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This Letter presents the first study of the energy-dependence of diboson polarization fractions
in ,/ → ℓaℓ′ℓ′ (ℓ, ℓ′ = 4, `) production. The data set used corresponds to an integrated
luminosity of 140 fb−1 of proton-proton collisions at a center-of-mass energy of 13 TeV
recorded by the ATLAS detector. Two fiducial regions with an enhanced presence of events
featuring two longitudinally-polarized bosons are defined. A non-zero fraction of events
with two longitudinally-polarized bosons is measured with an observed significance of 5.3
standard deviations in the region with 100 < ?/

)
≤ 200 GeV and 1.6 standard deviations

in the region with ?/
)
> 200 GeV, where ?/

)
is the transverse momentum of the / boson.

This Letter also reports the first study of the Radiation Amplitude Zero effect. Events with
two transversely-polarized bosons are analyzed for the Δ. (ℓ,/) and Δ. (,/) distributions
defined respectively as the rapidity difference between the lepton from the , boson decay and
the / boson and the rapidity difference between the , boson and the / boson. Significant
suppression of events near zero is observed in both distributions. Unfolded Δ. (ℓ,/) and
Δ. (,/) distributions are also measured and compared to theoretical predictions.
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In the Standard Model (SM) of particle physics, the longitudinal polarization components of the , and
/ bosons are generated by the Goldstone bosons from electroweak symmetry breaking via the Higgs
mechanism. Physics beyond the SM could cause different effects on the polarization of , (or /) bosons
in diboson processes [1, 2]. A sensitive test of the mechanism of electroweak symmetry breaking and
gauge symmetry can thus be obtained by studying different polarization states in diboson processes. This
Letter presents the first study of the energy dependence of ,/ diboson polarization fractions in two
fiducial regions with an enhanced presence of events featuring two longitudinally-polarized bosons. In
addition, it reports the first study of the Radiation Amplitude Zero (RAZ) effect in ,/ production with two
transversely-polarized bosons [3, 4]. The ,/ candidates are reconstructed using leptonic decay modes of
the gauge bosons into electrons and muons, ,/ → ℓaℓ′ℓ′ (ℓ, ℓ′ = 4, `). The data set used corresponds
to an integrated luminosity of 140 fb−1 of proton-proton collisions at a center-of-mass energy of 13 TeV
recorded by the ATLAS detector from 2015 to 2018.

At leading-order (LO) in quantum chromodynamics (QCD),,/ production occurs through quark-antiquark
interactions in the B-, C-, and D-channels. The dominant helicity amplitude with two transversely-polarized
bosons exhibits an exact zero when the scattering angle of the , boson in the ,/ rest frame with respect
to the incoming antiquark direction approaches 90◦ [3, 4]. This is a direct consequence of the gauge
structure in the SM. This RAZ effect leads to a dip around 0 in the Δ. (,/) and Δ. (ℓ,/) distributions,
with Δ. (,/) defined as the rapidity difference between the , and / bosons, and Δ. (ℓ,/) defined as
the rapidity difference between the lepton from the , decay and the / boson. The RAZ effect has been
observed for ,W [5–7] for which it is found that the sensitivity for ,W resonances is enhanced in this
radiation valley [8]. However, the RAZ effect has not yet been observed for ,/ due to the , boson
polarizations in ,/ production [9]. In addition, the next-to-leading order (NLO) QCD corrections dilute
the RAZ effect and make it hard to observe experimentally [10, 11]. To reduce jet activity and to increase
the significance of the dips, a selection criterion on the transverse momentum of the ,/ system (?,/

)
) is

applied.

The diboson polarization fractions 500, 5)) , 50) and 5)0 as defined in Ref. [12] are interpreted as
probabilities of correlated polarization states of the , and / bosons. Here, 00 ())) indicates that
both bosons are longitudinally (transversely) polarized, and 0T (T0) indicates that the , (/) boson
is longitudinally polarized and the / (,) boson is transversely polarized. The ATLAS Collaboration
has measured both single and diboson polarization fractions using inclusive ,/ events [12], which are
dominated by )) events with low momentum , and / bosons [1, 2, 13]. This analysis focuses on ,/

events with / bosons required to have high transverse momenta (?/
)

). The combination of high ?/
)

and low
?,/
)

significantly reduces the TT contribution and increases 500. As a result, 500 increases from 5 − 7% in
the inclusive region to 20 − 30% in the region with high ?/

)
and low ?,/

)
[14].

The ATLAS detector [15] is a multi-purpose particle physics detector with cylindrical geometry1. It
consists of an inner tracking detector (ID) surrounded by a superconducting solenoid providing a 2 T axial
magnetic field, sampling electromagnetic (ECAL) and hadronic (HCAL) calorimeters using liquid argon
as active material and lead/copper/tungsten as absorber material, and a muon spectrometer (MS) based on
three air-core toroidal superconducting magnets. The ATLAS trigger system consists of a hardware-based

1 The ATLAS experiment uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center
of the detector. The G-axis points from the IP to the center of the LHC ring, the H-axis points upward, and the I-axis is along
one of the proton beam directions. Cylindrical coordinates (A, q) are used in the transverse plane, q being the azimuthal angle
around the beam pipe. The pseudorapidity is defined in terms of the polar angle \ as [ = − ln tan(\/2). Transverse momentum
(?) ) is defined relative to the beam axis and is calculated as ?) = ? sin \ where ? is the momentum. The distance Δ' is

defined as Δ' =

√

(Δ[)2 + (Δq)2.
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level-1 trigger followed by a software-based high-level trigger [16]. Events used for this analysis are
selected with single-lepton (4 or `) triggers [16–18]. An extensive software suite [19] is used in the
reconstruction and analysis of real and simulated data, in detector operations, and in the trigger and data
acquisition systems of the experiment.

Electron candidates are reconstructed from energy clusters in the ECAL matched to ID tracks. Electrons
are identified using a likelihood function based on shower shape variables in the ECAL, track variables,
and the quality of the track-cluster matching. Electrons are required to satisfy a “medium” likelihood
requirement [20] and have ?) > 15 GeV and |[ | < 2.47 excluding the crack region 1.37 < |[ | < 1.52.
Muons are reconstructed by matching the tracks in the MS with tracks in the ID. Muons are required to
pass a “medium” identification selection [21] and have ?) > 15 GeV and |[ | < 2.7. Electrons and muons
must be compatible with the hypothesis that they originate from the primary vertex. They are also required
to be isolated from other particles using both calorimeter-cluster and ID-track information [22].

Jets are reconstructed with the anti-:C algorithm with a radius parameter of 0.4, using a particle-flow
procedure [23] with clusters of energy deposited in the calorimeter and tracks reconstructed in the ID as
inputs. Jets are required to have ?) > 30 GeV and |[ | < 4.5. To suppress pile-up jets, jets with ?) < 60
GeV and |[ | < 2.4 have to pass a requirement on the jet vertex tagger [24]. The missing transverse
momentum vector with magnitude denoted by �miss

)
, is calculated as the negative vector sum of the

transverse momentum of all identified hard physics objects (electrons, muons, jets), with a contribution
from an additional soft term based on ID tracks matched to the primary vertex but not assigned to any of
the hard objects [25]. Ambiguities in the identity of reconstructed leptons, jets, and photons are resolved
with an overlap-removal procedure described in Ref. [26].

Candidate ,/ events are selected using triggers that require at least one electron or muon. To ensure the
trigger efficiency is well determined, at least one of the candidate leptons in the event must be trigger-
matched and have ?) > 25 GeV for data taken in 2015 or ?) > 27 GeV for data taken from 2016 to 2018.
Events are required to contain exactly three lepton candidates satisfying the selection criteria described
above. To reduce contributions from the // (∗) → ℓℓℓ′ℓ′ process, events with a fourth lepton candidate
satisfying looser selection criteria are rejected. For this looser selection, the lepton ?) requirement is
reduced to ?) > 5 GeV. Electrons are allowed to be reconstructed in the region 1.37 < |[ | < 1.52 and
“loose” identification requirements [20, 21] are used for both the electrons and muons. A less stringent
requirement is also applied for electron isolation. Candidate events are required to have at least one
pair of leptons with the same flavor and opposite charge, with an invariant mass that is consistent with
the / boson pole mass to within 10 GeV. This pair is considered to be the / boson candidate. If more
than one pair can be formed, the pair whose invariant mass is closest to the / boson pole mass is taken
as the / boson candidate. The remaining third lepton is assigned to the , boson decay. To suppress
backgrounds with non-prompt leptons from hadron (including 1-flavored and 2-flavored hadrons) decays
and jets misidentified as leptons, the , lepton is required to pass tighter isolation requirements and have

?) > 20 GeV. The transverse mass of the , candidate, defined as <,
T =

√

2?ℓ
)
�miss
)

[1 − cosΔq], is

required to be greater than 30 GeV, where Δq is the angle between the third lepton and the �miss
)

in the
transverse plane, and ?ℓ

)
the transverse momentum of the third lepton. These selection criteria are used to

select inclusive ,/ events.

The ,-mass constraint method is used to calculate the longitudinal component of the neutrino momentum
(?I (a)). The �miss

)
of the event is assumed to come from the neutrino, and ?I (a) is estimated by constraining

the invariant mass of the third lepton and the neutrino to be the pole mass of the , boson. A quadratic
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equation leads to two solutions. If they are real, the one with the smaller magnitude of |?I (a) | is chosen,
otherwise, the real part is chosen [27].

For RAZ studies, an additional criterion of ?,/
)

< 20, 40, or 70 GeV is applied to define three regions with
reduced jet activity in each event. Diboson polarization fractions are measured in two regions enhanced in
events with 00 polarization (00-enhanced), defined with two additional criteria applied on the inclusive
region: ?,/

)
< 70 GeV, and either 100 < ?/

)
≤ 200 GeV or ?/

)
> 200 GeV.

Monte Carlo (MC) simulated samples are used to model the signal ,/ process with different polarization
states, as well as other physics processes with at least three prompt leptons. Simulated events are processed
through the full ATLAS detector simulation based on geant4 [28, 29], and reconstructed with the same
algorithms as those used for the data. To simulate pileup effects, additional ?? interactions are added to
the MC samples in proportion to the mean interactions per bunch crossing occurring in the various data
periods.

For inclusive ,/ production, NLO QCD [3, 30] and NLO electroweak corrections [31–33] have been
calculated. Next-to-next-to-leading-order (NNLO) QCD corrections are also known in the on-shell case,
including off-shell effects [34, 35] and combined with electroweak corrections [36]. Diboson polarizations
in ,/ production have been studied at NLO QCD [37, 38] and NLO QCD+electroweak [39, 40]. However,
the automated MC simulation with two polarized vector bosons and full spin correlations is only available
at LO in the narrow-width approximation. In this analysis, polarized ,/ events are generated at LO using
Madgraph_amc@nlo 2.7.3 [41]. The boson polarizations are defined in the ,/ center-of-mass frame.
To account for the real part of NLO QCD corrections, events are simulated with no jets and with one jet at
LO, and the two samples are merged with pythia8 [42] using the CKKW-L scheme [43]. Jets are defined
to have ?) > 25 GeV and |[ | < 2.5 at the parton level. In addition, pythia8 is used for the simulation of
parton showering, hadronization and the underlying event. The NNPDF3.0nlo PDF set [44] is used for
the parton process generation. Separate MC samples are generated corresponding to the four states 00,
0) , )0 and )) , respectively. For each polarization state, different samples are generated for ?/

)
> 150

GeV and ?/
)
≤ 150 GeV in order to increase statistics for events with high ?/

)
. Separate samples are also

generated for events with at least one boson decays to g lepton and the g lepton decays leptonically to an
electron or a muon. An inclusive MC sample is created by adding the four polarized samples. These MC
sets are referred to as Madgraph 0,1j@LO and the inclusive cross section is scaled to the NLO QCD
prediction [45–47]. Scale factors are also derived to reweight simulated Madgraph 0,1j@LO events to
agree with data for three jet multiplicity bins (0 jets, 1 jet, and ≥ 2 jets) in the inclusive region to account
for missing higher-order QCD effects.

To cross check the modeling of polarized ,/ events, an inclusive ,/ → ℓaℓ′ℓ′ sample is generated at
NLO in QCD with sherpa 2.2.2 [48]. pythia8 is used for the modeling of parton shower, hadronization,
and underlying event. The inclusive Madgraph 0,1j@LO sample is compared to this sherpa sample. In
addition, the Madgraph 0,1j@LO sample is also compared to the NLO QCD and NLO QCD+electroweak
calculations [38–40] for each polarization state. In general good agreement is observed for polarization
fractions and kinematic distributions in both inclusive and 00-enhanced signal regions.

Due to the requirement of three isolated charged leptons in the final state, only about 10% of events come
from background processes. To estimate background processes with three prompt leptons in the final
state, @@̄-initiated and 66-initiated // (∗) processes are simulated using sherpa 2.2.2. It provides a matrix
element calculation accurate to NLO in QCD for 0- and 1-jet final states, and LO accuracy for 2- and 3-jet
final states. Both CC̄/ and CC̄, processes are generated at NLO in QCD using the Madgraph_amc@NLO

2.6.5 generator and interfaced with pythia 8 for the modelling of the parton shower. Triboson (+++ with
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+ = ,, /) events are simulated using the sherpa generator at NLO in QCD with 0 partons and at LO
accuracy with 1 and 2 additional partons. These background samples are normalized to cross sections
with higher-order corrections applied. Backgrounds with at least one misidentified lepton (labeled as
“non-prompt background”) are evaluated using a data-driven technique described in Refs. [12, 49].

Instrumental systematic uncertainties are related to the lepton trigger, reconstruction and identification
efficiencies [21, 50], lepton isolation criteria [22], lepton energy (momentum) scale and resolution [21,
51], jet energy scale and resolution [52], jet vertex tagging [53, 54], 1-jet identification [55], modeling of
�miss
)

[25] and pile-up, and integrated luminosity [56, 57].

Theoretical uncertainties associated with the signal and other background processes are evaluated using
simulation. Shape and acceptance uncertainties on the,/ process due to renormalization and factorization
scales [58], PDFs [59], and parton shower, are also considered. The normalization uncertainties on
the processes included in the “Prompt” background category are between 10–20% [60–62]. Systematic
uncertainties due to the potential mismodeling of NLO QCD and electroweak corrections are estimated by
applying reweighting corrections estimated from Ref. [40] as a function average ?) of the three charged
leptons and Δ. (ℓ,/). Additionally, uncertainties from the implementation of the NLO electroweak
corrections are estimated by taking the difference between the additive and the multiplicative prescription
as described in [36]. The interference effects among different polarization states are found to be negligible.
The methods used are similar to the ones described in Ref. [63].

For the RAZ measurement, good agreement is observed between data and SM predictions for the Δ. (,/)
and Δ. (ℓ,/) distributions in the three regions with ?,/

)
< 20, 40, or 70 GeV. Since a dip is expected

only for the TT component, contributions from all background processes (∼ 10%) and ,/ 00, 0T, and T0
polarization states (∼ 27%) are subtracted. The ,/ 00, 0T, and T0 contributions are normalized to the SM
predicted cross sections. The measured |Δ. (ℓ,/) | and |Δ. (,/) | distributions for the TT polarization
state are corrected for detector effects using an iterative Bayesian unfolding method [64, 65] to estimate
the actual particle level normalized differential cross sections in these three ?,/

)
regions. The unfolding

procedure corrects for migrations between bins in the distributions during the reconstruction of the events
and applies fiducial as well as reconstruction efficiency corrections. Corrections are derived using the
polarized Madgraph 0,1j@LO samples. To reduce bias due to the assumed true distribution, the method
is applied iteratively, at the cost of an increased statistical uncertainty. Three iterations are used in the final
unfolding procedure. Figure 1(a) shows the comparison between the unfolded |Δ. (,/) | distribution and
the TT-only prediction for events with ?,/

)
< 70 GeV. Good agreement is observed between these two

distributions except the last bin where the discrepancy is 3.1 standard deviations. In addition, the unfolding
procedure is applied to inclusive events (no subtraction of contributions from 00, 0T and T0 polarization
states) in all three RAZ regions. Good agreement is also found in this case between unfolded |Δ. (ℓ,/) |
and |Δ. (,/) | distributions and the SM predictions.

The depth of the RAZ dip, represented by the variable D, is defined as D = 1 − 2 × #unf
central/#

unf
sides, where

#unf
central (#unf

sides) indicates the number of events with |Δ. (,/) | < 0.5 (0.5 < |Δ. (ℓ,/) | < 1.5) after the
unfolding. A positive value of D indicates the existence of a dip. A comparison between the measured
and predicted D values as a function of the ?,/

)
cut value used is shown in Figure 1(b), illustrating the

presence of a dip at |Δ.,/ | = 0. The same procedure is also applied for the Δ.,/ distribution and again
good agreement is observed between data and predictions for the depth of the dip observed.

Table 1 shows the expected signal and background event yields as well as the observed data in the two
00-enhanced regions. To measure the polarization fractions, a dedicated Boosted Decision Tree (BDT)
is trained independently to separate the 00 polarization state from the other polarization states (0T, T0,
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Figure 1: (a) Comparison between the 00+0T+T0-subtracted normalized unfolded |Δ. (,/) | data distribution and
the SM prediction for TT events with ?,/

)
< 70 GeV; (b) The depth of the RAZ dip for the unfolded |Δ. (,/) |

distribution of the TT polarization as a function of the ?,/
)

cut value used.

and TT) in each of the two signal regions defined by ?/
)

. The BDTs are implemented using the TMVA
package [66], and the simulated Madgraph 0,1j@LO samples are used for training. Seven variables are
used for both signal regions: Δ. (ℓ,/), ?) (,/), the subleading lepton transverse momentum from the /

boson decay, the transverse momentum of the lepton from the , boson decay, �miss
)

, the cosine of the
angle between the direction of the lepton from the , decay in the , rest frame and the direction of the ,
boson in the ,/ rest frame, and the cosine of the angle between the direction of the negatively-charged
lepton from the / decay in the / rest frame and the direction of the / boson in the ,/ rest frame.

Process 100 < p`
Z
≤ 200 GeV p`

Z
> 200 GeV

,0/0 222 ± 5 47.6 ± 1.5
,0/) +,)/0 323 ± 12 23.7 ± 0.8

,)/) 856 ± 31 124 ± 4
Prompt background 169 ± 18 24.1 ± 2.7

Non-prompt background 68 ± 29 2.8 ± 1.1

Total Expected 1640 ± 60 222 ± 8

Data 1740 236

Table 1: Number of events for the expected signal, background, and data observed in the two signal regions with
?,/
)

< 70 GeV and either 100 < ?/
)
≤ 200 GeV or ?/

)
> 200 GeV. Contributions from ,0/0, ,0/) , ,)/0, and

,)/) processes are estimated from the MC simulation before the fit is performed. The uncertainties include both
statistical and systematic contributions.

Binned maximum-likelihood fits [67] are performed using the BDT score distributions in the two signal
regions. Each source of systematic uncertainty is implemented in the likelihood function as a nuisance
parameter with a Gaussian constraint. Three unconstrained parameters, 500, 50)+)0, and a signal strength
modifier common to all three polarization templates, are used in the fit. The 50) and 5)0 contributions are
merged into a single contribution 50)+)0 with the relative ratio according to the SM predictions. The BDT
score distributions with background normalizations, signal normalization, and nuisance parameters adjusted
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by the profile-likelihood fit are shown in Figure 2(a) for the fiducial region with 100 < ?/
)
≤ 200 GeV.

The comparison between the data and the post-fit predictions is also shown for the cosine of the scattering
angle of the , boson in the ,/ rest frame with respect to the I-axis (cos \+ ) in Figure 2(b).
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Figure 2: The comparison between the data and the post-fit SM predictions for (a) the BDT distribution and (b) the
vector boson scattering angle cos \+ for the fiducial region with 100 < ?/

)
≤ 200 GeV. The bottom panels show the

ratios of the data to the post-fit SM predictions. The uncertainty bands include both the MC statistical and systematic
uncertainties.

The post-fit 500 and 50)+)0 parameters together with the expected and observed significances for 500 are
detailed in Table 2. For the region with 100 < ?/

)
≤ 200 GeV, the observed (expected) significance is found

to be 5.2 (4.3)f. In addition, the implicit 5)) parameter is shown as determined by 5)) = 1 − 500 − 50)+)0

alongside its uncertainty as determined by Gaussian error propagation. The values of the observed
correlations between 500 and 50)+)0 as determined by the fits are −0.84 for the region with 100 < ?/

)
≤ 200

GeV and −0.82 for the region with ?/
)
> 200 GeV.

The predicted fiducial polarization fractions listed in Table 2 are calculated at the particle level in a fiducial
phase space chosen to closely follow the event selection criteria using the Madgraph 0,1j@LO samples
reweighted to include higher-order QCD effects and NLO electroweak corrections [40]. Prompt leptons are
dressed by adding the four-momenta of nearby prompt photons within a small cone of Δ' < 0.1. The
distance between the two leptons from the / boson decay is required to have Δ'(ℓ−

/
, ℓ+

/
) > 0.2, and the

distance between the negatively-charged lepton from the / boson decay and the charged lepton from the
, boson decay is required to have Δ'(ℓ−

/
, ℓ, ) > 0.3. The dressed charged leptons are required to have

|[ | < 2.5. Leptons from the / (,) boson decay are required to have ?) > 15(20) GeV. The invariant
mass of the two leptons from the / decay is required to be within |<ℓℓ −</ | < 10 GeV, and the transverse
mass of the , boson is required to be <,

)
> 30 GeV. The ,/ system is required to have ?,/

)
< 70 GeV,

and either 100 < ?/
)
≤ 200 GeV or ?/

)
> 200 GeV.

Another fit is performed using two unconstrained parameters, 500 and the total number of ,/ events. The
mixed 50)+)0 and doubly-transversal 5)) contributions are combined into a single contribution ( 5--)
defined as 5-- = 1 − 500. The 00 fraction is found to be 500 = 0.17 ±0.02

0.02 (stat) ±0.01
0.02 (syst) for the region

with 100 < ?/
)

≤ 200 GeV and 0.16 ±0.05
0.05 (stat) ±0.02

0.03 (syst) for the region with ?/
)

> 200 GeV. The
corresponding observed (expected) significance for a non-zero 500 value is 7.7 (6.9) f for the first region

7



Measurement Prediction

100 < p`
Z
≤ 200 GeV p`

Z
> 200 GeV 100 < p`

Z
≤ 200 GeV p`

Z
> 200 GeV

500 0.19 ±0.03
0.03 (stat) ±0.02

0.02 (syst) 0.13 ±0.09
0.08 (stat) ±0.02

0.02 (syst) 500 0.152 ± 0.006 0.234 ± 0.007

50)+)0 0.18 ±0.07
0.08 (stat) ±0.05

0.06 (syst) 0.23 ±0.17
0.18 (stat) ±0.06

0.10 (syst) 50) 0.120 ± 0.002 0.062 ± 0.002

5)) 0.63 ±0.05
0.05 (stat) ±0.04

0.04 (syst) 0.64 ±0.12
0.12 (stat) ±0.06

0.06 (syst) 5)0 0.109 ± 0.001 0.058 ± 0.001

500 obs (exp) sig. 5.2 (4.3) f 1.6 (2.5) f 5)) 0.619 ± 0.007 0.646 ± 0.008

Table 2: Measured diboson polarization fractions in the two signal regions with ?,/
)

< 70 GeV and 100 < ?/
)
≤ 200

GeV or ?/
)
> 200 GeV using three unconstrained parameters. The SM predicted fractions for all four polarization

states are also shown.

and 3.2 (4.2) f for the second region. This fit results in better sensitivities for 500, however, it may be less
conservative as the ratio of 50)+)0 and 5)) is assumed to have the value predicted by the SM.

In summary, studies of the RAZ effect and the energy dependence of diboson polarization fractions in ,/

production are presented in this Letter. The measurements use leptonic decay modes of the gauge bosons to
electrons or muons. Significant dips are observed in the Δ. (ℓ,/) and Δ. (,/) distributions for inclusive
TT events with different ?,/

)
cuts applied, indicating the presence of the RAZ effect in ,/ production at

the LHC. Unfolded |Δ. (ℓ,/) | and |Δ. (,/) | distributions are also measured and compared to theoretical
predictions. Diboson polarization fractions are measured in two signal regions with enhanced longitudinal
polarization for both bosons. The measured fractions are found to be consistent with the SM predictions.
A non-zero fraction of events where both bosons are longitudinally polarized is measured with an observed
significance of 5.2 f (1.6 f) in the phase space with 100 < ?/

)
≤ 200 GeV (?/

)
> 200 GeV).
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Appendix

Unfolded |Δ. (,/) | and |Δ. (ℓ,/) | distributions for inclusive ,/ events with ?,/
)

< 20, 40, or 70 GeV
are also measured and compared to theoretical predictions. Figure 3 shows the comparison plots for events
with ?,/

)
< 70 GeV. This alternative signal definition considers all polarization states together and avoids

assumptions on the 00, 0T, and T0 cross sections. The uncertainties on the unfolded distributions are
dominated by the data statistical uncertainty in all bins. In general, the SM predictions agree well with the
measured normalized differential cross sections within the quoted uncertainties. The largest difference
is observed in the last bin of the |Δ. (,/) | distribution reaching a local significance of 2.6 standard
deviations.
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Figure 3: Comparison between the unfolded (a) |Δ. (,/) | and (b) |Δ. (ℓ,/) | distributions and the SM prediction
for inclusive ,/ events with ?,/

)
< 70 GeV. The measured data are shown as black points with horizontal bars

indicating the bin range and dark (light) blue boxes representing the statistical (total) uncertainty. The Madgraph

0,1j@LO prediction for the sum of all polarization states is shown in red.
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