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Fig. 1. Fabry–Perot SIL. Laser diode self-injection locking to a

photonic chip integrated side-coupled Fabry–Perot microresonator.

microresonator eigenfrequencies, respectively. For the scope of

this paper, we will limit the analysis to the steady-state case;

a description of the dynamical model can be found elsewhere

[29]. We assume a simplified model of the LD cavity formed

by a highly reflective end mirror with reflection coefficients

Re and an out-coupling mirror with reflection and transmission

coefficients of Ro and To, respectively (see Fig. 1).

Injection into the LD cavity of an external field leads to a

modification of its net gain n′
g = ng + δ and a refractive index

change n′
= n + αδ, where α is the Henry factor that quantifies

the amplitude-phase relation of the gain medium. In the new

steady state, the constant field amplitude A, which describes the

field of frequency ω inside the LD, is as follows:

A = (iTo)2
A

Ro

Γ(ω) eiωτs
+ RoReA ei ωc (n′−in′g)2L, (1)

where Γ(ω) denotes the complex reflection coefficient of the

microresonator, τs is the round trip time from the diode to

the microresonator and back, and L is the length of the LD.

Taking into account that, for the free-running laser, gain compen-

sates losses such that RoRe eωdng2L/c
= 1, one can approximately

solve Eq. (1) for the frequency difference ω − ωd by expanding

the small argument exponential and separating it into real and

imaginary parts [30]:

ω − ωd =

1

τd

T2
o

Ro

√
1 + α2 (ImΓ(ω) cosψ + ReΓ(ω) sinψ) , (2)

where ψ = ωτs − arctanα is the injection phase and τd is the LD

cavity round trip time.

So far, no assumptions have been made about the physics of the

reflector. In the case of a high-Q side-coupled FP microresonator

close to its eigenfrequency ωm, the complex reflection spectrum

is given by the following:

Γ(ω) = κex

κ/2 + i(ωm − ω) , (3)

where—different from ring resonators—the total loss rate fol-

lows κ = κ0 + 2κex, with κ0 and κex being the microresonator

intrinsic and coupling loss rates, respectively.

Substituting Eq. (3) into Eq. (2), we obtain the equation often

referred to as the SIL tuning curve:

ξ = ζ + KFP

sinψ − ζcosψ

1 + ζ 2
, (4)

where ξ = 2

κ
(ωm − ωd) is the normalized detuning of the free-

running (without SIL) LD emission frequency from the nearest

microresonator resonance ωm and ζ = 2

κ
(ωm − ω) is the nor-

malized effective detuning of the emission frequency ω from

the same microresonator resonance in the SIL operation. Fur-

ther, KFP =
4η

κ

1

τd

T2
o

Ro

√
1 + α2 is a combined coupling coefficient

Fig. 2. SIL tuning curves. Laser diode self-injection locking

frequency tuning curves (a) and corresponding ∂ξ/∂ζ slopes

(b) for different injection phases. The lines are calculated using

Eqs. (4) and (5) for a Fabry–Perot microresonator with parame-

ters η = 0.2, κ/2π = 100 MHz, coefficient KFP = 32, and a short

laser-to-reflector round trip time such that κτs ≪ 1.

between the LD and microresonator, where η = κex/κ is the

coupling coefficient of the FP microresonator. The injection

phase ψ is a free parameter that can be readily controlled

experimentally, as described below.

The slope of the SIL tuning curve defines the stabiliza-

tion coefficient K = ∂ξ/∂ζ , which quantifies the ratio between

free-running frequency fluctuations and those in the SIL state

(assuming fluctuations in ωm are negligible), such that the laser

linewidth is effectively reduced by a factor K2 [30]. In Fig. 2,

both the SIL tuning curve and the stabilization coefficient K are

illustrated for different injection phasesψ. Unstable branches are

represented by dashed lines. These curves show that for a fixed

coefficient KFP, there exists an optimal injection phase (ψ = π)

such that the SIL stabilization effect is maximized.

From a practical perspective, operating somewhat detuned

from the resonance center is often beneficial. This is, e.g.,

required to access the dissipative Kerr soliton existence range

[31]. With this in mind, we analyze the ∂ξ/∂ζ derivative of

Eq. (4):

K = 1 + KFP

(ζ 2 − 1)cosψ − 2ζsinψ

(1 + ζ 2)2 . (5)

For any detuning ζ , there exists a range ofψ such that the fraction

on the right-hand side of Eq. (5) is positive. This indicates

optimal stabilization is achieved when KFP is maximized. For

side-coupled FP resonators, this is achieved when η = 0.25 (in

contrast to ring resonators where this is achieved for the critically

coupled case η = 0.5). Since the denominator on the right-hand

side of Eq. (5) scales with the 4th power of ζ , it remains beneficial

to operate at a low effective detuning ζ . Finally, we note for

clarity that we have not included Kerr-nonlinear effects in our

treatment, as they remain negligibly small at the experimentally

used power levels. However, those can be readily included in

analogy to the previous work in ring resonators [32], taking into
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account the counter-propagating light fields in an FP resonator

[33,34].

Experiments. The FP microresonator is commercially fab-

ricated via wafer-level ultraviolet lithography on a silica-clad

SiN platform with an 800 nm layer thickness. It consists of two

identical photonic crystal reflectors (PCRs) with a straight wave-

guide (1.6 µm width) section between them [25]. The PCRs are

implemented through sinusoidal corrugation of both sidewalls

of the straight waveguide with a period of 480 nm, a design

peak-to-peak corrugation amplitude of 500 nm, and an over-

all length of 200 µm. Coupling to the FP resonator from the

bus waveguide is achieved via a directional evanescent coupler

approaching the microresonator from the side with a minimum

gap of 500 nm (Fig. 1). The coupling strength κex, and with it,

the SIL feedback strength, can be tuned by adjusting the gap

between the coupler and the resonator waveguides. Specifically,

we use an FP resonator with a free spectral range (FSR) of 20.34

GHz, corresponding to an optical length of approximately 3.87

mm. The total linewidth is κ/2π = 80 MHz (Q-factor Q = 2.4

million), and the coupling efficiency is η = 0.19, close to the

theoretical optimum of 0.25.

To explore SIL with the FP microresonator, we butt-couple

an off-the-shelf semiconductor distributed feedback (DFB) LD

emitting at 1558 nm to the photonic chip, achieving an on-chip

power of 2.5 mW. The DFB LD is mounted on a three-axis piezo

translation stage, which permits adjusting the injection phase by

slightly modifying the gap between the LD and microresonator

chip; alternatively, tuning of the injection phase can be accom-

plished in a fully integrated setting via integrated microheaters

or electro-optic phase modulators. The transmitted light is out-

coupled from the chip with an ultrahigh numerical aperture

optical fiber (UHNA-7) using an index-matching gel to suppress

parasitic reflections. The LD’s emission frequency can be tuned

by adjusting the driving current, and far from saturation, ξ is

approximately proportional to the LD injection current.

In a first experiment, we sweep the DFB current with a 125

mA peak-to-peak amplitude while simultaneously monitoring

the transmitted power on a photodetector (see Fig. 3(a)). As

long as the LD emission frequency is far from the microres-

onator’s eigenfrequencies, it receives next to no optical feedback

from the microresonator. It is effectively free-running, with its

frequency and power changing linearly. When its emission fre-

quency approaches a resonance of the FP resonator, a growing

fraction of light is resonantly enhanced inside the FP microres-

onator, reflected and injected back into the LD, resulting in

SIL. This corresponds to three sharp drops in transmission,

each corresponding to a resonance of the microresonator. These

transmission features significantly differ from the Lorentzian

resonance shape that would be observed without SIL, and all

features have different shapes due to the varying injection phase,

which is proportional to the frequency of the impinging light.

To calibrate the tuning behavior of the LD, we also detect the

beatnote between the LD’s emission and an external femtosec-

ond frequency comb of a 1 GHz repetition rate. The beatnote

signal is filtered by a 1.9 MHz low-pass filter, and its radio

frequency (RF) power is recorded, resulting in an RF power

spike (red line, Fig. 3(a)) each time the LD’s emission fre-

quency crosses a comb line [35]. To improve the precision of this

measurement, we also monitor the transmission of a fraction of

the LD emission through an unbalanced, calibrated fiber-based

Mach–Zehnder interferometer with FSR ∼ 40 MHz. Recording

such data during the LD frequency scan across a microresonator

Fig. 3. Experimental signatures of SIL. (a) Transmitted optical

power (blue) during a frequency sweep of the DFB LD across three

resonances of the FP microresonator and corresponding RF beat-

note power (red) obtained by mixing a fraction of the transmitted

light with an external frequency comb with a 1 GHz spacing. (b)

and (c) Experimentally measured optical transmission power dur-

ing the frequency sweep of the DFB LD across one FP resonator

resonance for two different injection phases. (d) and (e) Numeri-

cally computed derivative dζ/dξ based on the experimental data.

(f) and (g) Frequency tuning curves obtained from the theoretical

model (Eq. (4)). Orange lines (retrieved from the tuning curves)

in all plots indicate trajectories that the LD will follow when its

injection current is linearly increased.

resonance enables us to derive the detunings ξ, ζ , and therefore,

the stabilization coefficient K (neglecting, to a good approxima-

tion, the thermal and Kerr-nonlinear resonance shift of the FP’s

resonance frequency).

To investigate the SIL dynamics in detail, we focus on a sin-

gle FP resonance and sweep the LD frequency across it. We

run this experiment for two feedback phases by adjusting the

physical distance between the LD and the microresonator chip

with a piezo-translation stage. The optical transmission traces

are presented in Figs. 3(b) and 3(c) and exhibit clear signatures

of SIL. Based on the frequency comb calibration, we numer-

ically compute K−1
= ∂ζ/∂ξ as shown in Figs. 3(d) and 3(e).

Additionally, using Eq. (4), we calculate the theoretical SIL tun-

ing curves (blue lines, Figs. 3(f) and 3(g)). The orange lines in

Figs. 3(b)–3(g) present the theoretical trajectories that the LD

will follow when its injection current is linearly increased, tuning

the emission frequency from blue to red. To match the theoreti-

cal predictions with the experimental data, we set the combined

coupling coefficient KFP = 44 and optimize only the injection

phase, yielding ψ = 0.3π and 0.95π, respectively. We observe

excellent quantitative agreement between the experimental data
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Fig. 4. Characterization of the SIL laser. (a) Frequency noise

of the free-running (red) and SIL LD (blue) as well as the ref-

erence laser (gray) and the thermorefractive noise limit simulated

numerically in COMSOL (orange). (b) Beatnote with an external

commercial laser corresponding to the respective states shown in

(a). (c) Optical spectrum of the LD in the SIL regime.

and the theoretical predictions. Importantly, we observe experi-

mentally—and confirm theoretically—that the transmission line

shapes are unique for each phase (with a 2π period). This means

they can be used to identify the injection phase. Practically, this

can be useful for optimizing the SIL stabilization effect, as it is

phase-dependent.

Finally, we characterize the SIL laser at the feedback phase

ψ ≈ π, which is predicted by the theoretical model to result in

the narrowest laser linewidth (i.e., the largest K2, cf. Fig. 2(b)).

We generate a beatnote between the SIL laser and a commer-

cial narrow-linewidth external cavity diode laser (with known

frequency noise) and record the signal’s quadratures with an

electrical spectrum analyzer. We process this data to retrieve the

SIL laser’s frequency noise (FN), which is shown in Fig. 4(a),

along with the FN of the free-running DFB LD, the reference

laser, and the thermorefractive noise (TRN) limit simulated

numerically in COMSOL [22]. We observe that the FN of the

SIL laser is drastically lower than that of the free-running DFB

LD and is limited by the fundamental TRN noise. The corre-

sponding radio frequency beatnotes are shown in Fig. 4(b). The

optical spectrum of the DFB laser in the SIL regime is shown in

Fig. 4(c), demonstrating a side-mode suppression ratio (SMSR)

greater than 60 dB.

Conclusion. In conclusion, we extend the SIL technique to

chip-integrated FP microresonators, providing a novel approach

for generating chip-scale, scalable, narrow-linewidth lasers. We

develop a theoretical model for SIL with side-coupled FP

microresonators and demonstrate SIL with this resonator geom-

etry. The side coupler enables precise and deterministic tailoring

of the SIL-feedback strength. Due to the high-Q and large mode

volume, we observe a low-frequency noise laser, limited by the

fundamental TRN. As no bent waveguides are needed to form

the FP microresonator, future work may use low-confinement

waveguides with further increased mode volume (reduced TRN

and reduced Kerr-nonlinear effects) and higher-Q factor. These

results complement existing SIL techniques and are directly

relevant to compact low-noise laser systems.

Funding. Helmholtz Association (VH-NG-1404); HORIZON EUROPE

European Innovation Council (101159229); H2020 European Research

Council (853564).

Acknowledgment. We acknowledge helpful discussions with N. Kon-

dratiev regarding the TRN simulations and with H. Wenzel and J.-P. Koester

regarding injection locking and FP cavities.

Disclosures. The authors declare no conflicts of interest.

Data availability. Data underlying the results presented in this paper are

not publicly available but may be obtained from the authors upon reasonable

request.

REFERENCES

1. C. W. Chou, D. B. Hume, M. J. Thorpe, et al., Phys. Rev. Lett. 106,

160801 (2011).

2. R. Juliano Martins, E. Marinov, M. A. B. Youssef, et al., Nat. Commun.

13, 5724 (2022).

3. B. Xu, Z. Chen, T. W. Hänsch, et al., Nature 627, 289 (2024).

4. N. Gisin and R. Thew, Nat. Photonics 1, 165 (2007).

5. C. L. Degen, F. Reinhard, and P. Cappellaro, Rev. Mod. Phys. 89,

035002 (2017).

6. N. M. Kondratiev, V. E. Lobanov, A. E. Shitikov, et al., Front. Phys. 18,

21305 (2023).

7. B. Dahmani, L. Hollberg, and R. Drullinger, Opt. Lett. 12, 876 (1987).

8. F. Wei, F. Yang, X. Zhang, et al., Opt. Express 24, 17406 (2016).

9. W. Lewoczko-Adamczyk, C. Pyrlik, J. Häger, et al., Opt. Express 23,

9705 (2015).

10. W. Liang and Y. Liu, Opt. Lett. 48, 1323 (2023).

11. V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, et al., Opt. Commun.

158, 305 (1998).

12. M. Corato-Zanarella, A. Gil-Molina, X. Ji, et al., Nat. Photonics 17,

157 (2023).

13. E. Shim, A. Gil-Molina, O. Westreich, et al., Commun. Phys. 4, 268

(2021).

14. W. Jin, Q.-F. Yang, L. Chang, et al., Nat. Photonics 15, 346 (2021).

15. A. Siddharth, A. Attanasio, S. Bianconi, et al., Optica 11, 1062 (2024).

16. W. Liang, D. Eliyahu, V. S. Ilchenko, et al., Nat. Commun. 6, 7957

(2015).

17. A. Savchenkov, W. Zhang, V. Iltchenko, et al., Opt. Lett. 49, 1520

(2024).

18. B. Stern, X. Ji, Y. Okawachi, et al., Nature 562, 401 (2018).

19. B. Shen, L. Chang, J. Liu, et al., Nature 582, 365 (2020).

20. A. E. Ulanov, T. Wildi, N. G. Pavlov, et al., Nat. Photonics 18, 294

(2024).

21. T. Wildi, A. E. Ulanov, T. Voumard, et al., Nat. Commun. 15,

7030 (2024).

22. G. Huang, E. Lucas, J. Liu, et al., Phys. Rev. A 99, 061801 (2019).

23. S.-P. Yu, H. Jung, T. C. Briles, et al., ACS Photonics 6, 2083 (2019).

24. G. H. Ahn, K. Y. Yang, R. Trivedi, et al., ACS Photonics 9, 1875

(2022).

25. T. Wildi, M. A. Gaafar, T. Voumard, et al., Optica 10, 650 (2023).

26. L. Hao, X. Wang, D. Guo, et al., Opt. Lett. 46, 1397 (2021).

27. S. M. Ousaid, G. Bourcier, A. Fernandez, et al., Opt. Lett. 49, 1933

(2024).

28. R. Kazarinov, C. Henry, and N. Olsson, IEEE J. Quantum Electron.

23, 1419 (1987).

29. V. Tronciu, H. Wenzel, and H. J. Wunsche, IEEE J. Quantum Electron.

53, 2200109 (2017).

30. N. M. Kondratiev, V. E. Lobanov, A. V. Cherenkov, et al., Opt. Express

25, 28167 (2017).

31. T. Herr, K. Hartinger, J. Riemensberger, et al., Nat. Photonics 6, 480

(2012).

32. A. S. Voloshin, N. M. Kondratiev, G. V. Lihachev, et al., Nat. Commun.

12, 235 (2021).

33. E. Obrzud, S. Lecomte, and T. Herr, Nat. Photonics 11, 600 (2017).

34. D. C. Cole, A. Gatti, S. B. Papp, et al., Phys. Rev. A 98, 013831

(2018).

35. P. Del’Haye, O. Arcizet, M. L. Gorodetsky, et al., Nat. Photonics 3,

529 (2009).


