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Many extensions of the Standard Model, including those with dark matter particles, propose
new mediator particles that decay into hadrons. This paper presents a search for such low
mass narrow resonances decaying into hadrons using 140 fb−1 of proton–proton collision data
recorded with the ATLAS detector at a centre-of-mass energy of 13 TeV. The resonances are
searched for in the invariant mass spectrum of large-radius jets with two-pronged substructure
that are recoiling against an energetic photon from initial state radiation, which is used as
a trigger to circumvent limitations on the maximum data recording rate. This technique
enables the search for boosted hadronically decaying resonances in the mass range 20–100 GeV
hitherto unprobed by the ATLAS Collaboration. The observed data are found to agree with
Standard Model predictions and 95% confidence level upper limits are set on the coupling
of a hypothetical new spin-1 / ′ resonance with Standard Model quarks as a function of the
assumed / ′-boson mass in the range between 20 and 200 GeV.
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1 Introduction

Many extensions of the Standard Model (SM) predict new mediator particles that couple to SM particles.
A particular class of spin-1 mediators are referred to as / ′. These / ′ mediators appear in dark matter
models [1, 2] among many others [3–9]. The minimal requirement for a / ′ resonance to be produced in the
B-channel at the LHC is a / ′@@̄ coupling, which in turn predicts resonances decaying into hadronic but not
necessarily leptonic final states. The first searches for hadronically decaying resonances at hadron colliders
were carried out at the SPS by the UA1 [10, 11] and UA2 [12, 13] Collaborations. The invariant mass reach
was extended by the CDF [14] and D0 [15] Collaborations at the Tevatron, and by the ATLAS [16–18] and
CMS [19, 20] Collaborations at the LHC. However, with the increase of the centre-of-mass energy and
instantaneous luminosity, the sensitivity to light hadronically decaying resonances with small production
cross sections is significantly hampered by the high QCD multĳet production cross section, which results
in an event rate many orders of magnitude above the data recording bandwidth of the experiment. This
limitation has been partially addressed by performing searches using online reconstruction algorithms
run at the trigger level [21, 22]. Another technique is to use initial-state radiation (ISR) [23] to avoid
reliance on single-jet triggers with transverse momentum (?T) thresholds of around 0.5 TeV, which has
been extensively used at the LHC [24–28].

This paper presents a search for hadronically decaying resonances in the challenging invariant mass range
between 20 and 100 GeV that was hitherto unexplored by the ATLAS Collaboration. The search uses
140 fb−1 of ?? collisions recorded by the ATLAS detector between 2015 and 2018 at a centre-of-mass
energy of

√
B = 13 TeV. The bandwidth and QCD background limitations are overcome by using a

single-photon trigger with a transverse momentum threshold of ?T > 140 GeV. The search strategy selects
ISR photons from the @@̄ → / ′ → @@̄ process, resulting in a final state with hadronic activity from the
/ ′ → @@̄ decay recoiling against an energetic photon in the plane perpendicular to the beamline. The
leading-order Feynman diagram for the @@̄ → W + / ′ → W + @@̄ process is shown in Figure 1(a).

The Lorentz boost of the / ′ boson brings an increased collimation of the / ′ → @@̄ decay products with
decreasing </ ′ , resulting in a very dense and experimentally challenging jet topology for </ ′ . 50 GeV.
This challenge is overcome by using the track-assisted reclustered (TAR) jet reconstruction technique [29]
that combines information from the tracker and the calorimeters, and was first employed in Ref. [30]. The
decay products of the / ′ resonance are reconstructed as a single large-radius jet. The signal is searched
for as a resonance in the spectrum of the invariant mass of the large-radius jet (<� ) over the background
expected from SM processes.

The dominant backgrounds are non-resonant in <� and arise from QCD multĳet production in association
with either a photon (see Figure 1(b)) or a jet misidentified as a photon. In both cases, QCD jets can pass
the selection for a boosted massive / ′ resonance decaying into a pair of quarks due to rare fluctuations in
parton showering and hadronisation folded with detector response. Both background sources are estimated
from data using signal-depleted control regions (CR) after validating the methodology with Monte Carlo
(MC) simulations. Resonant backgrounds arise from SM production of W++ (+ = ,, /), with + → @@̄

(see Figure 1(c)). Another resonant background arises from SM top-antitop-quark (CC̄) production or
associated production of a top-quark and a , boson (C,), where one of the two , bosons in the event
decays into a quark pair and the other , boson decays into an electron and a neutrino, with the former
being misidentified as a photon. All resonant backgrounds are estimated using MC simulations. The
correct modelling of the <� distribution in resonant processes is verified in a dedicated CR enriched in CC̄

events. The results are interpreted within the framework of a dark matter model with a / ′ mediator in the
mass range between 20 and 200 GeV that decays into a pair of quarks [1, 2]. The lower limit of the search
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Figure 1: Representative leading-order Feynman diagrams for (a) the @@̄ → W + / ′ → W + @@̄ process, (b) the
non-resonant background from multĳet production in association with a photon, and (c) the dominant resonant
background from W++ , where + → @@̄ and + = ,, / .

range is chosen to avoid the non-trivial effects on the acceptance of the search, while the upper limit is in
the region where other searches by the ATLAS Collaboration dominate the sensitivity [16–18, 21, 24, 25,
31].

2 ATLAS detector

The ATLAS experiment [32] at the LHC is a multipurpose particle detector with a forward–backward
symmetric cylindrical geometry and a near 4c coverage in solid angle.1 It consists of an inner tracking
detector surrounded by a thin superconducting solenoid providing a 2 T axial magnetic field, electromagnetic
and hadronic calorimeters, and a muon spectrometer. The inner tracking detector covers the pseudorapidity
range |[ | < 2.5. It consists of silicon pixel, silicon microstrip, and transition radiation tracking detectors.
Lead/liquid-argon (LAr) sampling calorimeters provide electromagnetic (EM) energy measurements with
high granularity within the region |[ | < 3.2. A steel/scintillator-tile hadronic calorimeter covers the
central pseudorapidity range (|[ | < 1.7). The endcap and forward regions are instrumented with LAr
calorimeters for EM and hadronic energy measurements up to |[ | = 4.9. The muon spectrometer surrounds
the calorimeters and is based on three large superconducting air-core toroidal magnets with eight coils
each. The field integral of the toroids ranges between 2.0 and 6.0 T m across most of the detector. The
muon spectrometer includes a system of precision tracking chambers up to |[ | = 2.7 and fast detectors
for triggering up to |[ | = 2.4. The luminosity is measured mainly by the LUCID–2 [33] detector, which
is located close to the beampipe. A two-level trigger system is used to select events [34]. The first-level
trigger is implemented in hardware and uses a subset of the detector information to accept events at a rate
below 100 kHz. This is followed by a software-based trigger that reduces the accepted event rate to 1 kHz
on average depending on the data-taking conditions. A software suite [35] is used in data simulation, in the
reconstruction and analysis of real and simulated data, in detector operations, and in the trigger and data
acquisition systems of the experiment.

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector
and the I-axis along the beam pipe. The G-axis points from the IP to the centre of the LHC ring, and the H-axis points upwards.
Polar coordinates (A, q) are used in the transverse plane, q being the azimuthal angle around the I-axis. The pseudorapidity is

defined in terms of the polar angle \ as [ = − ln tan(\/2) and is equal to the rapidity H =
1
2 ln

(

�+?I2
�−?I2

)

in the relativistic limit.

Angular distance is measured in units of Δ' ≡
√

(ΔH)2 + (Δq)2.
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3 Data and simulated event samples

This analysis is performed using data from proton–proton (??) collisions at
√
B = 13 TeV at the LHC,

collected during 2015–2018 with the ATLAS detector. The total integrated luminosity of this data sample
is 140 fb−1 [36], obtained using the LUCID-2 detector for the primary luminosity measurements. Data in
this analysis are required to satisfy standard quality requirements [37].

SM background processes and the / ′ signal are simulated using MC event generators. A detailed simulation
of the ATLAS detector [38] based on the Geant4 [39] package is used to simulate the detector response
for all MC event samples. Contributions from additional ?? interactions (pile-up) are simulated with the
Pythia 8.186 [40] event generator using the NNPDF2.3lo parton distribution function (PDF) set [41] and
corrected to match the spectrum of the average number of ?? collisions per bunch-crossing in the data.
Parton shower simulations with Pythia use the A14 set of tuned parameters [42] with the NNPDF2.3lo

PDF set [41] and EvtGen [43] is used to model the decays of heavy-flavour hadrons. All simulations using
the Sherpa event generator employ its internal parton shower model.

Prompt single-photon production was simulated with Sherpa 2.2.1 [44]. The parton-level process was
generated at leading order (LO) in QCD for up to three additional partons, using the CT10nlo PDF set [45],
and matched to the parton shower using the MEPS@LO prescription [46]. Photons from the matrix
elements were required to be isolated according to a smooth-cone hadronic isolation criterion [47] with
X0 = 0.3, nW = 0.025 and = = 2. Multĳet production was simulated using Pythia 8.230 [48, 49] with the
NNPDF2.3lo PDF set with LO matrix elements for dĳet production matched to the parton shower. The
renormalisation and factorisation scales were set to the geometric mean of the squared transverse masses of
the two outgoing particles in the matrix element. The W++ processes were simulated with Sherpa 2.2.11
using the NNPDF3.0nnlo PDF set [50]. The perturbative calculations for W++ were performed at
next-to-leading order (NLO) in QCD for up to one additional parton and LO for up to three additional
partons, and matched to the parton shower [51, 52] using the MEPS@NLO prescription. The matrix
elements use the narrow-width approximation for the + bosons. Backgrounds from CC̄ and single-top-quark
production were generated at NLO in QCD with Powheg Box v2 [53–56] using the NNPDF3.0nlo PDF
set [50] and interfaced to Pythia 8.230 for parton showering and hadronisation. The diagram removal
scheme [57] was used to remove interference and overlap between C, and CC̄ production. The CC̄ samples are
normalized using calculations at NNLO in QCD including next-to-next-to-leading logarithmic corrections
for soft-gluon radiation [58–64]. The single-top-quark processes are normalized to cross sections at NLO in
QCD from Hathor v2.1 [65, 66]. The backgrounds from QCD ++jets production that are relevant for the
top-quark control region defined in Section 5 were simulated with MadGraph5_aMC@NLO 2.2.2 [67],
using LO-accurate matrix elements with up to four final-state partons. The matrix-element calculation
employed the NNPDF3.0nlo set of PDFs, and was interfaced to Pythia 8.186. The overlap between matrix
element and parton shower emissions was removed using the CKKW-L merging procedure [68, 69]. The
++jets samples were normalised to a next-to-next-to-leading-order prediction in QCD [70].

The signal model [1, 71, 72] features a vector resonance / ′ with the / ′@@̄ coupling 6@ set to 0.2 (with
@ = D, 3, B, 2, 1), which results in a / ′ width well below the detector resolution. The signal was simulated
generating W + / ′ events at LO in QCD with MadGraph5_aMC@NLO v2.9.2 using the NNPDF3.0nlo

PDF set and interfaced to Pythia 8.244. The rates for all decay modes except / ′ → @@̄ were set to 0, and
the interference between the / ′ and the SM / boson was neglected [1, 2]. The translation of the results to
other 6@ values is done following Ref. [73]. The mass of the hypothesised / ′ resonance ranged between
20 GeV and 200 GeV.
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4 Event reconstruction

At least one ?? collision vertex, reconstructed from at least two ID tracks, is required in the event [74].
The vertex whose associated tracks give the highest sum of squared transverse momentum is designated the
primary vertex (PV). The ID tracks must have at least seven hits and satisfy ?T > 0.5 GeV and |[ | < 2.5
requirements [75, 76]. Their transverse and longitudinal impact parameters relative to the PV must satisfy
|30 | < 2 mm and |I0 sin(\) | < 3 mm, respectively.

Photon candidates are reconstructed from three-dimensional topological clusters of energy deposits
(topoclusters) in the electromagnetic calorimeter [77]. The contamination from neutral hadrons is reduced
using the energy deposition profile in the first two calorimeter layers. ‘Tight’ criteria as defined in Ref. [78]
are applied for photon identification and isolation. Photons are required to have ?T > 10 GeV and to fall
within |[ | < 1.37 or 1.52 < |[ | < 2.37, thus avoiding the transition region between the barrel and endcap
calorimeters.

Jets are formed with the anti-:C algorithm [79, 80]. Jets with a radius parameter value of ' = 0.2 are used in
the overall reconstruction of the event. These ' = 0.2 jets are built from topoclusters in the calorimeter that
are corrected using the local cell signal weighting (LCW) method [81]. In addition, jets with ' = 0.4 are
used in the identification of 1-hadron decays. These ' = 0.4 jets are clustered from topoclusters and tracks
with a particle flow algorithm that subtracts contributions due to charged particles from topoclusters [82].
A multivariate algorithm is used to identify ' = 0.4 jets containing 1-hadrons (1-tagging) with an average
efficiency of 85% [83]. Corrections for pile-up [84] and to the energy scale and resolution [85] are applied
to both jet definitions. Jets with ' = 0.2 (' = 0.4) are required to have ?T > 25 GeV and |[ | < 2.2 (2.5).
' = 0.4 jets with ?T < 60 GeV and |[ | < 2.4 are identified as originating from the PV using associated
tracks [86]. No such procedure is applied to ' = 0.2 jets since they are only used in association with
tracks.

The TAR technique [29] is used to reconstruct the / ′ → @@̄ decay in the challenging boosted low-mass
phase space for the first time. This technique improves the resolution of jet substructure observables by
combining tracking and calorimeter measurements. The TAR jets are formed from ID tracks and ' = 0.2
jets as follows. The calibrated ' = 0.2 jets are reclustered into larger jets with ' = 1.0 using trimming
parameters optimized for ATLAS [87]. ID tracks are associated to the ' = 0.2 subjets of the reclustered
jet. The ?T of each associated track is then rescaled by a common factor so the magnitude of the vector ?T

sum of the associated tracks equals the ?T of the ' = 0.2 jet. These rescaled tracks are used to calculate
TAR jet observables, e.g., the jet mass <� .

Resonance candidate ' = 1.0 TAR jets are selected to be central (|[ | < 2), have sufficient transverse
momentum to balance the ISR photon (?T,� > 150 GeV), and be collimated (2<�/?T,� < 1). They must
be separated from the highest-?T photon in the event by Δq > c/2, and isolated from any photon with
?
W

T/?
�
T > 0.1 by Δ' ≥ 1.2. TAR jets consisting of fewer than three rescaled tracks are rejected, since the

substructure variable �2 introduced in Section 5 is ill-defined for such jets [88].

Muons are reconstructed by matching a track or track segment found in the muon spectrometer to an ID
track. Muons must satisfy the ‘Medium’ requirements in Ref. [89] and have ?T > 25 GeV and |[ | < 2.5.
Muons must be isolated using the ‘Loose’ criteria in Ref. [89], which limits the total energy observed in
tracks and calorimeter deposits near the (extrapolated) muon track.
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5 Event selection and analysis strategy

The signal is characterised by hadronic activity from the / ′ → @@̄ decay produced back-to-back in azimuth
to an isolated prompt energetic photon, which is used to trigger the event [90]. To ensure the trigger is fully
efficient, the transverse momentum of the leading photon ?

W

T is required to be greater than 150 GeV. At
least one TAR jet is required. To reduce the non-resonant background contribution, events are rejected if
any ' = 0.2 jet within Δ' ≤ 1.2 of the leading TAR jet (but not reclustered into it) has a ?T greater than
?
W

T. Similarly, events where the leading TAR jet has d ≡ log(<2
�
/?2

T,� ) ≤ −5.4 are rejected to improve the
modelling of non-resonant backgrounds at the low end of the <� spectrum using the data-driven approach,
which will be described later in this Section. This selection has a negligible effect on the signal acceptance
in the targeted </ ′ range.

The internal energy distribution in TAR jets from signal events is consistent with a two-prong / ′ → @@̄

decay, while TAR jets from non-resonant backgrounds are compatible with a one-prong decay. This
difference is characterised using the �2 observable [88], which was found to be powerful at discriminating
between one- and two-prong jets [91]. The �2 variable is defined using ratios of energy correlation
functions that explore the substructure of a jet using an angular-weighted sum over the momenta of its
constituents. The values of �2 for two-prong jets are typically smaller than those for one-prong jets.
Figure 2(a) shows a comparison of the distribution of the �2 observable between non-resonant background
processes in three mass ranges and the resonant backgrounds.

The �2 observable is correlated with <� . To eliminate the shaping of <� resulting from the �2 selection,
a decorrelated observable [92–96] is defined as

�DDT
2 (d, ?T) = �2 − �13 %

2 (d, ?T) , (1)

where ‘DDT’ stands for ‘Designed Decorrelated Tagger’. Here, �13 %
2 is the 13% quantile, i.e., the

value of �2 that splits the non-resonant background MC sample into two subsamples of 87% and 13%.
Hence, a selection of �DDT

2 (d, ?T) < 0 has a fixed efficiency of 13% in non-resonant background MC
samples, irrespective of the mass or ?T of the jet. The quantile value of 13% was chosen by optimising
the overall analysis sensitivity following the (/

√
� metric, where ( and � are the expected numbers of

signal and background events, respectively, and by minimising the magnitude of the variations in the initial
�13 %

2 (d, ?T) distribution for non-resonant background events.

The final �13 %
2 (d, ?T) map is obtained by smoothing its initial distribution by convolution with a two-

dimensional Gaussian kernel [97]. The parameters of the smoothing procedure like the binning of the initial
�13 %

2 (d, ?T) distribution and the kernel widths in d and ?T dimensions are optimised by minimising the
Jensen-Shannon distance [98–100] between the <� distributions for non-resonant background MC samples
before and after the �DDT

2 (d, ?T) < 0 selection. In addition to �2, six other jet substructure observables
capable of discriminating between one- and two-prong jets [91], including g21 used in a similar previous
ATLAS search [24], were explored following the procedure above. The �2 variable was chosen since it
minimises the shaping of the <� distribution following the Jensen-Shannon distance metric.

Figure 2(b) shows the final �13 %
2 (d, ?T) map after smoothing. In the following, the ‘tagged’ sample

enriched in signal and two-prong resonant backgrounds is defined by the criterion �DDT
2 < 0, while the

complementary ‘anti-tagged’ sample is enriched in non-resonant backgrounds.

Ideally, the shape of the <� distribution of non-resonant background should be identical in the tagged
and anti-tagged samples. In practice, the accuracy is limited by statistical and theoretical uncertainties on
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in Section 6.

The resonant background processes (W++ , C, and CC̄) and the signal are modelled using MC simulations.
The efficiency of the �DDT

2 selection in MC simulations is calibrated using , → @@̄′ decays. This is done
using a dedicated top CR (denoted ‘top CR’), which targets the semi-muonic decay of CC̄ pairs and hence
requires a single energetic muon trigger and exactly one isolated muon with ?T ≥ 30 GeV. At least three
' = 0.4 jets must be present, of which at least two should be 1-tagged. At least one 1-tagged jet must fall
within Δ' < 1.5 from the muon to select for collimated C → 1, decays. Furthermore, at least one TAR
jet passing all SR selections except for �DDT

2 must be present. TAR jets must be separated by Δ' ≥ 1.05
from muons and by Δ' ≥ 1.45 from 1-tagged jets.

The fiducial on-shell , → @@′ production rate is extracted in the top CR using a parametrised fit to the
,-boson candidate mass spectrum, where the contribution from , bosons is captured by a Gaussian
distribution, while the background is described by a second order polynomial. The efficiency of the �DDT

2
selection Yres

�DDT
2

for resonant ,-boson production is then determined as the ratio of the fiducial on-shell

,-boson production rates after and before applying the �DDT
2 < 0 requirement. The ratio

R�DDT
2

=

Yres
�DDT

2 ,data

Yres
�DDT

2 ,MC

is then used to calibrate the tagging efficiency in MC simulations of resonant processes. The calibration
factor is measured to be R�DDT

2
= 0.971± 0.026. Its value and the corresponding uncertainty is propagated

to the signal extraction fit described in Section 6.

6 Statistical analysis and systematic uncertainties

The resonant / ′ → @@̄ signal is extracted via a simultaneous maximum-likelihood fit [102, 103] to the
binned <� distributions in the SR and the three CR categories, but not the top CR. This fit considers signal
and resonant background predictions from MC simulations scaled to their theoretical cross sections and
calibrated for the �DDT

2 selection efficiency determined in the top CR. The width of the bins in <� is
chosen as about one-third of the experimental resolution on </ ′ while keeping the statistical uncertainties
per bin approximately constant. The expected yields a8 for the Poisson probability density in a given <�

bin 8 are given as

aSR,8 (`, \) = ` · aSR,sig,8 (\) +
∑

res. bkg.

aSR,bkg,8 (\) +
13%

1 − 13%
^�DDT

2
,8 · acentral,8 (2)

for the SR and
acaCR,8 (`, \) = ` · acaCR,sig,8 (\) +

∑

res. bkg

acaCR,bkg,8 (\) + acentral,8 (3)

in the central anti-tagged CR labelled as ‘caCR’. Here, ` is the signal strength, i.e. a factor multiplying the
expected signal yields, \ is the vector of nuisance parameters representing systematic uncertainties and the
R�DDT

2
calibration, ‘sig’ labels the signal and ‘res. bkg’ the resonant background processes. The values

acentral,8 approximate the yield of the non-resonant background in the central anti-tagged CR. The relevant
difference between Eqs. (2) and (3) is the transfer factor 13%

1−13% ^�DDT
2

,8 that considers the non-resonant
background tagging efficiency in data. The probability densities in the forward tagged and anti-tagged
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CRs are defined in analogy to Eqs. (2) and (3), respectively, using the same 13%
1−13% ^�DDT

2
,8 transfer factor.

Hence, the non-resonant background contribution is simultaneously fit in the SR and the three CRs through
a common set of the Bernstein coefficients for the ^�DDT

2
(<� ) correction.

The uncertainty in the non-resonant background estimate represents the dominant systematic uncertainty in
this analysis, contributing between 80% and 90% of the total systematic uncertainty, depending on the </ ′

hypothesis. This uncertainty estimate considers three different sources, which are described below.
First, a systematic uncertainty on the assumption that ^�DDT

2
(<� ) is identical in the central and forward

regions is explicitly considered in the simultaneous maximum-likelihood fit procedure through Eqs. (2) and
(3) and their counterparts for the forward CRs. Since the central and forward regions use the same ^�DDT

2
correction factor and hence the same Bernstein coefficients, any tensions between the data in the tagged
central and forward regions and the estimates obtained from the corresponding untagged regions will
result in an increased uncertainty in the fitting procedure. This source of systematic uncertainty explicitly
accounts for statistical limitations due to a finite number of data and MC events, and contributes more than
90% of the uncertainty on the non-resonant background estimate.
Second, a systematic uncertainty accounting for a potential spurious signal bias as a function of <� is
considered. This bias is evaluated through a multiplicative nuisance parameter on the signal yield in fits to
pseudoexperiments derived from Asimov data. The corresponding uncertainty is below one percent of the
uncertainty on the non-resonant background estimate.
Third, a systematic uncertainty related to the extrapolation between the forward and central regions is
evaluated. This uncertainty accounts for localised fluctuations in tagged region data on scales that are
comparable to the <� resolution. This uncertainty is derived from the net difference between observed
data and the pre-fit background prediction. If this net difference is larger than

√
� in a given <� bin, a

systematic uncertainty is added to this bin. Only the tagged forward control region is used to determine the
net difference in order to minimise any impact from signal that may potentially be present. This systematic
uncertainty is applied in the central and forward regions, per <� bin and it is taken as uncorrelated across
bins. It contributes a few percent of the uncertainty in the non-resonant background estimate.

The systematic uncertainties related to MC simulations are parameterized as nuisance parameters with
Gaussian or log-normal prior probabilities, are profiled and used to constrain the template shapes and the
normalisations varied in the fit. The leading sources of systematic uncertainty related to MC simulations
originate from the theoretical modelling of signal events. Among those uncertainties are: the choice of the
factorisation and renormalisation scales, the choice of PDFs, and the uncertainty on the strong coupling
constant Us. Sub-leading sources of systematic uncertainties that affect both signal and background events
modelled using MC simulations are related to the energy scale and resolution of ' = 0.2 and ' = 0.4
jets [85]. Other, typically negligible sources of systematic uncertainty are related to the identification and
reconstruction of photons [77], the finite number of MC events, and the measured integrated luminosity [36].
Overall, this search is limited by statistical uncertainties in the data, which typically range between 20%
and 50% of the theoretical cross section for the / ′ → @@̄ process, depending on </ ′ .

7 Results

The distributions of <� in the SR and the central anti-tagged CR and are shown in Figure 3 after the fit to
data under the background-only hypothesis. The statistical weight of the anti-tagged CRs is significantly
higher than that of the tagged regions since they have seven times the yield. Hence, the excursion of the
data points from the background prediction relative to the total statistical plus systematic uncertainty in the
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Figure 3: Invariant mass <� of the resonance candidates in the (a) SR, i.e., central tagged region, (b) forward tagged
CR, (c) central anti-tagged CR, and (d) forward anti-tagged CR, after the fit to data under the background-only
hypothesis. The total systematic uncertainty is shown as the hatched band. Three representative W+/ signal
distributions are overlaid as red lines. The signal is shown for 6@ = 0.2 with production cross sections of 309 fb,
143 fb, and 34.2 fb for <′

/
= 20, 50, and 125 GeV, respectively.

anti-tagged CRs is much smaller than in the tagged regions. For the same reason, the relative contribution
of the systematic uncertainty, shown as a hatched band, appears larger in the anti-tagged CRs due to the
smaller total uncertainty compared to the tagged regions. Figure 4 shows the corresponding ^�DDT

2
(<� )

correction after the fit to data under the background-only hypothesis alongside observed ratios of tagged
over anti-tagged events in the central and forward regions. No significant deviation from SM predictions is
observed.

In absence of a significant excess, the results are interpreted in Figure 5 as exclusion limits at 95%
confidence level (CL) on the 6@ coupling strength with the �!B formalism [104] using a profile likelihood
ratio [105] as test statistic. In the range </ ′ < 100 GeV, hitherto unprobed by ATLAS, 6@ couplings as
small as 0.1 are excluded.
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@@̄ → W + / ′ → W + @@̄ process, and probe previously uncharted parameter space for the / ′@@̄ coupling
6@ for masses 20 < </ ′ < 200 GeV, excluding 6@ couplings down to 0.1.
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