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Statistical combinations of searches for charginos and neutralinos using various decay channels

are performed using 139 fb−1 of ?? collision data at
√
B = 13 TeV with the ATLAS detector at

the Large Hadron Collider. Searches targeting pure-wino chargino pair production, pure-wino

chargino-neutralino production, or higgsino production decaying via Standard Model , ,

/ , or ℎ bosons are combined to extend the mass reach to the produced SUSY particles by

30–100 GeV. The depth of the sensitivity of the original searches is also improved by the

combinations, lowering the 95% CL cross-section upper limits by 15%–40%.
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Supersymmetry [1–7] (SUSY) proposes a superpartner for every Standard Model (SM) particle, where

the spin differs by one-half. It remains one of the more popular beyond the SM theories as it can

provide solutions for the hierarchy problem, dark matter, and unification of the fundamental forces [8–11].

Naturalness arguments motivate some SUSY particles to be within reach of the LHC, namely the fermionic

superpartners of the gauge and Higgs fields: the charginos j̃±
1,2 and neutralinos j̃0

1,2,3,4 [12, 13]. The

lightest neutralino j̃0
1 (or the gravitino �̃ in general gauge mediated (GGM) SUSY [14–16]) is stable

in the '-Parity [17] conserving scenarios considered here and is an excellent dark matter candidate [18,

19]. In these scenarios, charginos and neutralinos are produced in pairs at the LHC and decay into the

j̃0
1 or �̃ via SM bosons (where the SM boson decays follow SM branching fractions), assuming other

SUSY particles are too heavy to play a role. With the limits on strongly produced SUSY particle masses

exceeding ∼2 TeV [20], electroweakly produced SUSY particles may dominate LHC SUSY production.

Small production cross-sections and decay modes with similar experimental signatures to SM processes

make these some of the more challenging searches at the LHC.

The investigation of electroweakly produced SUSY particles by the ATLAS Collaboration [21–24]

comprises searches with multiple final states targeting different production and intermediate decay modes.

These searches are harmonized to allow for the statistical combination of the results, increasing the

sensitivity to SUSY by broadening the mass reach and improving the cross-section reach. Combining

results can be particularly powerful when the searches have different, but complementary, sensitivity

to the same SUSY models. This letter focuses on the pair production of pure-wino or pure-higgsino

next-to-lightest SUSY particles (NLSP) decaying into the lightest SUSY particle (LSP) via a SM boson.

The Run 2 electroweak SUSY searches at ATLAS, corresponding to 139 fb−1 of ?? LHC collision data

at a center-of-mass energy of
√
B = 13 TeV, are statistically combined for each SUSY scenario shown in

Figure 1, as reported in Table 1. The CMS Collabration have also performed statistical combinations of

their electroweak SUSY searches, found in Ref. [25].
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Figure 1: Diagrams of the processes in the simplified SUSY models considered in this letter: (a) wino chargino-pair

production decaying via , bosons, (b) wino chargino–neutralino production decaying via , and / bosons, (c) wino

chargino–neutralino production decaying via , and ℎ bosons, and (d) higgsino GGM scenarios. In (d) the j̃0
1 may

be produced via j̃+
1
j̃−

1 , j̃
±
1
j̃0

1,2, or j̃
0
1
j̃0

2 production. The grey blob represents all possible intermediate states. For

these simplified models, all other SUSY particles are assumed to be heavy and decoupled.

To obtain the best sensitivity to a new physics signal through a statistical combination of the individual

results, the searches used should be statistically independent and not overlap in their event selection for

signal regions (SR) or control regions (CR). Overlap is avoided for the most part by requiring exclusive

lepton multiplicity in any search selection, so that 0ℓ, 1ℓ, 2ℓ, 3ℓ, and 4ℓ searches (where ℓ = 4, `) are
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Table 1: The electroweak SUSY production modes considered, along with the multiple decay modes and final states

used for the statistical combination.

Production mode Wino Wino Wino Higgsino GGM

j̃+
1
j̃−

1
j̃±

1
j̃0

2
j̃±

1
j̃0

2
j̃+

1
j̃−

1 , j̃
±
1
j̃0

1,2, j̃
0
1
j̃0

2

Decay mode j̃±
1 → ,± j̃0

1
j̃±

1 → ,± j̃0
1

j̃±
1 → ,± j̃0

1
j̃0

1 → //ℎ�̃
j̃0

2 → / j̃0
1

j̃0
2 → ℎj̃

0
1

Searches

All Hadronic [26] X X X X

1L [27] X X

1Lbb [28] X

2L Compressed [29] X

2L0J Δ< > <(, ) [30] X

2L0J Δ< ∼ <(, ) [31] X

2L2J [32] X X

2g [33] X

3L [34] X X

SS/3L [35] X X

4L [36] X

Multi-b [37] X

statistically independent. To achieve this, the searches adopted common loose selection criteria1 at the very

start of each analysis, allowing the free use of any further criteria without overlapping with other lepton

multiplicities. The All Hadronic, Multi-b, and 1L searches found the veto of loose and low-?T leptons

detrimental to signal acceptance. To avoid this, a less stringent veto was adopted,2 designed to reject events

selected by 2ℓ or 3ℓ searches. The 2L Compressed search used an even looser muon definition, however,

the search selection is unique enough to result in orthogonality to the others used in a combination. The

harmonization procedure was adopted early in the ATLAS Run 2 search programme and proved to be a

keystone of this final combination effort.

The statistical independence of the searches is verified by inspecting the events selected by SRs and CRs

in the data and in high statistics simulation of SUSY signals. Significant overlaps are observed between

those with equal lepton multiplicity selections, e.g. the All Hadronic and Multi-b searches, and statistical

combinations are not performed for those with > 10% overlap. In these cases, the search with the best

expected sensitivity is used and each instance is discussed for the SUSY models in the following. Otherwise,

all SRs used in the combination have zero overlap with other SRs and CRs, while a few CRs have a small

∼1%–2% overlap with one another.

Limits are set in SUSY simplified models [40–42] using a combined profile likelihood fit to the observed

yields, the estimate of SM background yields, and the expected SUSY yields in the CRs and SRs. Systematic

uncertainties are included as Gaussian-distributed nuisance parameters in the likelihood fit and can be

correlated between CRs and SRs with common nuisance parameters. The fit parameters are determined by

maximizing the product of the Poisson probability functions and the constraints for the nuisance parameters.

The compatibility of a signal scenario with the data observation is assessed by accounting for the SUSY

signal in all CRs and SRs scaled by a floating signal normalization factor. A signal scenario is excluded

if the upper limit at 95% confidence level (CL) of the signal normalization factor obtained in the fit is

smaller than that predicted by the cross-section of the scenario [43]. Signal cross-sections are calculated to

1 Electrons must satisfy ?T > 4.5 GeV, |[ | < 2.47, |I0 sin \ | < 0.5 mm, and “LooseAndBLayerLLH” requirements [38]. Muons

must satisfy ?T > 3 GeV, |[ | < 2.7, |I0 sin \ | < 0.5 mm, and “Medium” identification requirements [39].
2 Events selected by 0ℓ and 1ℓ searches must have fewer than three leptons passing the common loose selection, and fewer than

two satisfying ?T > 8 GeV.
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next-to-leading order in the strong coupling constant, adding the resummation of soft gluon emission at

next-to-leading-logarithmic accuracy (NLO+NLL) [44–48]. The nominal cross-section and the uncertainty

are taken from an envelope of cross-section predictions using different parton distribution function sets and

factorization and renormalization scales, as described in Ref. [49].

The statistical combination for each signal scenario is performed with the pyhf package [50], using inputs

produced by the original search (typically using HistFitter [51]), or via the RECAST implementation of

the search [52]. The inputs contain information about the yields and uncertainties in the SM background

and signal in each CR and SR, as well as the observed data yields. Systematic uncertainties can be set as

correlated between searches, where appropriate, by modifying the inputs to share nuisance parameters in the

likelihood fit. Theory systematic uncertainties in the SM backgrounds and signal are treated as uncorrelated

between searches since each search targets a different final state and parameter space. Experimental

systematic uncertainties might be correlated if compatible uncertainty schemes are used by each search to

be combined. However, this is not always possible because the searches to be combined span significant

updates in particle reconstruction and identification methods, and the related calibrations, preventing the

correlation of multiple sources between searches. Additionally, incompatible choices for jet systematic

schemes were used in individual searches, preventing the correlation of jet energy scale and resolution

uncertainties. Correlating only the allowed sources of experimental systematic uncertainties between

searches is found to have a negligible impact on the results. In this letter, statistical combinations are

performed with theory and experimental uncertainties uncorrelated between searches.

A simplified model of pure-wino chargino-pair production decaying into , bosons and the LSP 100% of

the time (j̃
+
1
j̃−

1 , j̃
±
1 → ,± j̃0

1 , as shown in Figure 1(a)) can produce final states of ℓaℓa j̃
0
1
j̃0

1 , ℓa@@ j̃
0
1
j̃0

1 ,

or @@@@ j̃
0
1
j̃0

1 . The fully leptonic final state was targeted in two searches: 2L0J Δ< > <(,) for moderate

NLSP-LSP mass splittings and 2L0J Δ< ∼ <(,) for smaller mass splittings. The two 2L0J searches

overlap in their selection, so the search with the lowest expected CL value is used in the statistical

combination for each signal scenario. The semileptonic and fully hadronic final states were targeted by the

1L and All Hadronic searches, respectively, both of which are statistically independent of one another and

the 2L0J searches. The original exclusion contours in the <( j̃±
1 )-<( j̃0

1) parameter space are shown in

Figure 2(a), along with that obtained by the statistical combination of the searches. The combination of

the search results closes the gaps left by the individual searches, and increases the sensitivity to high j̃0
1

masses, where j̃0
1 masses are excluded up to 150 GeV for a j̃±

1 mass of 400–700 GeV. The combination

is used to calculate the upper limit on the cross-section for these j̃+
1
j̃−

1 simplified models, where the

limits are improved by 20%–30% for j̃
±
1 masses of 400–800 GeV, compared to the individual searches.

Improvements in the upper limit on the cross-section are particularly important for non-simplified SUSY

models where the production cross-section and decay branching fractions may be lower than those in

simplified models.3

A second simplified model is considered consisting of pure-wino, mass-degenerate chargino–neutralino pair

production decaying into , or / bosons and the LSP 100% of the time (j̃
±
1
j̃0

2 , j̃
±
1 → ,± j̃0

1 , j̃
0
2 → / j̃

0
1 ,

as shown in Figure 1(b)). Searches targeting the fully hadronic, semileptonic, and fully leptonic decays of

the SM bosons are considered for a statistical combination, as listed in Table 1, where all searches are

statistically independent and can be combined. The original exclusion contours in the <( j̃±
1 /j̃

0
2)-<( j̃0

1)
parameter space are shown in Figure 2(b), along with that obtained by the statistical combination of the

searches. The combination has little impact for small NLSP-LSP mass splittings, where the 2L Compressed

search is uniquely sensitive. However, at larger mass splittings, multiple searches have common sensitivity

3 Non-simplified SUSY models typically describe mixed wino/higgsino/bino charginos and neutralinos.
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and the combination is more effective. The exclusion contour is extended for high <( j̃±
1 /j̃

0
2) by around

50 GeV, while the reach to <( j̃0
1) masses is extended by 40–100 GeV at j̃

±
1 /j̃

0
2 masses around 550 GeV

and 800 GeV. The upper limit on the cross-section for these simplified models is improved by 20%–40%

for j̃
±
1 /j̃

0
2 masses of 600–1000 GeV relative to respect to the individual searches alone.

A third simplified model is considered of pure-wino, mass-degenerate chargino–neutralino pair production

decaying into , or Higgs bosons ℎ and the LSP 100% of the time (j̃
±
1
j̃0

2 , j̃
±
1 → ,± j̃0

1 , j̃
0
2 → ℎj̃

0
1 , as

shown in Figure 1(c)). The All Hadronic and 1Lbb searches target the ℎ → 11 decay and dominate the

sensitivity to these models, while ℎ decays resulting in leptons are targeted using the SS/3L, 3L, and 2g

searches and are sensitive to low mass NLSP production. The SS/3L and 3L searches overlap in their

selection, so the search with the lowest expected CL is considered for statistical combination with the other

searches for each signal scenario. The original exclusion contours in the <( j̃±
1 /j̃

0
2)-<( j̃0

1) parameter

space are shown in Figure 2(c), along with that obtained by the statistical combination of the searches.

The combination smooths out the effects of the small observed deficit seen in the All Hadronic search

and a small observed excess in the 1Lbb search, with a stronger expected limit for the combination, but a

weaker observed limit than the All Hadronic search. The exclusion contour is extended up to 30 GeV in j̃0
1

masses for j̃
±
1 /j̃

0
2 masses of 300–600 GeV. The combination improves the upper limit on the cross-section

for these simplified models by 20%–30% for j̃
±
1 /j̃

0
2 masses below 600 GeV compared to the individual

searches alone.

A fourth simplified model of pure-Higgsino production is considered (j̃
+
1
j̃−

1 / j̃
±
1
j̃0

1 / j̃
±
1
j̃0

2 / j̃
0
1
j̃0

2), the

higgsino GGM scenarios, as shown in Figure 1(d). The j̃0
2 and j̃±

1 masses are set 1 GeV above the j̃0
1

mass to ensure prompt decays. The j̃0
2 and j̃±

1 decay into j̃0
1 via off-shell , or / bosons, which in turn

decay into unimportant, low momentum (< 1 GeV) final states. The j̃0
1 decays into an LSP �̃, either with

a / boson or a ℎ boson. The higgsino GGM scenarios are parameterized by the mass of the higgsinos

and the branching fraction of the j̃0
1 decay. These signal scenarios are targeted by the 4L, 2L2J, and

All Hadronic searches selecting leptonic or hadronic decays of the / boson, and by the Multi-b search

selecting ℎ → 11 decays. The All Hadronic and Multi-b searches overlap in their selection, so the search

with the lowest expected CL is used in the statistical combination. The original exclusion contours in the

<( j̃±
1 /j̃

0
2/j̃

0
1)-B( j̃0

1 → ℎ�̃) parameter space are shown in Figure 2(d), along with that obtained by the

statistical combination of the searches. Full coverage of the j̃0
1 branching ratio possibilities is obtained

by the individual searches and the combination extends the exclusion by around 60 GeV for high mass

higgsino production. The upper limit on the cross-section for these simplified models is improved by

15%–40% for B( j̃0
1 → ℎ�̃) < 80% compared to the individual searches alone.

Statistical combinations of the Run 2 ATLAS electroweak SUSY searches targeting chargino/neutralino

production are performed. Four simplified SUSY models are studied: pure-wino j̃+
1
j̃−

1 production decaying

via , bosons, pure-wino j̃±
1
j̃0

2 production decaying via , and / bosons, pure-wino j̃±
1
j̃0

2 production

decaying via , and ℎ bosons, and higgsino GGM scenarios. The combinations extend the sensitivity

to SUSY production up to 100 GeV in NLSP or LSP masses, and the sensitivity to SUSY production

cross-sections is increased by up to 40%.
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