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Fig. 1. (a) Photograph of a GaNOS chip pumped by a C-band femtosecond laser. (b)–(d) Colored scanning electron microscope (SEM) images of wave-
guide cross-section, waveguide sidewall, and microring resonator, respectively. Green marks GaN, orange marks AlN, and cyan marks sapphire. (e) Bandgap
and nonlinear refractive index n2 at 1560 nm of different materials. The vertical lines indicate the cut-on position of 2PA (orange) and 3PA (purple) for
erbium-based lasers. Cyan and brown indicate the presence or absence of second-order nonlinearity, respectively. Refs: Diamond, AlN, Si3N4, and Si from
[2]; LiNbO3 [45]; Ta2O5 [19]; 4H-SiC [46]; GaN [44]; As2S3 [47]; GaP [48]; GaAs [49]; and Al0.21Ga0.79As [11]. (f ) Schematic setup. GaNOS: GaN-
on-sapphire; OSA: optical spectrum analyzer; Col.: collimator; BPF: bandpass filter; PD: photodetector; and ESA: electrical spectrum analyzer. (g) and
(h) Illustration of molecular spectroscopy and f-to-2f self-referencing with supercontinua.

microresonator solitons [44], hinting at significant potential for
supercontinuum generation.

Here, we demonstrate for the first time to the best of our knowl-
edge the generation of broadband supercontinua in integrated
GaN waveguides [Fig. 1(a)]. The waveguides are fabricated via
e-beam lithography and reactive ion etching from commercially
available high-quality GaN-on-sapphire (GaNOS) wafers. Both
GaN and sapphire are transparent deep into the mid-infrared
wavelength range beyond 6 µm. An off-the-shelf 100 MHz
erbium-based mode-locked laser with a central wavelength of
1560 nm is used to pump the waveguides, resulting in the effi-
cient generation of multi-octave spanning spectra. In tailored
waveguides, we demonstrate tunable dispersive wave generation
and gap-free spectra extending into the mid-infrared to almost
4000 nm wavelength, ideally suited for chemical sensing and
molecular spectroscopy [cf. Fig. 1(g)]. Moreover, by simulta-
neously leveraging second- and third-order nonlinearities, we
demonstrate chip-based detection of fceo for self-referencing and
optical precision metrology [cf. Fig. 1(h)]. These results show the
potential of integrated GaN waveguides for broadband nonlinear
photonics and, in particular, their ability to efficiently generate
mid-infrared light from erbium-based lasers without suffering
from multiphoton absorption and associated free-carrier-induced
loss.

2. GaN WAVEGUIDES

The GaN waveguides used in this work are fabricated from a
commercially available, unintentionally n-doped, 725 nm thick
wurtzite crystalline GaN layer, grown on a sapphire substrate with
a 25 nm aluminum nitride buffer layer and a defect density of
<5 × 109 cm−2. The c-axis of the crystalline GaN is perpendicu-
lar to the wafer surface. In this crystal orientation, the transverse

magnetic (TM) polarized modes experience the largest second-

order nonlinear susceptibility χ
(2)
33 = 10 − 20 pm/V [35]. The

waveguides are defined via e-beam lithography with hydrogen
silsesquioxane (HSQ) resist, followed by inductively coupled
plasma reactive ion etching with a chlorine/nitrogen mixture [50].
A complete etching through the GaN and aluminum nitride layers
results in waveguides with well-defined, symmetric sidewall angles
of 73◦. Finally, the HSQ is removed by hydrofluoric acid, and the
chips are cleaved to create the input and output coupling facets.
The root mean square roughness of the top surface is less than 3 nm
after resist removal, measured in a 5 × 5 µm2 area. Figure 1(b)
shows a typical waveguide cross-section (after cleaving), and
Fig. 1(c) provides a lateral view of the low sidewall roughness wave-
guides. Waveguides with two different lengths, 2 mm and 5 mm,
are fabricated.

To determine the waveguide loss, we measure the Q factor
(linewidth) of a microring resonator with a waveguide width of
2.5 µm and a radius of 39 µm [Fig. 1(d)]. Under critical cou-
pling, we observe a loaded Q factor of 3.5 × 105 (linewidth
543.50 MHz) at the wavelength of 1576 nm [Fig. 2(a), inset],
corresponding to a waveguide propagation loss of 0.53 dB/cm. In
semiconductor materials, a significant contribution to the propa-
gation loss can arise from free-carriers. In a Drude model [51],
these losses scale with λ2, where λ is the wavelength (see details in
Supplement 1). As Hall effect measurements reveal, the uninten-
tional n-doping in our samples leads to a free-carrier concentration
of 2.1 × 1016 cm−3. Based on this measurement and assuming
an electron mobility of 800 cm2/V [52], we can use the Drude
model to estimate the wavelength-dependent contribution of the
unintentional n-doping to the propagation loss. At a wavelength
of 1576 nm, we find the free-carrier contribution to the loss to be
0.14 dB/cm. As indicated in Fig. 2(a), this is consistent with the
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resolution bandwidth (RBW) of 10 kHz. This is more than suffi-
cient for phase-locking of fceo in a self-referenced frequency comb
for optical precision metrology. Further improvements of the SNR
would likely be possible by an optimized and single-mode output
coupling for the 780 nm spectral portion.

4. DISCUSSION

In summary, we demonstrate efficient generation of ultra-
broadband, multi-octave supercontinua in GaN-on-sapphire
waveguides pumped by an off-the-shelf C-band erbium-based
femtosecond laser. We showcase two important use cases of
supercontinua, f-to-2f interferometry for carrier-envelope offset
frequency detection in a waveguide, and efficient mid-infrared
supercontinuum generation extending to nearly 4 µm that can
support molecular spectroscopy. These results highlight the
potential of GaN-on-sapphire for advancing broadband non-
linear photonics and extending erbium-based laser technology
to the mid-infrared wavelength range without limitations from
two- and three-photon absorption (and associated free carriers).
The platform promises to extend supercontinua to even longer
wavelengths, where thicker GaN layers can maintain tight mode
confinement. Potential free-carrier losses from unintentionally
doped materials might become relevant at long wavelengths, but
could be mitigated by semi-insulating GaN [64]. Cladding the
chips (e.g., with Al2O3, AlN, or MgF2) can avoid atmospheric
absorption and may provide an additional opportunity for opti-
mized inverse taper input coupling, dispersion engineering, and
reduced propagation loss. Moreover, waveguides implemented in
the AlN–GaN material system, could enable supercontinua even
beyond the transparency window of sapphire substrates. Finally,
fabricating waveguides from periodically orientation-poled GaN
films [65,66] could lead to opportunities for chip-integrated
quasi-phase-matching in second-order nonlinear processes.
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