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collisions at
√
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A search is performed for dark matter particles produced in association with a resonantly
produced pair of 1-quarks with 30 < <11 < 150 GeV using 140 fb−1 of proton–proton
collisions at a center-of-mass energy of 13 TeV recorded by the ATLAS detector at the LHC.
This signature is expected in extensions of the Standard Model predicting the production of
dark matter particles, in particular those containing a dark Higgs boson B that decays into
11̄. The highly boosted B → 11̄ topology is reconstructed using jet reclustering and a new
identification algorithm. This search places stringent constraints across regions of the dark
Higgs model parameter space that satisfy the observed relic density, excluding dark Higgs
bosons with masses between 30 and 150 GeV in benchmark scenarios with / ′ mediator masses
up to 4.8 TeV at 95% confidence level.
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Multiple astrophysical observations [1–4] indicate that a large fraction of the matter density of the universe
is in the form of dark matter (DM). Its nature is a major open question in physics, for the Standard Model
(SM) of particle physics does not provide any suitable DM candidates. Many extensions of the SM propose
DM candidates that are stable, neutral, massive weakly interacting particles [4], which determine the DM
relic abundance via thermal freeze-out. The search for DM candidates is being pursued actively in direct
and indirect detection experiments in addition to collider experiments [5–11]. Once produced in colliders,
DM would be undetected and must be inferred from the imbalance of the transverse momentum ®?miss

T ,1

with magnitude �miss
T , observed from the detected SM particles.

This Letter presents a novel DM search using a - + �miss
T signature in which - is a hypothetical particle

that decays into a 1-quark pair, 11̄. This signature of large �miss
T and resonant 11̄ production has not been

probed directly for invariant masses <11 < 150 GeV, except for when - is the SM Higgs boson, ℎ [12,
13]. Signal regions (SRs) are defined by requiring significant �miss

T consistent with the presence of DM,
in association with a 11̄ decay, which is usually the dominant branching fraction for a low mass - with
SM Higgs boson couplings. The background is dominated by vector-boson production in association with
jets, referred to as ++jets, with top quark pair (CC̄) production also significant at lower �miss

T values. To
constrain and improve the modeling of these background contributions, control regions (CRs) are defined
that require either a single muon (`) or a pair of charged leptons ℓ±ℓ∓ (ℓ = 4, `) in the final state.

The optimization and interpretation of the search is based on a dark Higgs model [14] that explains mass
generation for DM particles (j) through a Higgs mechanism in the dark sector and Yukawa interactions
with a new massive dark Higgs boson (B). This model satisfies the observed DM relic density as, when the
dark Higgs boson B is lighter than the DM particle j, additional annihilation channels such as jj → BB

can be dominant. Thus it offers a widespread, generic ability to reproduce the observed relic density. In
this two-mediator DM model, Majorana DM particles interact with the SM via the exchange of new spin-1
“mediator” particles carrying a new U(1)′ gauge symmetry (e.g. a new / ′ gauge boson), which can be
probed at colliders [14] through B-channel processes. Since large dark sector couplings usually reproduce
the relic density, the probability for a / ′ to radiate a dark Higgs boson can be large. Annihilation signals in
these models are suppressed, as is direct detection sensitivity for Majorana DM particles; thus colliders
provide unique discovery potential. The key model parameters are the Majorana DM candidate’s mass <j,
the / ′ mass </ ′ , the dark Higgs boson mass <B, the two couplings of the / ′ boson to quarks 6@ and to
DM 6j, and lastly the mixing angle between the SM and dark Higgs bosons \. In this model, the / ′ decays
dominantly into DM, which recoils against the dark Higgs boson and its visible decay products. If the dark
Higgs boson is the lightest dark sector state, exploring the dominant decays of low-mass B bosons is vital.
For <B < 150 GeV, decays into a 1-quark pair dominate, with the Lorentz boost and collimated decay
generating a merged topology signature of a single large-radius (large-') jet containing two 1-quarks. The
experimental challenges of this final state are the identification of the massive jet and its 1-quarks, and
maintaining sensitivity to <B < 50 GeV. For </ ′ < 2 TeV and <B > 70 GeV, the greater separation of the
1-quark pair motivates a resolved topology of two small-radius (small-') 1-quark jets.

The analysis is performed using 140 fb−1 of ?? collisions at
√
B = 13 TeV recorded with the ATLAS

detector [15, 16] in 2015–2018 during good operating conditions [17]. The ATLAS experiment is a
multipurpose particle detector with a forward–backward symmetric cylindrical geometry and nearly 4c

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector
and the I-axis along the beam pipe. The G-axis points from the IP to the center of the LHC ring, and the H-axis points upwards.
Polar coordinates (A, q) are used in the transverse plane, q being the azimuthal angle around the I-axis. The pseudorapidity is

defined in terms of the polar angle \ as [ = − ln tan(\/2) and is equal to the rapidity H =
1
2 ln

(

�+?I2
�−?I2

)

in the relativistic limit.

Angular distance is measured in units of Δ' ≡
√

(ΔH)2 + (Δq)2. Tranverse momentum is defined by ?T ≡ ? sin \ .
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Figure 1: Signal diagrams illustrating the resonant ?? → / ′ → Bjj → 11̄jj process.

coverage in solid angle. It consists of an inner tracking detector (ID) surrounded by a superconducting
solenoid, sampling electromagnetic (EM) and hadronic calorimeters, and a muon spectrometer (MS)
with three toroidal superconducting magnets. A two-level trigger system [18] selects events for offline
analysis. Events in the SR and the single-muon CR were collected by triggers on the �miss

T reconstructed
from calorimeter information only [19] above a threshold that varied from 90 to 110 GeV. Events in
the two-lepton CR were recorded using single-lepton triggers with ?T thresholds of 24–26 GeV [20, 21],
depending on the data-taking period. An extensive software suite [22] is used in the experiment.

Monte Carlo (MC) simulations are used to model the kinematics of SM background processes and the B+ jj
signal, illustrated in Figure 1. A detailed simulation of the ATLAS detector [23] based on Geant4 [24]
was used to simulate the detector response for MC event samples. Contributions from additional ??
interactions in the same and neighboring bunch crossings (pileup) were simulated through the overlay
of inelastic ?? simulations from Pythia 8.186 [25] using the A3 set of tuned parameters [26] and the
NNPDF2.3 leading order (LO) parton distribution function (PDF) set [27]. Details of the event simulation
configurations used for signal and background processes can be found in the Appendix.

Signal simulations for the ?? → / ′ → Bjj → 11̄jj process in three interpretation scenarios are used to
investigate interesting phase spaces of the model. Scenario 1 simulations were generated in the (</ ′ , <B)
plane, covering 30–150 GeV in <B and </ ′ up to 4 TeV. Other parameter values were <j = 200 GeV
to avoid B → jj decays, 6@ = 0.25 [28, 29], 6j = 1.0 and sin \ = 0.01 [14], defining a conventional
benchmark used in previous studies in different final states [30–32]. Two other scenarios are developed,
where the coupling parameter 6j is varied (instead of being set to unity) to ensure all signal points
are compatible with the observed relic density, Ωℎ2

= 0.12 [33], calculated using MadDM [34]. This
requirement usually indicates large 6j couplings, especially for larger </ ′ , which enhances the sensitivity
of dark Higgs boson signatures and reduces that of others, e.g. where the / ′ decays into quarks. Signal
simulations for scenario 2 were generated in the (</ ′ , <B) plane, but with <j = 900 GeV to enable a
match with the relic density across the investigated parameter plane. Finally, scenario 3 explores the
(</ ′ , <j) plane for a fixed dark Higgs boson mass <B = 70 GeV that coincides with the highest analysis
sensitivity. The other parameters (6@ and sin \) in these scenarios match those of scenario 1.

At least one ?? collision vertex reconstructed from at least two ID tracks with ?T > 0.5 GeV is required in
each event. The vertex with the highest

∑(?T)2 is designated the primary vertex (PV) [35]. Electrons
are reconstructed by matching a cluster of energy in the calorimeter to an ID track. Electron candidates
are identified using a likelihood-based method and must satisfy the “loose” requirement [36] and have
|[ | < 2.47. Muons are reconstructed by matching a track or track segment found in the MS to an ID track.
Muons must satisfy “loose” requirements [37] and have |[ | < 2.5. Electrons and muons must be isolated
according to the track proximity criteria defined in Ref. [38]. Hadronic g-lepton decays are identified by an
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algorithm based on a boosted decision tree [39] that combines calorimeter and ID information. Events
with g-leptons satisfying ?T > 20 GeV and “very loose” requirements [40] within |[ | = 2.5 are rejected.

Small-' jets are formed with the anti-:C algorithm [41, 42], using a radius parameter ' = 0.4, from ID
tracks associated with the PV and three-dimensional clusters of calorimeter cells selected by a particle-flow
reconstruction algorithm [43]. “Central” small-' jets satisfy |[ | < 2.5 and ?T > 20 GeV while “forward”
jets satisfy 2.5 < |[ | < 4.5 and ?T > 30 GeV. Corrections for pileup [44] and the jet energy scale (JES)
and resolution (JER) [45] are applied. The PV origin of central small-' jets with 20 < ?T < 60 GeV and
|[ | < 2.4 is required, using an associated-track-based discriminant [46]. Small-' jets closer than Δ' = 0.2
to an 4 or ` are rejected. Two types of large-' jets are reconstructed using the anti-:C algorithm with radius
' = 1.0. “Reclustered” large-' jets (�) are derived by clustering small-' jets ( 9) [47]; these are used for
the merged analysis with the intention of capturing the dark Higgs boson decay in full, providing sensitivity
and good mass resolution across the full jet mass range (down to <� = 30 GeV). Their flavor content is
evaluated through their associated variable-radius (VR) track-jets [48, 49] or the DXbb discriminant score
of the corresponding calorimeter large-' jet, as described below. “Calorimeter” large-' jets are clustered
from topological clusters calibrated to the hadronic scale using the local hadronic cell weighting (LCW)
scheme [50]. All large-' jets are trimmed [51] to minimise the impact of pileup and underlying event. The
JES and jet mass scale (JMS) of trimmed jets are calibrated following techniques described in Ref. [52].

To suppress contributions from processes that involve light quarks or gluons, two multivariate algorithms
are used to identify jets containing 1-hadrons (1-tagging) [53]. The algorithm DL1r is used at an operating
point evaluated to be 77% efficient at 1-jet identification on CC̄ simulation [54]. For <� < 50 GeV, this
algorithm and operating point is applied to VR track-jets with ?T > 10 GeV and |[ | < 2.5 formed from ID
tracks using the anti-:C algorithm and a ?T-dependent radius parameter. It is also applied to the small-'
jets in the resolved channel. A second, new tagging algorithm DXbb [55, 56], developed specifically for the
- → 11̄ topology, combines the flavor information of up to three VR track-jets within the large-' jet. This
mass-agnostic neural network exploits the powerful tagging capability of individual track-jets and their
discriminant correlations, together with the knowledge of the large-' jet kinematics. The algorithm is
trained on calorimeter large-' jets with masses above 50 GeV, where the axes of the large-' jet and the
reclustered large-' jet lie within Δ' = 1.0. An operating point evaluated to be 50% efficient at selecting
Higgs bosons with ?T > 250 GeV is employed. It is calibrated using / (→ 11̄)+jets and / (→ 11̄)+W data
samples in four ?T regions, supported by CC̄ and 6 → 11̄ topologies. It is estimated that the DXbb algorithm
improves the sensitivity by a factor of up to 50% in expected median discovery significance compared with
an �miss

T + ℎ(11̄) analysis [12] using VR track-jet 1-tagging, neglecting systematic uncertainties.

The ®?miss
T is computed as the negative vector sum of the transverse momenta of the identified and calibrated

physics objects in the event, plus a term accounting for low-energy charged particles, using the “tight”
operating point defined in Ref. [57]. An object-based �miss

T significance S [57] discriminates events with
genuine �miss

T produced by neutrinos or possible weakly interacting exotic particles, from those events in
which �miss

T is caused by mismeasurements or resolution effects.

The signal is characterized by high �miss
T from the DM particle production, and substantial hadronic activity

from B → 11̄ decays that results in an invariant mass consistent with <B. Thus events in the SR are required
to have �miss

T > 150 GeV, either two 1-tagged small-' jets or a large-' jet containing two 1-quarks, and
no isolated 4 or `. Events in the SR are rejected if a “loose” electron or muon with ?T > 7 GeV is present.
The smallest azimuthal angle between the ®?miss

T and any of the three highest-?T (leading) small-' jets is
required to be at least 20◦ to reduce the multĳet background arising from mismeasured jet momenta. For
signal events the �miss

T and the ?T of the reconstructed dark Higgs boson candidate (? 9 9

T in the resolved

4



region or ?�
T in the merged region) are correlated through the production process. Their ratio is required to

be between 0.8 and 1.3 to reduce the contributions from CC̄ and ,+jets events.

In the merged channel, to ensure the decay products are contained in the large-' jet, a 2<�/?�
T < 0.6

requirement is applied. The dark Higgs boson candidate jet is required to have at least two non-
overlapping VR track-jets associated with it. Events with an additional 1-tagged VR track-jet not
associated with the large-' jet are rejected to suppress top quark pair production. In the resolved
channel, the dominant background process is CC̄ production. This background is reduced by the variables

<
1,min/max
T =

√

2?1,min/max
T �miss

T (1 − cosΔq( ®?1,min/max
T , ®?miss

T )), and a requirement of <1,min
T > 170 GeV

and <
1,max
T > 200 GeV, where ?

1,min
T and ?

1,max
T are defined as the ?T of the 1-jet that is closer to (min)

or further from (max) ®?miss
T in q. To suppress CC̄ processes further, the central small-' jet multiplicity is

required to be ≤ 4. An S > 12 requirement is also applied, and results in negligible multĳet background.

The largest SR background contributions come from SM / (→ aā)+jets processes (48%–60%), increasing
in higher �miss

T categories. In the merged topology, SM diboson production (17%) and , (→ ℓa)+jets
(9%–13%) provide sub-leading contributions; top quark pair production (10%–30%) and , (→ ℓa)+jets
processes (13%–15%) contribute in the resolved toplogy. Two CRs are defined to improve the modeling
of the ++jets background: the single-muon CR (1`-CR) enriched in ,+jets and CC̄, and the two-lepton
CR (2ℓ-CR) dominated by /+jets. The 1`-CR follows the same selection and �miss

T trigger as the SR,
except that events must contain exactly one “medium” muon [58] with ?T > 27 GeV and no “loose”
electrons with ?T > 7 GeV. It is split into two regions depending on the muon charge to provide additional
discrimination between these two backgrounds, due to the larger cross-section for ,+ boson production
in ?? collisions. Events in the 2ℓ-CR are selected using the same requirements as in the SR, except that
events must contain exactly two “loose” electrons or oppositely charged “medium” muons, and satisfy
S > 12, with an additional requirement that this significance be lower than 5 when considering �miss

T
calculated with the two visible leptons. The leading electon (muon) must fulfill ?T > 27 (25) GeV, while
the subleading lepton must satisfy ?T > 7 GeV. The dilepton system mass and ?T must be consistent with
the / boson hypothesis of |<ℓℓ − </ | < 10 GeV and ?ℓℓT > 150 GeV.

To maintain sensitivity to signals generating higher �miss
T values and constrain background processes

more effectively, events are further categorized in �miss
T /GeV: [150, 200), [200, 350) and [350, 500)

in the resolved category and �miss
T /GeV: [500, 750), ≥ 750 in the merged category. The CRs in the

resolved category are divided in the same way. The boundary between resolved and merged categories at
500 GeV is optimized for search sensitivity. To match the �miss

T kinematics of ++jets processes in the SR,
®�miss

T,` = ®?miss
T + ®?`

T is used in the 1`-CR, incorporating the ?T of the , boson. Similarly, the addition of

®?ℓℓT in the 2ℓ-CR provides an analog to the �miss
T in the SR.

Experimental systematic uncertainties affect the reconstruction of the dark Higgs boson candidate. These
include uncertainties in the JMS [52] and the JES and JER [45] of both the small-' and large-' jets, and
uncertainties in the calibrations of the 1-jet identification algorithms [54, 59, 60]. Uncertainties in the
lepton identification efficiencies [36, 37], �miss

T trigger efficiency, energy scale and resolution [57] are
found to be negligible, as is the uncertainty in the luminosity [61].

Theoretical systematic uncertainties originate from the modeling of the signal and major background
processes. These include uncertainties from the choice of PDFs and the factorization and renormalization
scales. Additionally, uncertainties in the choice of the matrix element and parton shower generator are
assessed through dedicated, alternative MC simulations as detailed in the Appendix.
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Figure 3: The <11 distributions for data and SM expectations in the different �miss
T regions for the resolved (top row)

and merged (bottom row) topologies after a background-only simultaneous fit to data. The shaded area represents the
total uncertainty in the predicted yields. Two signal distributions are overlaid, multiplied in each �miss

T region by a
scale factor indicated in the legend for visibility. The lower panels show the ratios of the data to the predictions.

for the dark Higgs model are presented in Figure 4. The two-dimensional (</ ′ , <B) plane for scenarios 1
and 2 are shown in Figures 4(a), 4(b) and 4(c). In scenario 1, with 6j = 1 and <j = 200 GeV, </ ′ values
are excluded up to 3.4 TeV at <B = 70 GeV, which are the highest mass exclusions for this conventional
benchmark model. Figure 4(b) summarizes the exclusions on this model. The observed relic density is
obtained for </ ′ = 850 GeV, and also for <B ≃ 2<j = 400 GeV where dark Higgs boson annihilation
processes are greatly enhanced and deplete the relic abundance for all </ ′ values.

In scenario 2 (Figure 4(c)), the DM coupling varies to satisfy the observed relic density throughout; thus
the exclusion behavior is more complex. The increased DM mass (<j = 900 GeV) leads to reduced
cross-sections, with </ ′ masses around </ ′ = 2.5 TeV having 6j values near unity and lying close to the
expected exclusions. The relic density constraint requires larger 6j values for larger </ ′ values, as the DM
annihilation process jj → / ′ → @@̄ becomes more inefficient. The increasing coupling, and thus greater
probability for the / ′ to emit a dark Higgs boson and decay into DM, increases the cross-section, extending
sensitivity to higher masses, where </ ′ values can be excluded up to 4.5 TeV for <B = 75 GeV. Below
</ ′ = 2.5 TeV, and especially for </ ′ ∼ 2<j, the annihilation process above becomes very efficient, and
the small 6j couplings that match the relic density lead to cross-sections that are too small to be excluded.
The observed exclusion range in </ ′ becomes narrower than expected at higher <B values owing to the
small excesses in data near <11 = 50 GeV and <11 = 130 GeV discussed above.

The exclusion limits on the </ ′ and <j plane for scenario 3 are shown in Figure 4(d). Again, the relic
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Appendix

Simulated signal samples for the ?? → / ′ → Bjj → 11̄jj process were generated at LO in quantum chro-
modynamics (QCD) with up to one additional parton in the event, using MadGraph5_aMC@NLO 2.9.3 [68]
interfaced to Pythia 8.245 [69], both using the NNPDF3.0 LO PDF set [70] with Us = 0.13 [70] and the
A14 set of tuned parameters [71].

The + + jets background was simulated with Sherpa 2.2.11 [72], using next-to-leading-order (NLO)
matrix elements for up to two partons, and LO matrix elements for up to five partons calculated with
the Comix [73] and OpenLoops [74–76] libraries. The matching to the Sherpa parton shower [77]
used the MEPS@NLO prescription [78–81] with the set of tuned parameters developed by the Sherpa

authors. The NNPDF3.0 NNLO set of PDFs [70] was used and the samples were normalized to the
next-to-next-to-leading-order (NNLO) prediction [82]. Backgrounds from CC̄ production and single top
quark production were generated at NLO in QCD with Powheg Box v2 [83–86] using the NNPDF3.0 NLO
PDF set, interfaced to Pythia 8.230. Parton shower simulations with Pythia 8.230 used the A14 set
of tuned parameters [71] with the NNPDF2.3 LO PDF set. The CC̄ samples were normalized using
calculations at NNLO in QCD including next-to-next-to-leading logarithmic soft-gluon terms calculated
using Top++ 2.0 [87–93]. The single-top-quark processes were normalized to cross-sections at NLO
in QCD from Hathor v2.1 [94, 95]. Samples of diboson final states (++) were simulated with the
Sherpa 2.2.1 or 2.2.2 [72] generator depending on the process and normalized using calculations at NNLO
in QCD using the NNPDF3.0 NNLO PDF set. Backgrounds from associated+ℎ production were generated
at NLO in QCD with Powheg Box interfaced to Pythia 8.186 using the NNPDF3.0 NLO PDF set. The
@@ → +ℎ and 66 → +ℎ processes were normalized using calculations at NNLO in QCD and at NLO in
QCD combined with next-to-leading-logarithmic order corrections, respectively [96–102]. Top quarks
were decayed at LO using MadSpin [103, 104] to preserve all spin correlations. The decays of bottom and
charm hadrons were simulated using the EvtGen 1.6.0 program [105].

For top quark processes, uncertainties in the choice of generator were evaluated by comparison with
event samples generated with MadGraph5_aMC@NLO 2.6.0 interfaced to Pythia 8.230 and the nominal
Powheg generator hadronized by Herwig 7.04 [106, 107], using the H7UE set of tuned parameters [107]
and the MMHT2014 LO PDF set [108]. For single top quark production in the C, channel, an alternative
sample was generated using the diagram subtraction scheme [109, 110] to estimate the uncertainty
arising from the interference with CC̄ production. For + + jets processes, a sample generated with
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MadGraph5_aMC@NLO 2.6.2 at LO in QCD with up to four parton emissions using the NNPDF2.3 LO
PDF set and interfaced to Pythia 8.230 using a merging scale of&cut = 30 GeV was employed. Uncertainties
in the matching parameter and resummation scale were also assessed.
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