiplicity, the momentum fraction
carried by charged particles, and angular properties of the radiation pattern inside jets are studied. The
forward and central jet spectra are considered separately to study distributions in quark- and gluon-induced
jets, as presented in Figure 12(a). The simulations based on the Pythia fragmentation model provide a
reasonable description of the quark-induced data across the jet ?T range presented, but the gluon-induced
jets have systematically fewer charged particles than the simulation. In addition, measurement of the
charged-particle multiplicity using model-independent jet labels (topic modelling) [70] provides a promising
alternative to traditional extraction of quark- and gluon-induced jets using input from simulation.

In addition, ATLAS studies the fragmentation properties of jets containing � mesons at
√
B = 13 TeV [71].

The � mesons are reconstructed using the decay of �± into �/k ±, with the �/k decaying into a pair
of muons. The measurement determines the longitudinal and transverse momentum profiles of the
reconstructed � mesons relative to the axes of the jets to which they are geometrically associated. These
distributions are measured in intervals of the jet transverse momentum, ranging from 50 GeV to above
100 GeV. The results are compared with several MC predictions using different parton shower and

210 310

Q [GeV]

0.06

0.08

0.10

0.12

0.14

0.16

 (
Q

)
s

α arXiv:1307.1907
tCMS t

arXiv:1207.4957
R∆ R∅D

arXiv:0911.2710

 incl. jet∅D

arXiv:1412.1633
3

CMS M
arXiv:1304.7498

32
CMS R

arXiv:1609.05331

CMS incl. jet

 
arXiv:1805.04691

φ∆ATLAS R
arXiv:1508.01579
TEEC 7 TeV

  
arXiv:1707.02562
TEEC 8 TeV

  TEEC 13 TeV

 (TEEC Global)
-0.0018

+0.0035
) = 0.1175 

Z
(msα

 0.0009 (PDG 2022)±) = 0.1179 
Z

(msα

ATLAS

NNLO pQCD;  MMHT 2014 (NNLO)

Figure 10: Comparison of the values of Us (&) determined from fits to the TEEC functions with the QCD prediction
using the world average as input (hatched band) and the value obtained from the global fit (solid band) [62]. Results
from previous analyses, both from ATLAS and from other experiments, are also included, showing an excellent
agreement with the current measurements and with the world average.

17











hard jet, e.g., via the measurements of angular correlations between the photon and jets. Measurements of
the cross-sections for the production of an isolated photon in association with one or two jets at

√
B = 13 TeV

are provided by ATLAS [88, 89]. Cross-sections are measured as functions of a variety of observables,
including angular correlations and invariant masses of the objects in the final state. Measurements are
also performed in phase-space regions enriched in each of the two underlying physical mechanisms,
namely direct and fragmentation processes. The tree-level plus parton-shower predictions and the NLO
QCD predictions are compared with the measurements. The multi-leg NLO QCD plus parton-shower
calculations of predictions from Sherpa describe the data adequately in shape and normalisation except for
regions of phase space such as those with high values of the invariant mass of the photon and jets (see
Figure 15), where the predictions overestimate the data.

8 Strong and electroweak production of single gauge bosons

Measurements of single gauge boson production provide an excellent probe of pQCD and of the proton
structure. In association with jets, they become a probe of higher-order QCD corrections. Measurements
of jet flavour activity provide insights into gluon splitting and into the proton structure functions (PDF)
of heavier quarks. The production of gauge bosons with jets also constitutes one of the most important
backgrounds for Higgs boson measurements and for various BSM searches, and is hence considered a very
important input for the tuning of MC simulations.

With the increased centre-of-mass energy in Run 2, the LHC experiments can probe more energetic phase
spaces. New reconstruction and analysis techniques allow for more precise measurements. This goes
hand-in-hand with improvements in the theory sector, both in fixed-order calculations and in multi-leg
ME+PS generators [2].

The fiducial phase space for these analyses typically requires leptons, usually electrons or muons, ℓ, with
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|[ℓ | < 2.5 and minimum ?ℓT, in the range of 25–30 GeV. In the / case, 3 a window on the dilepton mass<ℓℓ

of ±20–25 GeV is selected around the / mass, whereas a typical, selection requires �miss
T > 25–30 GeV

and a minimum transverse mass <T of 50–60 GeV. Systematic uncertainties in inclusive , and /

distributions are typically dominated by electron and muon reconstruction and calibration, whereas the
systematic uncertainties in distributions of jets or hadrons produced in association with a gauge boson are
typically dominated by jet calibration and the identification efficiency for heavy-flavour hadrons or jets.

8.1 Inclusive ] and ` production in early Run 2 data

A small amount of the first Run 2 data taken in 2015, 81 pb−1, was used to measure fiducial cross-sections
for ,+, ,− and / production at the new centre-of-mass energy [90]. ,(/) fiducial cross-sections
were measured with a systematic precision of 2(1)% and a luminosity uncertainty of 2%, as shown in
Figure 16. Their ratios are determined with a precision of just under 1% and 2% for f,+/f,− and f,±/f/

respectively. The measured cross-sections agree in general with predictions of NNLO accuracy in pQCD,
using NLO EW corrections and various NNLO PDF sets [91, 92]. The f,+/f,− ratio allows the best
distinction between the PDF sets. The systematic precision of the 13 TeV / cross-section measurement has
been slightly improved using a larger data sample of 36.1 fb−1 [93] (see below). The improved systematic
precision of 0.5% in the, channel together with a reduced uncertainty of 1% in the integrated luminosity,
have allowed even more precise cross-section measurements using a low pile-up data sample, corresponding
to an integrated luminosity of 338 pb−1 [94]. Figure 16(a), also shows a recent measurement of the, and
/ cross-sections performed with 25 pb−1 of pp collision data taken at an energy of 5.02 TeV [95].
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Figure 16: (a) Measured inclusive, and / cross-sections as a function of the ?? centre-of-mass energy [96] and (b)
f,+/f,− at 13 TeV compared with predictions using various PDF sets [90].

8.2 ] and ` transverse momentum and 5∗
(

The / transverse momentum, ?ℓℓT is an excellent probe of initial-state quark and gluon emission and of
intrinsic parton transverse momentum. Low-?ℓℓT ranges are typically modelled via resummed approaches

3 In the following, / refers implicitly to neutral current //W∗exchange including interference effects.
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whereas high-?ℓℓT domains are described by perturbative QCD. A partial data sample of 36.1 fb−1

is used to perform a measurement of ?ℓℓT and its proxy q∗[ , calculated from angular variables [93],

normalised to the total fiducial cross-section. A precision of 0.2% is reached for low values of ?ℓℓT . A
prediction by Pythia8 [97] at LO in QCD, supplemented by a parton shower, and NLO descriptions by
Powheg+Pythia8 [98–101], both tuned on ATLAS 7 TeV data (AZNLO tune) [102], provide a good
description in the low and medium-energy range, see Figure 17(a). The high-?ℓℓT range is well described
by a fixed-order NNLO calculation by NNLOjet [103]. The best prediction is provided by the fixed-order
RadISH program at NNLO+N3LL [104, 105], which agrees with the data over the full ?ℓℓT and q∗[ spectra,

except for a small region at very low ?ℓℓT that is sensitive to non-perturbative effects.

A low pile-up data sample corresponding to 338 pb−1 is used to derive precise cross-sections as a function
of ?ℓℓT and ?,T in the regime ?T < 100 GeV [94]. The data is described reasonably well by , and /
predictions at NNLO+NNLL in pQCD (see Figure 17(b) for ?,T ). The two generators tuned to 7 TeV
ATLAS data describe reasonably well the low-?,T regime but fail to describe data with ?,T > 40 GeV.

8.3 Precise 2D ` cross-section measurement in full phase space

The 5-dimensional differential / (or,) cross-section df
d?TdHd<d cos \dq with lepton angles \ and q in the

Collins–Soper frame [106] can be described as the product of an unpolarized cross-section df*+!
d?TdHd< with

the sum of spherical harmonic polynomials multiplied by eight angular coefficients [107]. The Run 1√
B = 8 TeV data sample with an integrated luminosity of 20.2 fb−1 was used previously to extract the angular

coefficients [108] as a function of ?ℓℓT and Hℓℓ . A novel measurement using the same data sample [109]
now also extracts the unpolarized cross-section as a function of ?ℓℓT and Hℓℓ in a complex fit with templates
corresponding to the spherical polynomials. The measurement is corrected for lepton acceptance effects,
enabling more precise theoretical interpretations than a classic fiducial measurement. The differential
cross-sections are determined at percent accuracy level and are consistent with state-of-the-art QCD

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08]
-1

 [
G

e
V

ll T
/d

p
σ

 d
σ

1
/

Linear Scale

ATLAS
-1=13 TeV, 36.1 fbs

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Logarithmic Scale

Data

Sherpa v2.2.1

LL
3

RadISH+NNLOjet NNLO+N

Powheg+Pythia8 (AZNLO tune)

Pythia8 (AZ-Tune)

0 5 10 15 20 25 30

0.85
0.9

0.95
1

1.05
1.1

1.15

M
C

 /
 D

a
ta

 [GeV]ll
T

p

0.85

0.9

0.95

1

1.05

1.1

1.15

0 100         300       900

(a)

b
b

b

b

b

b
b

b
b

b

b

b

b

b

b

b

b

ATLAS√
s = 13 TeV, 338 pb−1

W± → ℓ
±
ν

ATLAS√
s = 13 TeV, 338 pb−1

W± → ℓ
±
ν

b Data

Powheg+Pythia8 AZNLO

Sherpa2.2.1

Powheg+Herwig7

Pythia8 AZ10−6

10−5

10−4

10−3

10−2

1
/
σ

d
σ
/
d
p

W T
[G

e
V
−

1
]

b b b b b b b b b b b b b b b b b

10 1 10 2
0.85

0.9

0.95

1

1.05

1.1

pW
T [GeV]

M
C

/
D

a
ta

(b)

Figure 17: (a) Unfolded normalised distributions of ?ℓℓT [93] and (b) ?,T [94], compared with various predictions.
The lower panels show the ratios of the predictions to the data.
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Figure 20: Cross-section as a function of (a) <11 in events with at least two 1-jets and (b) the transverse momentum
of the leading 2-jet [123]. The lower panels show the ratios of the predictions to the data.

8.6 ] boson in association with a J meson

The production of, + 2 is an excellent probe of the comparatively less constrained strange quark PDF
of the proton [129]. In the analysis of Ref. [130], this process is identified by explicit reconstruction
of a �± or a �∗± meson from the tracks of their charged decay products in a fiducial phase space of
?T(� (∗) ) > 8 GeV and |[ | (� (∗) ) < 2.2, in association with a leptonically decaying , boson. For the
targeted signal, the, and � meson have opposite-sign charge (OS). On the other hand, most backgrounds
including, + 6(22̄) production, have no preferred charge relation. Therefore, the signal is extracted as
the difference between OS and same-sign (SS) distributions. Inclusive and differential cross-sections as a
function of ?T(�) and [(ℓ) are measured via profile-likelihood (pLLH) fits of folded theory to the OS
and SS � (∗) mass distributions. In addition the , charge ratios are computed. The percentage-level
uncertainties, dominated by secondary-vertex reconstruction and signal modelling, are at the level of the
PDF uncertainties. Figure 21 compares the pseudorapidity of the � (∗) meson and the charge ratio with
MadGraph5_aMC@NLO 2.9.3 [131] predictions using different PDF sets. The measurements show
a broader distribution than the nominal predictions but are consistent with the predictions when PDF
uncertainties are included. A key result is the,+/,− charge ratio that is sensitive to differences between
the strange- and anti-strange quark PDFs. Here the results are found to be compatible with PDF fits that
constrain the strange-quark sea to be symmetric.
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Figure 21: Measurements of (a) [ of the �+ meson and (b) the , charge ratio, compared with Mad-

Graph5_aMC@NLO predictions using different PDF sets [130].

8.7 Determination of PDFs from diverse ATLAS measurements

ATLAS has presented the first comprehensive and comparative NNLO perturbative QCD analysis of a
number of data samples with sensitivity to parton distributions [132]. The data sets used are: inclusive,
and / cross sections [133] and inclusive jets [134] at

√
B = 7 TeV, inclusive / [135], inclusive, [136],

,+jets [137], /+jets [138], top-pair production [139, 140], inclusive isolated photons [141] and inclusive
jets [142] at

√
B = 8 TeV, and top-pair production [143], and inclusive jets [55] at

√
B = 13 TeV, in addition to

HERA data [144]. Correlations between the systematic uncertainties of the different analyses are preserved.
The novel ATLASpdf21 PDF set is extracted via the xFitter framework [145] using predictions at NNLO
in pQCD. The impact of the various data samples and their correlation is studied. The addition of the
ATLAS data to the HERA data brings this PDF much closer to the global PDFs, as shown in Figure 22.
The strange-quark PDF at low values of G . 0.01 is found to be less suppressed than assumed in PDFs
from before the LHC and found to be more in line with modern PDFs at higher G & 0.1, as shown in
Figure 22(b).

8.8 Electroweak production of dĳets in association with a ` boson

While the production of weak bosons in association with jets proceeds largely through the strong interaction,
it is possible to access the purely EW production of weak bosons with a dĳet system. The EW production
of a single weak boson is defined by the C-channel exchange of such a boson and is very sensitive to the
vector-boson fusion (VBF) production mechanism [146]. The SM triple-gauge coupling (TGC) involved
could be enhanced or altered in BSM scenarios. Measurements of this process hence provide a fundamental
test of the EW sector of the SM, similar to the diboson processes discussed in Section 9. The largest
challenge of the measurement is the large background from strong / + 2 jets production. To enrich the EW
production, the / boson is selected as centred between two tagging jets with a high invariant mass < 9 9 and
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Figure 24: Overview of ATLAS diboson cross-section measurements. The results discussed in this review are shown
with a square marker [96].

and Powheg+Pythia8 [159] predictions. Individual helicity fractions of the , and / bosons are also
measured and found to be consistent with joint helicity fractions within the expected amount of correlation.
All helicity fractions are also measured separately in ,+/ and ,−/ events. Inclusive and differential
cross-sections for several kinematic observables sensitive to polarisation are measured and agree best with
the Powheg+Pythia8 prediction normalised to the NNLO QCD prediction by MATRIX [154].

Reference [160] reports a further probe of the gauge structure of the SM, by selecting ,±/ events in
kinematic domains with large / but small,/ transverse momentum where the fraction of events with two
longitudinally polarised gauge bosons is enhanced. The selection is used to study the energy dependence
of diboson polarisation and the suppression of events with two transverse-polarised gauge bosons for small
rapidity differences between the two gauge bosons [161, 162]. The results are found to agree with the SM
predictions.

9.2 ]+]− production

A measurement of ,+,− production cross-sections [163] is performed in the 4±`∓ final state, based
on a partial data sample of 36 fb−1. The number of events due to top-quark pair production, the largest
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Figure 25: (a) Fiducial,/ → ℓℓℓa cross-section as a function of <,/
T . (b) Measured joint helicity fractions of the

, and / bosons compared with NLO QCD fixed-order and MC predictions [155]. The components 500, 5)) , 50)
and 5)0 indicate combinations of longitudinal (0) and transverse (T) polarisation. The lower panel in (a) shows the
ratio of the data to the MATRIX prediction.

background, is reduced by rejecting events containing jets with a transverse momentum exceeding 35 GeV.
The inclusive fiducial cross-section, six differential distributions and the cross-section as a function of the
jet-veto transverse momentum threshold are measured and compared with several theoretical predictions.
Constraints on anomalous EW gauge boson self-interactions are derived, using the transverse momentum
of the leading lepton (see Figure 26(a)) in a dimension-6 EFT framework.

A complementary measurement [164] is targeting ,+,− production in associations with jets with
a transverse momentum of at least 30 GeV. Two additional measurements use a subselection with
high-transverse-momentum jets of ?T > 200 GeV. The background from top-quark pair production is
considerably reduced by rejecting events containing jets with 1-hadron decays. The fiducial,+,− cross-
section is determined with an uncertainty of 10% in a maximum-likelihood fit. Differential cross-sections
(see Figure 26(b)) are measured as a function of twelve observables that comprehensively describe the
kinematics of,+,− events. The measurements are compared with state-of-the-art theory calculations
and excellent agreement with predictions is observed. Improved limits on the EFT Wilson coefficient 2,
are obtained compared to earlier inclusive measurements [163] if quadratic terms are neglected, but they
are still weaker than those obtained from / 9 9 events [146].

9.3 Measurement of the `` cross-sections

The comparably rare production of two on-shell / bosons decaying leptonically is dominantly due to
C-channel @@̄-initiated processes and a 10%–20% 66-initiated component [165]. While TGCs between
neutral bosons do not exist in the SM, they may be introduced as anomalous TGCs via BSM processes.
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Figure 26: (a) Fiducial ,+,− → 4` cross-section as a function of the transverse momentum of the leading
lepton [163] and (b) differential cross-section as a function of <4` in the high-?T (jet) phase space [164]. The lower
panels show the ratios of the predictions to the data.

Moreover, the process constitutes an important background to � → // and, in association with jets, to
the EW // 9 9 production. Inclusive and differential cross-sections are measured in a partial 13 TeV data
sample in final states with electrons or muons (4ℓ) [166] and in a �miss

T -based selection targeting final
states with two electrons or muons and two neutrinos (ℓℓaa) [167], the latter requiring �miss

T > 110 GeV.
While the ℓℓaa analysis has a reduced phase space compared to the 4ℓ final state, it profits from the
higher branching ratio of / → aa and simple reconstruction of possibly nearby charged leptons at high
momentum. The inclusive cross-sections are measured with a 5% (7%) total precision in the 4ℓ (ℓℓaa) final
states, with similar statistical and systematic contributions, and are in agreement with NNLO predictions
by MATRIX [168]. The differential cross-sections measured for 4ℓ and ℓℓaa final states show a reasonable
agreement with the MC generators Sherpa 2.2 [116] and Powheg+Pythia8, and with NNLO fixed-order
predictions by MATRIX. The transverse momentum of the leading / boson for 4ℓ and of the / boson
decaying into charged leptons ?ℓℓT in ℓℓaa (see Figure 27) are used to extract constraints on EFT parameters,
including four dimension-8 operators describing aTGC interactions of neutral gauge bosons. Constraints
from the ℓℓaa final state are found to be more stringent than the ones from the 4ℓ final state due to the
higher-energy reach of the former.

A follow-up study on the full Run 2 data sample [169] establishes a 4.3 f evidence for the pair production
of jointly longitudinally polarised / bosons, using a pLLH fit to the output of a boosted decision tree (BDT)
trained on angular variables in the // system. Moreover, the differential // cross-section is measured as
a function of a CP-sensitive Optimal Observable $)HI,1)HI,3 based on CP-sensitive polar and azimuthal
angles of both / boson systems (see Figure 28(a)). The measured cross-section is used to constrain the
CP-odd neutral TGCs 5 4

/
and 5 4

.
. No significant deviation from the SM is observed.
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Powheg+Pythia8 and are used to derive constraints on 22 EFT parameters, both excluding and including
the quadratic EFT contributions.

9.5 Measurements of the `$ cross-sections, inclusively and in association with jets

Similarly to the // case, associated /W production has no TGC terms in the SM, however BSM effects
could contribute via anomalous TGCs. The full Run 2 data sample is used to select final states with two
electrons or muons and one prompt isolated photon with ?T > 30 GeV, with a kinematic selection to
reduce photons originating from the / decay [170]. The fiducial cross-section is measured with a precision
of 3%, making this the most precisely measured diboson final state. Results are found to be consistent
with NNLO predictions [171, 172] from MATRIX [173]. Differential cross-sections for six observables
are measured and are in agreement with NLO multi-leg generator predictions from Sherpa 2.2.8 and
MadGraph5_aMC@NLO 2.2.3 and NNLO MATRIX predictions, except for some phase space regions at
low <(ℓℓW) and low azimuthal distance Δq(ℓℓ, W) between / and W that are underpredicted by NNLO
MATRIX. A further analysis [174] measures thirteen 1D and five 2D differential cross-sections for /W+jets
events with jet ?T > 30 GeV (50 GeV) for [ < 2.5 (> 2.5) with a precision of 4%–10% (see Figure 29(a)).
The jet activity is well described by Sherpa 2.2.11, MadGraph5_aMC@NLO 2.2.3 and NNLO MATRIX
calculations.

A measurement based on a partial data sample of 36 fb−1 is performed in final states with an isolated prompt
photon and �miss

T to target / (→ aa)W production [175], requiring �T(W) > 150 GeV and �miss
T > 150 GeV

to exceed the photon trigger threshold and to reduce the backgrounds. In this high-?T phase space,
integrated and differential cross-sections are measured, for a selection inclusive in jets and a selection that
vetoes jets. Figure 29(b) shows as an example the �) (W) distribution in the exclusive #jets = 0 selection
that is used to extract constraints on EFT parameters related to neutral TGCs more stringent than those
derived with // on the same data sample [167]. The unfolded cross-sections agree with Sherpa 2.2.2 and
MadGraph5_aMC@NLO 2.2.3 simulations and fixed-order NNLO predictions [176].
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Figure 29: Differential /W cross-sections as a function of (a) the transverse momentum of the leading hadronic
jet [170] and (b) �) (W) [175]. The lower panels show the ratios of the predictions to the data.
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9.6 Combined SMEFT analysis

Results from the analyses of,+,− [163],,±/ [152], / → 4ℓ [165], and EW / 9 9 [146] are combined in
a simultaneous maximum-likelihood fit to 15 EFT parameters [177] within a SMEFT framework [178],
using the EFT expansion restricted to the leading dimension 6 and dimension 8 terms:

LSMEFT = L (4)
SM +

∑

8

2
(6)
8

Λ2
$

(6)
8

+
∑

9

2
(8)
9

Λ4
$

(8)
9
, (4)

where 28 are the dimensionless Wilson coefficients and $3
8

the gauge-invariant combinations of SM fields

with an energy dimension 3. Assuming a mass scale Λ = 1 TeV, the coefficients 2 (3)
�@

and 2, and five
additional linear combinations of coefficients are constrained to be smaller than one (see Figure 30). This
combination constitutes an additional step towards an ATLAS global SMEFT interpretation.

9.7 Observation of electroweak production of two gauge bosons

The EW production of a diboson system in association with a dĳet system, EW ++ 9 9 , is related to the EW
production of single gauge bosons discussed in Section 8.8. Through its VBS component, it is sensitive
to QGC and details of the gauge structure with B- and C-channel exchanges of gauge and Higgs bosons.
Figure 31 shows example Feynman diagrams for EW VBS, EW non-VBS and QCD ++ 9 9 production in
the,±,± 9 9 channel.

Similarly to the diboson measurements, the analyses typically focus on the leptonic decays of the outgoing
heavy bosons (into 4, `, or a) or detect isolated photons. The EW production is enriched by requiring the
presence of two tagging jets with large invariant mass < 9 9 and large rapidity gap, which are not identified
as 1-jets. The gauge boson decay products are typically expected to be centred between the two tagging
jets.

Advanced machine-learning and fitting techniques are employed to overcome the major challenge of
separating the signal from its main background, the strong production of two gauge bosons in association
with jets (see Sections 9.1–9.5 and Figure 31). The predictions for these backgrounds are typically not
sufficiently accurate in the VBS phase space and need to be adjusted in a data-driven way. The challenges
are typically addressed by designing a strong-++ 9 9 control region (CR) and, if applicable, an additional
background CR. The EW ++ 9 9 signal is then extracted from a combined fit to the signal (SR) and
control region of the < 9 9 distribution or from a multivariant discriminant trained to separate the EW ++ 9 9

component.

The golden channel is the EW production of same-charge,±,± 9 9 , as the strong background is significantly
reduced compared to all other diboson combinations. After first evidence in the 8 TeV data sample [179],
the higher centre-of-mass energy in Run 2 enabled the observation of this process in partial CMS [180]
and ATLAS [181] data samples. Moreover, ATLAS has used the full Run 2 data sample to publish
more precise inclusive and differential ,±,± 9 9 cross sections [182]. The EW ,±,± 9 9 signal is
extracted via a fit to the < 9 9 distribution (see Figure 32(a)) with a 10% precision using the full Run 2
data. Cross-sections are in agreement with LO MadGraph5_aMC@NLO 2.6.7+Herwig7, with LO
MadGraph5_aMC@NLO 2.6.7+Pythia8, with LO Sherpa 2.2.11 and with Powheg+Pythia8, using
the VBS approximation [183]. Differential cross-sections are extracted by fits to < 9 9(<ℓℓ) in each bin
of the variable of interest (see Figure 32(b)). Moreover, the <ℓℓ distribution is used to constrain eight
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Figure 30: Confidence intervals for the 15 parameters included in the combined SMEFT fit. Results are quoted both
for fits linear in the parameters and for fits that also take into account quadratic contributions [177].

dimension-8 EFT operators and the transverse-mass distribution is used to derive limits on doubly charged
Higgs boson production [184].

The more challenging EW production of two oppositely charged, bosons,,+,− 9 9 is also observed in
the full Run 2 data sample [185] using a pLLH fit to an NN that discriminates between EW and QCD
,+,− 9 9 production. The inclusive cross-section is measured with a statistically-dominated precision of
18.5 % and is in agereement with SM predictions derived with PowhegBox V2 [186–188].

The large size of the ATLAS full Run 2 data sample has also allowed the observation of many other
EW ++ 9 9 production modes: // 9 9 [189], which was followed by a measurement of a region with
enhanced EW ℓℓℓℓ 9 9 production [190];,/ 9 9 [191];,W 9 9 with leptonic, boson decays [192]; /W 9 9
using the invisible decay / → aā [193] with additional measurements in the complementary large-?WT
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Figure 31: Example Feynman diagrams for EW,±,± 9 9 production with VBS via (a) a quartic gauge boson vertex,
(b) a C-channel exchange of a gauge boson or (c) a Higgs boson, (d) a non-VBS process and (e) a Feynman diagram
for QCD ++ 9 9 production with strong interaction vertices [179].
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component [194] and in / → ℓℓ decays [195]. Similar matrix elements to EW ,, 9 9 production
are probed in the photon-induced ,, process [196] that was also observed and which is discussed in
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Section 11.3.

EW,/ 9 9 cross-sections are derived from a partial data sample, based on a BDT in a large-< 9 9 SR (see
Figure 33(a)) with a statistically dominated 25%–30% total uncertainty [191]. In contrast to ,±,± 9 9 ,
the cross-sections are underpredicted by LO Sherpa and MadGraph5_aMC@NLO. Integrated and
differential cross-sections measured for the strong-,/ 9 9 dominated SR are found to be in agreement with
the NLO Sherpa 2.2.2 predictions.

EW // 9 9 cross-sections are measured with a precision of 11% (28%) in the ℓℓℓℓ 9 9 (ℓℓaa 9 9) channel using
a pLLH fit performed on the output of BDTs in high-< 9 9 SRs and additional CRs (see Figure 33(b)) [189].
They are in agreement with PowhegBox V2, reweighted in < 9 9 based on MadGraph5_aMC@NLO. Joint
QCD+EW differential ℓℓℓℓ 9 9 cross-sections are extracted in a fiducial region with enhanced EW // 9 9

production and compared with QCD predictions at NLO from Sherpa 2.2.2 and MadGraph5_aMC@NLO

combined with LO EW predictions by MadGraph5_aMC@NLO +Pythia 8. In addition, < 9 9 and <ℓℓ

distributions are used to extract limits on dimension 8 EFT parameters [190].

EW / (→ ℓℓ)W 9 9 cross-sections are extracted from a pLLH fit to < 9 9 in an EW /W 9 9-enriched SR and in
a CR, with a statistically limited precision of 14% [195]. The cross-section is found to be in agreement
with the LO predictions of MadGraph5_aMC@NLO 2.6.5. Differential cross-sections are derived for the
SR enriched in EW / (→ ℓℓ)W 9 9 and for a more extended fiducial region with a relaxed cut on < 9 9 and are
found to be consistent with predictions of MadGraph5_aMC@NLO 2.6.5 (EW /W 9 9) + Sherpa 2.2.11
(QCD /W 9 9). EW / (→ aā)W 9 9 cross-sections are extracted in a low-�W

T selection via a combined fit to
< 9 9 in several CRs and in a high-< 9 9 SR [193]. They are also extracted in a high-�W

T selection in a fit
to a BDT score instead of < 9 9 [194]. The combined EW / (→ aā)W 9 9 cross-section is measured with a
precision of 22% and is compatible with predictions from MadGraph5_aMC@NLO 2.6.5 with NLO
corrections from VBFNLO [197]. The �W

T distribution (see Figure 33(c)) is used to constrain dimension 8
EFT operators.

The EW ,W 9 9 signal [192] is extracted via a fit to a NN discriminant. The fiducial cross section is
measured with a precission of 19% and differential cross sections are also measured. The measurements are
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found in agreement with LO SM prediction by MadGraph5+Pythia 8 and Sherpa 2.2.12. The results are
used to derive constraints on dim 8 EFT operators, including the first LHC constraints on the coefficients
5)3 and 5)4 of dim-8 tensor-type operators.

Figure 34 shows an overview of EW measurements relevant for SM or BSM triple and quartic gauge
couplings: EW production of single gauge bosons and gauge boson pairs and triboson measurements. The
figure demonstrates the significant step in precision with the higher centre-of-mass energy and the large
data sample.

10 Production of three gauge bosons

The production of three gauge bosons is a sensitive probe of the SM gauge structure and among the rarest
processes measured at the LHC [198]. The increased centre-of-mass energy and large integrated luminosity
of the 13 TeV data sample allowed the first observation of the production of three heavy gauge bosons.
Figure 34 shows an overview of all ATLAS triboson measurements. Figure 35 shows examples of LO
triboson production in the SM.
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(a) (b)

(c) (d)

Figure 35: Example Feynman diagrams for the production of three massive vector bosons, including (a) C-channel
production, (b) and (c) diagrams sensitive to triple gauge couplings and (d) diagrams sensitive to quartic gauge
couplings [199].

Triboson production involving one or more, bosons can proceed through C-channel processes, but also
diagrams involving TGCs or QGCs. Figure 35 shows example Feynman diagrams for triboson production.
For neutral gauge bosons, only C-channel processes contribute in the SM. As discussed before, diagrams
with TGCs or QGCs are interesting as they are susceptible to enhancements from BSM physics, leading to
anomalous couplings. With the Run 1 LHC data only the production of the combinations WWW [200] and
/WW [201] was observed. The higher centre-of-mass energies and the large Run 2 data sample allowed the
observation of three additional processes: ,WW [202],,,, [203] and,/W [204]. The /WW production
was measured for the first time in a phase space dominated by the initial-state radiation contribution [205].

The first observation of,,, production [203] is based on final states with two same-charge leptons and
at least two jets (ℓaℓa 9 9) and with three leptons (ℓaℓaℓa), excluding opposite-sign same-flavour pairs. The
signal is extracted via a fit to multivariate classifiers in four signal regions and to <ℓℓℓ in three,/ CRs
(see Figure 36(a)). The measured cross-section is 2.6f above the SM prediction, calculated at NLO in
QCD and at LO EW accuracy.

The,/W signal [204] is selected via a trilepton+W final state, with one lepton pair consistent with coming
from a / decay. The signal is extracted via a combined fit to the SR and of //W and // (4 → W) CRs.
The resulting cross-section is consistent with the SM prediction from Sherpa 2.2.11 within 1.5f (see
Figure 36(b)).

The,WW [202] signal is selected via 4aWW and `aWW final states. The signal is extracted via a combined
fit to the SR and a top-quark (CCW, C,W, C@W) CR. The extracted cross-section is in excellent agreement
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Figure 36: (a) Postfit,,, BDT score in the 3-lepton chanel [203], (b) distribution of photon �T in the,/W SR [204]
and (c) the measured fiducial, (→ 4a/`a)WW integrated cross-section compared with theory predictions [202]. The
lower panels show the ratios of the data to the predictions.

with the prediction from Sherpa 2.2.10 (see Figure 36(c)).

The /WW [205] signal is selected in final states with two isolated photons and two electrons/muons. The
final-state radiation contribution is suppressed by requirements on 2-body and 3-body subsystem masses.
The integrated cross-section is measured with a precision of 12% and is in agreement with the SM
predictions from Sherpa 2.2.10 and MadGraph5_aMC@NLO 2.7.3. Differential cross-sections are
measured in six variables and found to be in agreement with the predictions. The distribution of ?;;T is used
to extract constraints on eight dimension 8 EFT operators.

11 Photon–photon interactions

Beams of protons and ions accelerated to TeV energies at the LHC provide an opportunity to study not
only the strong interactions between hadrons, but also processes involving photons in the initial state. This
is due to the presence of intense EM fields associated with the colliding hadrons. The EM interactions
are dominant at large impact parameters, 1 > 2', where ' is a typical radius of the charge distribution.
Therefore such collisions are also referred to as ultraperipheral collisions (UPC) [206, 207].

The EM fields associated with the ultrarelativistic hadrons can be treated as fluxes of quasi-real photons
according to the equivalent photon approximation formalism [206]. Since each photon flux scales as
/2, where / is the atomic number, the two-photon luminosities are significantly enhanced for heavy ion
beams, up to /4 = 4.5 · 107 in the case of Pb+Pb collisions. The photon energy spectra follow a power-law
behaviour (�−1) up to energies of the order of � ≈ W/' (where W is the relativistic Lorentz factor of
the proton or ion), beyond which the photon flux is exponentially suppressed. Hence, the initial photon
spectrum is harder for smaller charges, which favours proton over Pb beams in the production of final states
with large invariant masses, such as, boson pairs.
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11.1 Production of lepton pairs

Among the possible set of photon-induced reactions, the exclusive production of lepton pairs from
photon–photon collisions, i.e., WW → ℓℓ (ℓ = 4, `), is the most elementary process. It is a particularly
effective tool to study the photon flux and production cross-sections, and to investigate the effects of nuclear
break-up in UPC heavy-ion collisions, or the modelling of strong-force interactions between scattered
protons, which suppress cross-sections by factors known as soft-survival probabilities [208].

A measurement of the cross-sections for exclusive dimuon production, ?? → ?(WW → ``)?, at√
B = 13 TeV is performed, using a partial Run 2 data sample corresponding to an integrated luminosity

of 3.2 fb−1 [209]. To select exclusive WW → `` candidates, a veto on additional charged-particle track
activity is applied. The fiducial cross-section in the dimuon invariant mass range between 12 GeV and
70 GeV and differential cross-sections as a function of the dimuon invariant mass, are measured.

The observation of forward proton scattering in association with muon or electron pairs produced via
photon–photon fusion, ?? → ?(WW → ℓℓ)? (∗) , is also performed by ATLAS [210], in a similar way to
the CMS and TOTEM analyses [211]. Proton–proton collision data recorded at

√
B = 13 TeV are analysed,

corresponding to an integrated luminosity of 15 fb−1. The ? (∗) indicates that the other final-state proton
either stays intact (but is undetected) or fragments to a low mass hadronic system after emitting a photon.
One of the scattered protons is detected by the AFP [212] while the leptons are reconstructed by the
central ATLAS detector, as shown in Figure 37. This figure demonstrates that the proton energy loss b
measured in the AFP spectrometer is compatible with the proton energy loss calculated based on lepton
kinematics. Both ATLAS ?? → ?(WW → ℓℓ)? (∗) measurements at

√
B = 13 TeV are compared with

theoretical predictions that include corrections for soft-survival effects. These predictions are in reasonable
agreement with the measured cross-sections [209, 210].

Exclusive dilepton production, Pb+Pb → Pb(∗) (WW → ℓℓ)Pb(∗) , via both electron-pair and muon-
pair final states, is also measured by ATLAS, by utilising up to 1.7 nb−1 of Pb+Pb data recorded at√
B## = 5.02 TeV [213, 214]. The events are categorised relative to the presence of forward neutrons

emitted as a result of Pb ion excitation (Pb∗) due to multiple Coulomb interactions accompanying the
dilepton production process. Such neutrons are detected via the zero-degree calorimeters [215]. Differential
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in the AFP spectrometer (bAFP) and the expected proton energy loss based on lepton kinematics (bℓℓ) for the two
detector sides (labeled as A and C) [210]. The simulated predictions are normalised to data to illustrate the expected
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In the combined 2015 and 2018 Pb+Pb data analysis [228], ATLAS studied the LbyL scattering with
improved precision and more detail. In addition to the fiducial cross-section, ATLAS measures the
differential cross-sections as a function of several properties of the final-state photons (see Figure 40). All
measured cross-sections are consistent within two standard deviations with the SM theory predictions for
LbyL scattering. The result explores a broader range of diphoton masses, increasing the expected signal
yield by about 50% in comparison to the previous ATLAS measurements.

The measurement of LbyL scattering is sensitive to BSM processes, such as ‘axion-like’ particles. These
are hypothetical pseudoscalar particles with typically weak interactions with SM particles. The diphoton
invariant mass distribution reported by ATLAS is used to set limits on the production of axion-like
particles [228]. This result provides the most stringent limits to date on axion-like particle production for
masses in the range of 6–100 GeV.

11.3 Exclusive ] boson pair production

The study of , boson pair production from the interaction of incoming photons (WW → ,,) offers a
unique window to a wide range of physical phenomena. In the SM, the WW → ,, process proceeds
through trilinear and quartic gauge-boson interactions. This process is unique in that, at leading order, it
only involves diagrams with self-couplings of the electroweak gauge bosons, as shown in Figure 41.

ATLAS has studied the ?? → ? (∗) (WW → ,,)? (∗) reaction at
√
B = 13 TeV using full Run 2 data

sample [196]. Previously, the ATLAS and CMS Collaborations found evidence for WW → ,, production
with the Run 1 data, ATLAS by using 8 TeV ?? collisions [230] and CMS by combining their 7 TeV and
8 TeV ?? collision data [231, 232].
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Figure 40: Measured differential fiducial cross-sections of WW → WW production in Pb+Pb collisions at√
B## = 5.02 TeV for (a) diphoton invariant mass and (b) diphoton absolute rapidity [228]. The measured

cross-section values are shown as points with error bars giving the statistical uncertainty and the bands indicating the
size of the total uncertainty. The results are compared with the prediction from the SuperChic 3 MC generator [229]
(solid line) with bands denoting the theoretical uncertainty.
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Figure 41: The leading-order Feynman diagrams contributing to the WW → ,, process are (a) the C-channel diagram
proceeding via the exchange of a , boson between two W,, vertices and (b) a diagram with a quartic WW,,
coupling). In addition, a D-channel diagram exists (not shown), which also proceeds via two W,, vertices.

Events with leptonic, boson decays into 4a`a final states are selected by requiring that no tracks except
those of the two charged leptons are associated with the production vertex, following the strategy developed
in the previous ?? → ?(WW → ℓℓ)? measurements [209]. The modelling of the hadronic activity in quark-
and gluon-induced background processes, and uncorrelated activity from additional ?? interactions, is
constrained using same-flavour / → ℓℓ events in data, reducing the associated uncertainties by a significant
amount. The background-only hypothesis is rejected with a significance of 8.4 standard deviations whereas
well above 5 standard deviations was expected. The signal strength and the cross-section for the sum of
elastic and dissociative production mechanisms are measured. The cross-section for the WW → ,, process
is measured in a fiducial volume close to the acceptance of the detector. The measured cross-section is
found to be in agreement with the SM prediction and may serve as input into future EFT interpretations.

12 Measurements of fundamental parameters of the SM

With the discovery of the Higgs boson [233, 234] and the measurement of its mass, the EW sector of the
SM is overconstrained [235], such that precise measurements of fundamental parameters can serve as a
probe of the SM, and a means to search for new physics in a model-independent way. In the QCD sector,
the SM can precisely predict the energy dependence of the strong coupling but relies on experimental
input to determine its value at a reference scale [236]. During LHC Run 2, ATLAS performed a range
of precice measurements of fundamental parameters of the SM, not only on

√
B = 13 TeV data but also

on the
√
B = 7 TeV and

√
B = 8 TeV data samples. The latter profited from the more precise predictions,

more recent PDF sets and advanced statistical methods, available during Run 2, while at the same time
benefitting from lower pile-up and lower trigger thresholds in the Run 1 data samples.

12.1 Reanalysis of the W mass measurement

The mass of the, boson, <, , is one of the fundamental parameters of the EW sector of the SM and affects
the Higgs boson and top-quark masses <� and <C via radiative corrections. The first <, measurement at
the LHC was performed by ATLAS [237] on the Run 1

√
B = 7 TeV data, which has now been reanalyzed in

the context of a significant tension with the precise measurement from the CDF Collaboration [238]. The
, boson mass is extracted from template fits to the ?ℓT and <T distributions. While the original analysis
used sequential fits with templates altered according to the systematic uncertainties, the reanalysis uses
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a simultaneous fit with a detailed model of statistical and systematic uncertainties and their correlations
and a more advanced proton PDF as a baseline [239]. This results in a shift of the central value within
the uncertainty of the first publication and a reduced total uncertainty. The updated <, measurement
is <, = 80 366.5 ± 9.8(stat.) ± 12.5 (syst.) MeV = 80 366.5 ± 15.9 MeV. Figure 42(a) compares the
updated measurement of <, to the SM prediction from the global EW fit [240] and measurements from
other experiments. The new ATLAS <, measurement has moved even closer to the SM prediction.

The EW theory also precisely predicts the , decay width Γ, , as the sum of the partial decay widths
into SM particles [240]. ATLAS uses the same input distributions and fit methods that are employed
to extract <, to derive the first measurement of Γ, at the LHC, resulting in: Γ, = 2202 ± 32 (stat) ±
34 (syst) MeV = 2202 ± 47 MeV. Figure 42(b), compares the ATLAS measurement of Γ, with the SM
prediction and measurements from other experiments. The measurement agrees with the SM prediction
within two standard deviations.

12.2 Determination of "s from ` boson pT

The strong coupling Us, measured at a reference energy scale, is the least precisely determined fundamental
coupling constant [241]. While the precision of the ATLAS TEEC based U( measurement in jet events,
detailed in Section 6.2, has significantly improved, it is still limited by the residual uncertainty in the NNLO
theory prediction. Recently, ATLAS performed a novel measurement of Us in Drell–Yan events, which
exceeds the precision of the jet-based measurements:

In LHC Drell–Yan / production, QCD initial-state radiation leads to the recoil of the / boson which
acquires non-zero transverse momentum. The ATLAS Run 1

√
B = 8 TeV data sample was used to

determine Us from the low-momentum Sudakov region [242] of the ?T distribution of / bosons [236] (see
Figure 43(a)) as measured in [109] (see Section 8.3). Determining the cross-sections in the full phase
space, allows comparison to predictions at the unprecedented order of N3LO in the strong coupling and at
approximate N4LL calculated with DYTurbo [243], using the approximate N3LO MSHT20 PDF set [244].
The parameter Us is extracted via a j2 fit to the measured double-differential ?T–H distribution of the /
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Figure 42: The measured values of (a) <, and (b) Γ, compared with the SM prediction from the global EW fit and
measurements from other experiments [239].
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Figure 44: (a) Measured 'miss in the muon channel as a function ?T,/ in the common phase space and (b) comparison
of the ATLAS Γ(/ → inv) measurement to direct measurements by other experiments [245].

13 Precision measurements of b-hadron decays in searches for

contributions from new physics

In addition to direct searches for new physics and new particles, a very promising direction of indirect
searches proceeds via precision studies of low-energy phenomena. The detailed studies of the 1-quark plays
a special role in testing the flavour structure of the SM and searching for BSM physics [246]. This section
summarises three such studies. The first study concerns the CP violation arising from an interference
between mixing and decay amplitudes of the �B meson. Secondly, the search for the rare decays of �
mesons into a pair of oppositely charged muons is discussed. Finally, the lifetime of the �B meson is
measured in the rare dimuon decay channel.

13.1 CP violation with Hs → P/75

In the presence of BSM phenomena, new sources of CP violation in 1-hadron decays can arise in addition
to those predicted by the SM [247]. In the �0

B → �/kq decay, CP violation occurs due to interference
between the �0

B–�̄
0
B mixing and the �0

B → �/kq decay. The CP-violating phase qB is defined as the weak
phase difference between the �0

B–�̄
0
B mixing amplitude and the 1 → 22B decay amplitude. In the SM, the

phase qB is small and is related to the Cabibbo–Kobayashi–Maskawa (CKM) quark mixing matrix elements
via the relation qB ≃ −2VB, with VB = arg[−(+CB+∗

C1
)/(+2B+∗

21
)]. A value of −2VB = −0.0368 ± 0.0010

rad is predicted by the UTfit Collaboration [248]. While large enhancements are excluded by the precise
measurement of the oscillation frequency [249], any new physics couplings involved in the mixing may
still increase the size of the observed CP violation by enhancing the mixing phase qB relative to the SM
value.

Using 80.5 fb−1 of integrated luminosity collected from 13 TeV proton–proton collisions at the LHC,
combined with data from 19.2 fb−1 of 7 TeV and 8 TeV, ATLAS measures the �0

B → �/kq decay parameters
in the channel �0

B → �/k(`+`−)q( + −) including the CP-violating phase qB, the width difference ΔΓB
between the �0

B meson mass eigenstates and the average decay width ΓB [250].
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The ATLAS result is presented in the form of the two-dimensional likelihood contours in the qB–ΔΓB plane
and is compared with the results up to 2021 from CMS [251] and LHCb [252–256] in Figure 45, prepared
by the HFLAV Collaboration [257]. The combination is performed with the ΔΓB errors scaled by a factor
of 1.78 because of a tension in current experimental results. Older results from CDF [258] and D0 [259]
are also shown. So far all results are consistent with the SM predictions [260, 261]. By including data
from Run 3 and HL-LHC [262], the sensitivity will increase further and allow definitive conclusions.

13.2 Rare H0
(s)

→ -+-− decays: measurement of branching fractions

Flavour-changing neutral-current processes are highly suppressed in the SM. The branching fractions of the
decays �0

(B) → `+`− are, in addition, helicity suppressed in the SM, and are predicted to be B(�0
B → `+`−)

= (3.65 ± 0.23) × 10−9 and B(�0
3
→ `+`−) = (1.06 ± 0.09) × 10−10 [263]. The small values and the

high precision of these predictions provide a favourable environment for observing contributions from
BSM physics. Significant deviations from SM predictions could arise in models involving non-SM
heavy particles, such as those predicted in the minimal supersymmetric SM [264–268] and in extensions
such as minimal flavour violation [269, 270], two-Higgs-doublet models [268], and others [271, 272].
The branching fractions of the decay �0

(B) → `+`− is measured by the LHCb [273] and CMS [274]
Collaborations.

Using ?? LHC data at 13 TeV corresponding to an integrated luminosity of 26.3 fb−1 (collected in

2015 and 2016) [275], the �0
B branching fraction is measured as B(�0

B → `+`−) =
(

3.2+1.1
−1.0

)

× 10−9,

where the uncertainty includes both the statistical and systematic contributions. For the �0
3

an upper
limit B(�0

3
→ `+`−) < 4.3 × 10−10 is placed at 95% CL. Combining with the Run 1 data sample

Figure 45: Contours of 68% confidence level in the qB–ΔΓB plane, including results from CMS and LHCb using all
�0
B channels, prepared by the HFLAV Collaboration [257]. The blue contour shows the ATLAS result for 13 TeV

combined with 7 TeV and 8 TeV. The LHC combination is shown in black. Older results from CDF and D0 are also
shown. In all contours the statistical and systematic uncertainties are combined in quadrature. The SM prediction
neglecting penguin contributions is shown as a very thin white rectangle.
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(a) (b)

Figure 47: ATLAS results [281] on (a) the signal proper decay time distribution extracted with the sPlot background
subtraction procedure applied to the dimuon invariant mass fit. The superimposed signal MC template is the result of
the lifetime fit procedure. Uncertainties in the data points are calculated as Poisson fluctuations centred on the MC
yield prediction (continuous histogram) in the corresponding bin. (b) j2 scan versus the lifetime used in the MC
template. The minimum of the scan (j2/ndf = 7.7/11), located at 0.99 ps, is indicated by the vertical dashed arrow.

histogram and the signal MC template series, generated for different lifetimes (see Figure 47(b)). The
statistical uncertainties are extracted through a Neyman construction [282]. A small bias in the analysis of
0.082 ps is determined in pseudo-data MC simulations and corrected. Systematic uncertainties in g`` are
currently subdominant and arise from fit-procedure assumptions, discrepancies between data and the MC
simulation and from neglected backgrounds. The final result is gObs

`` = 0.99+0.42
−0.07 (stat.) ± 0.17 (syst.) ps.

14 Probing QCD with heavy-flavour hadrons

14.1 Precision measurement of H+
c → P/7J

(∗)+
s decays

The �+
2 meson represents a unique system comprised of the two heavy quarks, 1 and 2. This makes studying

production, decays, and spectroscopy of the �2 family a powerful probe of different QCD calculation
approaches. The �+

2 → �/k� (∗)+
B decays occur via the 1̄ → 2̄2B̄ transition at quark level. The decay

processes can be divided into contributions involving a weak decay of the 1- or 2̄-quark, with the other
one acting as a spectator, and the 12̄ weak annihilation. Corresponding diagrams are shown in Figure 48.
Beside the 1 → 2 tree diagrams, the annihilation topology can also contribute, although it is not expected
to have a large effect and is therefore often neglected [283].

These decays were first observed by the LHCb Collaboration [284] and later by ATLAS [285] using Run 1
data. Despite the lack of identification of kaons and pions, the ATLAS measurement achieved competitive
precision, especially for the polarisation in the �+

2 → �/k�∗+
B decay, thanks to a more sophisticated signal

fit strategy.

The ATLAS Run 2 study of these decays [286] benefits from larger numbers of events and improved selection
techniques. It aims to measure the branching fractions, relative to that of the reference decay �+

2 → �/kc+.
The following ratios are measured: '�+

B/c+ = B(�+
2 → �/k�+

B )/B(�+
2 → �/kc+), '�∗+

B /c+ = B(�+
2 →

�/k�∗+
B )/B(�+

2 → �/kc+), and '�∗+
B /�+

B
= B(�+

2 → �/k�∗+
B )/B(�+

2 → �/k�+
B ).
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Figure 48: Quark diagrams for �+
2 → �/k� (∗)+

B decays: (a) colour-favoured, (b) colour-suppressed 1 → 2 tree and
(c) annihilation topology.

As the �+
2 → �/k�∗+

B decay is a transition of a pseudoscalar to two vector states, its decay products are
polarised. The decay can be described in terms of three helicity amplitudes, �00, �++, and �−− , where the
indices denote the helicities of the �/k and �∗+

B mesons. The �00 amplitude corresponds to longitudinal
polarisation and the other two refer to the transverse polarisations. Although the soft photon from the
�∗+

B → �+
BW decay is not reconstructed in the analysis, the invariant mass of the reconstructed �+

2 decay
products and angular shapes allow the fraction of transverse polarisation Γ±±/Γ to be measured.

Figure 49 shows the comparison of the Run 2 measurement results with those of Run 1 ATLAS and LHCb
measurements together with the results of various model calculations. The new measurement achieves the
best precision to date. Overall the best description of all the ratios of branching fraction is given by the
predictions of a QCD relativistic potential model [283]. Several other predictions tend to underestimate the
'�+

B/c+ ratio, while still describing the '�∗+
B /c+ well. The measured value of Γ±±/Γ clearly agrees with a

naive spin-counting expectation of 2/3, being larger than the values predicted by the dedicated calculations,
which are below 0.5.

Another interesting comparison can be made between the measured ratios of branching fractions and the
transverse polarisation fraction for �+

2 decays to those for lighter � mesons that occur predominantly via
either colour-favoured or colour-suppressed tree diagrams. Colour-favoured decays of �+, �0, and �0

B can
be obtained by replacing the �/k in the �+

2 decay final state with �̄∗0, �∗− , or �∗−
B , while colour-suppressed

modes are obtained by replacing the � (∗)+
B with  (∗)+,  (∗)0, or q.

These comparisons are presented in Figure 50. The '�∗+
B /�+

B
value agrees with the corresponding ratio

calculated for both the �0 and �+ decays into � mesons and is larger than that obtained for their decays into
�/k and kaons. The measured value of Γ±±/Γ lies between the transverse polarisation fraction values in
the �0 → �∗−�∗

B and �0
B → �∗−

B �∗
B decays and is larger than those in the considered � decays occurring

via the colour-suppressed tree diagram. These results support the assumption that the colour-favoured tree
diagram dominates the �+

2 → �/k� (∗)+
B decay amplitudes.

14.2 Charmonium production measurements

Despite a long history of studying heavy quarkonium production in hadronic collisions, these processes still
present a significant challenge to both theory and experiment. Two mechanisms play a role in production
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of charmonium states: prompt production from ‘direct’ QCD processes and non-prompt production from
decays of 1-hadrons. While the latter can be described reasonably well within perturbative QCD [296,
297], a satisfactory understanding of prompt production is still to be achieved. The conventional approach
to describe the prompt process is based on non-relativistic QCD (NRQCD) and introduces a number of
phenomenological parameters, namely long-distance matrix elements (LDMEs), that need to be extracted
from fits to experimental data. Attempts to build an universal set of LDMEs able to provide a consistently
good description of charmonium polarisation, associated production, and photo- and electro-production
have not been successful so far.

A wide range of experimental measurements of charmonium production characteristics have been provided
by the LHC experiments during the past decade. One path to add information useful for building theoretical
models, is to extend the kinematic reach of these measurements. With the full Run 2 data sample ATLAS
performed a measurement of �/k and k(2S) production [298] using their dimuon decay channels over the
largest transverse momentum range ever achieved to date: from 8 to 360 GeV for �/k and up to 140 GeV
for k(2S). This was achieved by using a combination of two types of triggers: dimuon triggers to cover the
lower ?T range up to about 100 GeV, and single-muon triggers with a threshold of ?T > 50 GeV above,
where dimuon triggers are inefficient because of the small angular separation between the muon.

The signal extraction is performed by a simultaneous fit to the dimuon invariant mass and pseudo-proper
lifetime distributions. Peaks of �/k and k(2S) are clearly separated in the mass spectrum, while the
lifetime distribution in the fit allows the prompt and non-prompt production to be distinguished. Double-
differential production measurements of both charmonium states are performed for prompt and non-prompt
mechanisms.

Figure 51 shows the prompt �/k production cross-sections and the comparison of the prompt production
measurement results with various theory predictions: NLO NRCDQ calculations [299] using pre-defined
LDMEs [300, 301], :T-factorisation model calculations made with the PEGASUS generator [302] and a
different set of LDMEs [303], and the ‘improved colour evaporation model’ (ICEM) [304] predictions.
Overall, all approaches tend to predict harder ?T spectra for both �/k and k(2S), while the ICEM also
underestimates the total k(2S) production.

These measurements reach an unprecedentedly wide kinematic range of charmonium production, challenge
the existing models, and provide unique input for their further tuning. Figure 52 shows the non-prompt �/k
production fraction and compares the measured non-prompt production with calculations: the traditional
fixed-order-next-to-leading-log (FONLL) approach [296, 297] predictions, those based on general-mass-
variable-flavour-number scheme (GM-VFNS) [305], and :T-factorisation-based calculations [302, 306].
None of these models is able to describe the data over the full ?T range, while the general trend in all of
them is the slower decrease of cross-section with ?T. This can be related to insufficient account of parton
distribution function evolution or to possible dependence of LDMEs on transverse momentum.

14.3 Studies of exotic hadron states

Beside the conventional hadrons comprised of three quarks (@@@) or a quark and an antiquark (@@̄), QCD
allows the existence of more complex systems such as pentaquarks (@@@@@̄) and tetraquarks (@@@̄@̄). A
number of such states were discovered in the last couple of decades [307]. One of them was observed by
LHCb as a narrow structure in the di-�/k channel at a mass of 6.9 GeV, along with an enhancement in the
mass spectrum closer to the di-�/k threshold at about 6.2 GeV [308]. That structure could be interpreted
as a tetraquark composed of four charm quarks.
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Figure 51: (a) Differential cross-sections of prompt �/k production, comparison of (b) prompt �/k and (c) k(2S)
production measurement results with various theoretical predictions (see text) [298].
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ATLAS performed a search for such states [309] in both di-�/k and �/k + k(2S) channels using the
four-muon final state for both. Figure 53 shows the results of the fits to the corresponding invariant mass
distributions. In the di-�/k channel, two models are used for the fit. In the first one (Figure 53(a)),
the signal probability density function consists of three interfering S-wave Breit–Wigner resonances
multiplied by a phase-space factor and convolved with a mass resolution function. In the second model
(Figure 53(b)), only two resonances are considered, one of which interferes with the amplitude of the
background �/k pair production via single parton scattering (SPS), and the other is standalone. Both
models describe well the enhancement near the mass threshold and the enhancement at 6.9 GeV, attributed
to a - (6900) resonance. The significance of the resonance far exceeds five standard deviations and its
mass and width agree with those measured by LHCb [308]. However, the broad structure at the lower mass
could result from many physical effects, such as feed-down from higher di-charmonium resonances, e.g.,
)222̄2̄ → j21j21 → �/kW�/kW.

In the �/k + k(2S) channel fit, two models are also used. The first one (Figure 53(c)) assumes that the
same three interfering resonances from the first model of the di-�/k fit can also decay into �/k + k(2S),
in addition to a fourth standalone resonance exclusively decaying into this channel. Parameters of the
first three resonances, contributing to the enhancement just above the �/k + k(2S) threshold, are fixed to
their values from the di-�/k fit. The second model (Figure 53(d)) assumes only a single resonance in this
channel. The signal significance of the fit results with the two models is 4.7 and 4.3 standard deviations
respectively. In the fit to the first model, the significance of the additional resonant structure near 7.2 GeV
alone is three standard deviations.
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15 Conclusion

This report summarises precision electroweak and QCD measurements performed by the ATLAS experiment
during Run 2 of the Large Hadron Collider from 2015 to 2018. Most results are based on data taken at√
B = 13 TeV corresponding to up to 140 fb−1 but selected recent precision measurements on Run 1 data

at
√
B = 7 TeV and

√
B = 8 TeV are also reported. The excellent performance of the upgraded ATLAS

detector and significant progress in the performance of object reconstruction and identification, together
with an increased centre-of-mass energy and a large data sample, allows a large range of novel high-quality
measurements and the observation of rare processes. The review covers measurements published until
spring 2024, with several further Run 2 measurements still expected to be published.

QCD in its non-perturbative regime is tested via the measurements of the total (ftot), elastic (fel) and
inelastic (finel) ?? cross-sections, and via the production of charged particles in ?? collisions. In particular,
the ATLAS measurements of ftot, fel and finel reach the best experimental precision among the existing
LHC measurements, allowing a detailed test of the energy evolution for ftot.

Perturbative QCD tests include the measurements of inclusive jets and isolated photons, but also jets in
association with single EW bosons or EW boson pairs and the measurement of transverse momentum and
other kinematic variables of single EW bosons and boson pairs. These high-precision multi-differential
measurements directly probe the higher-order QCD corrections, and are used to constrain parton distribution
functions of the proton. The production of EW bosons with heavy-flavour jets, allows tests of pQCD,
flavour and mass schemes and of the B, 2 and 1 content of the proton.

In a series of measurements, ATLAS also studies the internal structure of jets. These novel measurements
are sensitive to both perturbative and non-perturbative QCD effects.

EW interactions are tested by measurements targeting triple and quartic EW boson interactions in vector-
boson fusion and vector-boson scattering processes and in the production of three gauge bosons. The
EW production of two gauge bosons (,±,±, ,±,∓, ,±/ , // and /W) and the production of several
triboson combinations that include heavy EW bosons (,,, ,,/W and,WW) are observed for the first
time in Run 2. Unique tests of EW interactions are also performed using measurements of photon–photon
interactions in dilepton, diphoton, and,, final-states, exploring both ?? and Pb+Pb collision systems.
This leads to the first direct observations of WW → WW and WW → ,, scattering processes.

Fundamental parameters of the SM are extracted with unprecedented precision, based on novel techniques:
the mass and width of the, boson, the strong coupling constant and the invisible decay width of the /
boson.

This report also covers studies of heavy-flavour hadrons, including charmonium and exotic states. In
CP-violating and rare 1-hadron decays, a large data sample allows the sensitivity of searches for new
physics effects to be substantially improved, but more data is necessary to obtain conclusive results. The
double-heavy �2 meson is studied including new decay modes and with unprecedented precision. The
extended kinematic reach of charmonium production measurements allows QCD calculations to be tested
in a range never explored before. Studies of recently discovered exotic resonances help to further establish
their status, motivating the development of underlying theories.
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