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In the context of planar conformal gauge theory, we study five-point correlation functions between the
interaction Lagrangian and four of the lightest single-trace, gauge-invariant scalar primaries. After
performing two light-cone operator product expansions (OPEs), we express this correlator in terms of the
three-point functions between two leading-twist spinning operators and the Lagrangian. For finite values of
spin, we compute these structure constants in perturbation theory up to two loops in N ¼ 4 super Yang-
Mills theory. Large values of spin are captured by null polygon kinematics, where we use dualities with null
polygon Wilson loops as well as factorization properties to bootstrap the universal behavior of the structure
constants at all loops. We find explicit maps that relate the Lagrangian structure constants with the leading-
twist anomalous dimension. From the large-spin map, we recover the cusp anomalous dimension at strong
and weak coupling, including genus-one terms.
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Introduction—The operator product expansion (OPE)
encodes the data of a conformal field theory (CFT) in its
four-point correlation functions. Capturing all CFT data
requires infinitely many four-point functions. Iterating the
OPE, this infinity of data can in turn be packaged in higher-
point functions of the simplest operators. This is the
philosophy of the multipoint bootstrap [1–9], which trades
an infinity of data for a larger functional complexity.
In null polygon limits, this complexity reduces, and the

conformal bootstrap is enhanced by dualities with Wilson
loops, both at four [10] and higher points [1,2]. While null
squares and pentagons allow for no finite conformal cross
ratios, null hexagons are complicated functions of three
variables. Here, we consider a sweet spot: the null square limit
of a five-point function, which has a single finite cross ratio.
We will focus on the correlation function of four

single-trace lightest scalar operators and the interaction
Lagrangian in planar conformal gauge theories. Such

correlators yield integrands for scalar operators [11]. In
the null square limit, they probe the quantum corrections to
null-square Wilson loops [12–14], and in particular were
used to compute the full four-loop cusp anomalous dimen-
sion for N ¼ 4 super Yang-Mills (SYM) and quantum
chromodynamics (QCD) [15].
By studying the Lagrangian correlation function via the

conformal bootstrap, we translate all its properties to its OPE
constituents: the three-point functions of two leading-twist
spinning operators and the Lagrangian. At finite values of
spin, we compute these structure constants at weak coupling
and connect them, via conformal perturbation theory, to
leading-twist anomalous dimensions. For large values of
spin, we find an exact inversion formula that leads to direct
maps between the null-square correlator to the structure
constant (16). Using conformal perturbation theory at large
spin, we obtain an even simpler map between these structure
constants and the cusp anomalous dimension (30).
Perturbative data—We consider five-point functions of

one primary scalar operator OðxÞ and four of the lightest
scalar operators ϕ of the theory. For example, in N ¼ 4

SYM these would be the 200 operators ϕj ∝ TrðyjΦðxjÞÞ2.
It is convenient to extract a space-time dependent prefactor
of the five-point correlator
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where nO ¼ 4, 5 depending on whether the fifth operator
carries R charge or not, and (other) refers to other y
contractions that will be subleading in all the limits we
consider. In this way, GOðuiÞ becomes a function of five
cross ratios

ui ¼
x2i;iþ1x

2
iþ2;i−1

x2i;iþ2x
2
iþ1;i−1

; i ¼ 1;…; 5; ð2Þ

where we identify the points ðx1;…; x5Þ periodically. Two
particular correlators will be important for us: the correlation
function of five light operators (Gϕ), and the five-point
function of four light correlators and one Lagrangian (GL).
To study these correlators, we will consider two light-

like OPEs [16] between the lightest operators, as depicted
on the right of Fig. 1. The leading behavior under this
Lorentzian OPE is controlled by the exchange of leading-
twist (twist-two) operators in the OPE decomposition:

GOðuiÞ ¼
X
J1;J2;l

F ðuiÞ × CðJ1ÞCðJ2ÞCOðJ1; J2;lÞ; ð3Þ

where CðJÞ are the structure constants of one leading-twist
operator with spin J and two lightest scalars operators,
while COðJ1; J2;lÞ are the three-point functions of two
leading-twist spinning operators and the operator OðxÞ.
The quantum number l ¼ 0; 1; 2;…;minðJ1; J2Þ labels the
tensor structures of three-point functions with two spinning
operators [17]. Meanwhile, F is the theory-independent
conformal block worked out in [1] and recalled in
Supplemental Material, Appendix A [18].
In principle, using the integrability formalism for spin-

ning operators [19,20], it is possible to compute the
structure constants Cϕ at any order in perturbation theory.
However, the structure constants CL are not on the same
integrability footing: Despite some tree-level results [21], it
is presently not clear how to systematically consider
superdescendants like the Lagrangian in the integrability
formalism.
In perturbation theory, we can explicitly evaluate the

correlator GL [11,22], and use it to extract the perturbative
data CL. We extracted thousands of OPE coefficients up
to two loops, contained in the attached Mathematica file.

This data could be useful to develop future integrability
formulations. We were able to identify a pattern and write
the tree-level data as

Cð0Þ
L ðJ1; J2;lÞ ¼ 2

2J1!ffiffiffiffiffiffiffiffiffiffiffiffiffið2J1Þ!
p 2J2!ffiffiffiffiffiffiffiffiffiffiffiffiffið2J2Þ!
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þ
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��
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m

��
:

ð4Þ

Since the Lagrangian is exactly marginal, conformal
perturbation theory relates the two-point function of two
operators with the three-point functions of the two oper-
ators and the Lagrangian in a differential equation [23]. For
the case of spinning operators this was worked out in [24]
to be

∂γðJÞ
∂λ

¼
XJ
l¼0

CLðJ; J;lÞ
1þ J − l

; ð5Þ

where ΔJ ¼ 2þ J þ γðJÞ is the dimension of the leading-
twist operator. A remarkable feature of this anomalous
dimension is that in any planar gauge theory, it develops
logarithmic scaling at large values of spin [25,26]:

γðJÞ ≃ fðλÞ lnðJÞ þ gðλÞ; ð6Þ
where fðλÞ and gðλÞ are the cusp and collinear anomalous
dimensions, respectively, with λ ¼ g2YMN=ð4πÞ2, where
gYM is the Yang-Mills coupling. Below we evaluate (5)
at large values of spin, obtaining a map between the large-
spin Lagrangian structure constants and the ubiquitous cusp
anomalous dimension.
Null square—We approach the null square limit of the

five-point function with the Lagrangian by first taking
x212; x

2
34 → 0 (or u1, u3 → 0), projecting into leading-twist

operators. Next, we take x223 → 0 (or u2 → 0), which we
find projects both to large-spin Ji and large polarization l.
Finally, we take x214 → 0, which makes the two values of
spin approach each other, J2 → J1.
The intuition is that once we create a null square inside a

five-point function, the OPE decomposition starts develop-
ing four-point-like features. Four-point functions have only
one spinning operator flowing in theOPE channel, and this is
exactly what the leading term of the five-point function
reproduces. We make this precise in Supplemental Material,
Appendix A [18], via the so-called “Casimir trick” intro-
duced in [27–29], and systematized for higher-point func-
tions in [5]. In the end, the five-point block in the null square
limit becomes a simple Bessel-Clifford function,

F ðuiÞ ¼ ðu1u3Þ1þγðJÞðu2u4u5Þ
ΔL
2 22J−2þγðJÞþΔL

2

× π−1=2J
1þΔL

2 KΔL=2ðJu2ðJ þ j1u4 þ j2u5ÞÞ; ð7Þ
FIG. 1. Correlation function of four scalar operators (black dot)
and one Lagrangian operator (crossed circle) in the null square
limit, and the maps that we obtain.
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where KnðzÞ ¼ z−n=2Knð2
ffiffiffi
z

p Þ, and we introduced the
variables

J2 ¼ J21 þ J22
2

; j1 ¼ J1 − l; j2 ¼ J2 − l: ð8Þ

The null square limit is described by all these variables being
large (J; j1; j2 → ∞) with J ≫ j1; j2, while the ratio r ¼
j2=j1 is finite. This single finite quantum number is asso-
ciated with the single cross-ratio x that remains finite in the
null square limit:

x ¼ u4
u5

¼ x213x
2
25x

2
45

x215x
2
24x

2
35

: ð9Þ

From here onward we will consider Born-level normal-
ized quantities, which we denote by Ĝ ¼ G=Gð0Þ, in order
to make our statements universal and independent of the
prefactor choices such as (1).
Conformal symmetry implies that null square correlators

must factorize into two terms [12],

ĜLðu1; u2; u3; u4; u5Þ ¼ Ĝ4ðu; vÞ × F̂ðxÞ; ð10Þ
which are invariant under cyclic permutations of the null
square, ðx1; x2; x3; x4Þ → ðx2; x3; x4; x1Þ with x5 fixed. This
imposes

Ĝ4ðu; vÞ ¼ Ĝ4ðv; uÞ and F̂ðxÞ ¼ F̂

�
1

x

�
; ð11Þ

where u ¼ u1u3 and v ¼ u2 are four-point cross ratios.
The first term Ĝ4ðu; vÞ is the null four-point function of

the lightest operators, which captures all the divergences of
the Lagrangian correlator, and depends on the four-point
cross-ratios u and v. The second term F̂ðxÞ is a finite
function of the remaining finite cross ratio.
Thus our bootstrap problem is this: can we fix the

universal behavior of the structure constants such that the
Lagrangian correlator factorizes into the square symmetric
functions (10)? To start answering this question, we use the
explicit expression for the conformal blocks (7) to write the
null square correlator as

ĜL ¼ ðu32u4u5Þ
Z

dJdj1dj2ðu1u3Þ
γ
222þγJ3ĈðJÞ2

× ĈLðJ1; J2;lÞK2ðJu2ðJ þ j1u4 þ j2u5ÞÞ; ð12Þ
where we factored out the tree-level large-spin scaling of
the structure constants:

CðJ1Þ ¼ CðJ2Þ ≃ 2−Jπ1=4J1=4 × ĈðJÞ; ð13aÞ
CLðJ1; J2;lÞ ≃ 8 × ĈLðJ1; J2;lÞ: ð13bÞ

The tree-level behavior (13) shows the physics of these
structure constants: ĈðJÞ is large and captures the divergent
part Ĝ4 of the correlator in the null square limit. On the

other hand, the structure constant ĈLðJ1; J2;lÞ is finite and
controls the finite part of the correlator F̂ðxÞ. We expect that
it only depends on the finite ratio r,

ĈLðJ1; J2;lÞ ¼ ĈL

�
J2 − l
J1 − l

�
≡ ĈLðrÞ: ð14Þ

Indeed, we can prove this to be true, using a five-point null
square inversion formula; see Supplemental Material,
Appendix B [18].
Assuming the simple dependence (14) allows us to

integrate (12) in one of the two variables ji, resulting in
the following factorized expression for the null square
correlator:

ĜLðuiÞ ¼
Z

∞

0

dJ22þγJĈðJÞ2uγ=2vK0ð2J
ffiffiffi
v

p Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ĝ4ðu;vÞ

×
Z

∞

0

dr
x

ðrþ xÞ2 ĈLðrÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
F̂ðxÞ

: ð15Þ

The first term is exactly the same as the null square four-
point function of lightest operators considered in [10] and
therefore automatically obeys the cyclicity (11). The
invariance under x → 1=x of the function F̂ðxÞ is also
automatically satisfied, provided that ĈLðrÞ ¼ ĈLð1=rÞ.
Physical structure constants must have this property, since
inverting the ratio r is the same as swapping the spins
J1 ↔ J2. Thus, the map between F̂ðxÞ and the Lagrangian
structure constants is simply

F̂ðxÞ ¼ x
Z

∞

0

dr
ĈLðrÞ
ðxþ rÞ2 : ð16Þ

We can invert this map by noticing that the right hand
side is the derivative of the Cauchy kernel, whose inversion
is well understood in terms of its discontinuities. Therefore,
one can write the structure constants in terms of disconti-
nuities of FðxÞ:

r
d
dr

ĈLðrÞj
r≥0

¼ Disc
2πi

F̂ð−rÞ; ð17Þ

where we used the fact that physical structure constants
ĈLðrÞ must be regular at physical values of spins and
polarization (r ≥ 0).
Weak and strong coupling—Both weak and strong

coupling results for the function F̂ðxÞ have been computed
in N ¼ 4 SYM. We can use these results together with our
map (17) to compute the structure constants ĈL in these
regimes. At weak coupling, the first orders of F̂ðxÞ were
computed in [12–15]
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F̂ð0ÞðxÞ ¼ 1;

F̂ð1ÞðxÞ ¼ −6ζ2 − 2H00;

F̂ð2ÞðxÞ ¼ 24ζ2H−1−1 − 12ζ2H−10 þ 24ζ2H00

þ 8H−1−100 − 4H−1000 þ 12H0000 − 4H−200

− 12ζ2H−2 þ 8ζ3H−1 − 4ζ3H0 þ 107ζ4; ð18Þ

where Ha ≡HaðxÞ are harmonic polylogarithms [30],
recalled in Supplemental Material, Appendix C [18], where
we also collect the three-loop and genus-one contributions
[31] of F̂ðxÞ.
The discontinuities of the harmonic polylogarithms

appearing in the perturbative expansion of F̂ðxÞ can be
easily evaluated using the HPL package [32] for
Mathematica, resulting in the following expression for
the weak coupling structure constants:

Ĉð0Þ
L ðrÞ ¼ 1;

Ĉð1Þ
L ðrÞ ¼ −4ζ2 − 2H00;

Ĉð2Þ
L ðrÞ ¼ 56ζ4 − 4ζ3H0 þ 8ζ2H2 þ 12ζ2H00

þ 8H210 þ 4H200 þ 4H30 þ 12H0000; ð19Þ
where Ha ≡HaðrÞ, and the three-loop and genus-one
corrections are written in the Supplemental Material,
Appendix C [18]. In practice, the discontinuity fixes all
but the constant term. This in turn can be determined by
performing the explicit integration in (16), and matching
with the F̂ðxÞ expansion (18)—which is trivial to do with
the package HPL [32].
Even though the individual harmonic polylogarithms

have a branch point at r ¼ 1, the particular combination
appearing in the weak-coupling expansion of ĈLðrÞ is real
and single-valued for physical values of spins and polar-
izations (r > 0). This is not true for the unphysical region
r < 0, where ĈLðrÞ has a logarithmic branch cut.
At strong coupling, the leading behavior of the function

F̂ðxÞ is known [12]:

F̂ðxÞ ¼ x
ðx − 1Þ2

�ðxþ 1Þ
ðx − 1Þ

log x
2

− 1

� ffiffiffi
λ

p
þ…: ð20Þ

Using the inversion formula (17), we can compute the
leading term of the structure constant at strong coupling,

ĈLðrÞ ¼
r

2ð1þ rÞ2
ffiffiffi
λ

p
þ…: ð21Þ

Wilson loops and amplitudes—In N ¼ 4 SYM, n-point
correlation functions of 200 operators in the limit where
their insertions approach the cusp of a null polygon are dual
to both null polygonal Wilson loops and MHV gluon
scattering amplitudes [33,34]. In particular, in the five-point
null pentagon limit,

lim
x2i;iþ1

→0
Ĝϕ ¼ ð dMHV5Þ2: ð22Þ

By promoting this relation to supercorrelation functions
and superamplitudes, one obtains that the correlation
function of four 200 correlators and one Lagrangian,
when the points approach the cusps of a null pentagon
is dual to (the top component of) the NMHV scattering
amplitude [35,36]

lim
x2i;iþ1

→0
ĜL ¼ dMHV5 × dNMHV5: ð23Þ

For five points, the NMHV amplitude is the parity con-
jugate of the MHVamplitude [37], thus in the null pentagon
limit both correlators are identical:

lim
x2i;iþ1

→0
Ĝϕ ¼ lim

x2i;iþ1
→0
ĜL ¼ hŴ5i; ð24Þ

which immediately implies ĈL ¼ Ĉϕ, that is [38],

ĈLðJ1;J2;lÞ¼N ðλÞe−fðλÞ
4
ðlogl2þ2 log 2 logðJ1J2ÞÞ−gðλÞ

2
logl: ð25Þ

The story is completely different when we consider the
null square limit of these five-point correlators. As pointed
out in [12], the duality with Wilson loops continues to hold
even if one adds an extra operator at finite distance to the
null square configuration

lim
x2
1;2;x

2
2;3;x

2
3;4;x

2
1;4→0

ĜL ¼ h dW4Li: ð26Þ

One can recast this duality as an equation for F̂ðxÞ by
using Lagrangian correlators obtained from a derivative
with respect to the coupling,

∂

∂λ
loghŴ4i ¼ 8

Z
dx5

x213x
2
24

x215x
2
25x

2
35x

2
45

F̂ðxÞ; ð27Þ

where the space-time prefactor arises from the Born-level
ratio hϕ1…ϕ4Lðx5Þið0Þ=hϕ1…ϕ4ið0Þ.
Cusp anomalous dimension—The UV cusp divergences

of the Wilson loop are controlled by the cusp anomalous
dimension. In principle, one can match the divergences
appearing on both sides of the relation (27) to compute this
quantity. In practice, this is done with the help of the
functional I formulated in [14] and recalled below [39],

∂fðλÞ
∂λ

¼ I ½8F̂ðxÞ�; ð28Þ

where one is instructed to first expand the function F̂ðxÞ
around small values of x [40], and then act with the linear
functional on individual terms as
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I ½xp� ¼ sin πp
πp

: ð29Þ

Starting from the conformal perturbation theory relation
(5), we propose an alternative and more explicit map. It
relates the three point function ĈL with the cusp anomalous
dimension simply as

∂fðλÞ
∂λ

¼ 8ĈLð1Þ: ð30Þ

The large-spin limit of the sum (5) is dominated by the
region where spins and polarizations are of the same order.
Therefore, we can trade the sum over polarizations by an
integral and replace the structure constants by their large-
spin and polarization behavior (14). Since the sum runs
over structure constants of identical spins, the ratio r
becomes one, and ĈLð1Þ becomes a constant that can be
factored out of the integral. The integral is then trivial and
evaluates to log J. Matching the log-divergent terms on
both sides of Eq. (6) yields the map (30).
We verify this result by recovering the known values of

the cusp anomalous dimension at strong and weak cou-
pling, including genus-one terms: at strong coupling,
replacing r ¼ 1 in (21) and using the map (30) yields
the leading term of the cusp anomalous dimension:
fðλÞ ≃ 8

ffiffiffi
λ

p
. Similarly at weak coupling, we recover the

four-loop anomalous dimension [15]:

8ĈLð1Þ ¼ 8 − 32ζ2λþ 528ζ4λ
2 −

�
64ζ23 þ 1752ζ6

þ 1

N2
ð1152ζ23 þ 2976ζ6Þ

	
λ3: ð31Þ

The map between three-point functions and the cusp
anomalous dimension (30) is simpler than the map (28)
previously considered in the literature. However since the
structure constants and the function FðxÞ are also related to
each other via (16) we must have the following consistency
condition for the structure constant:

I
�
x
Z

∞

0

dr
ĈLðrÞ
ðxþ rÞ2

�
¼ ĈLð1Þ: ð32Þ

Unfortunately, this is not a bootstrap equation for ĈLðrÞ.
One simple way to see this is to expand this function as a
power series and note that the relation (32) acts trivially on
each polynomial term

I
�
x
Z

∞

0

dr
rp

ðxþ rÞ2
�
¼ πp

sin πp
I ½xp� ¼ 1 ð33Þ

and therefore (32) is trivially satisfied for any function
ĈLðrÞ. One might be worried that the expression above is
only valid for jpj < 1, and that ĈLðrÞ has no regular
expansion around r ¼ 0. However, using the physical

properties of the structure constants, i. e.xspace, invariance
under swapping the spins ĈLðrÞ ¼ ĈLð1=rÞ and regularity
around r ¼ 1 (where we recover the cusp anomalous
dimension) we can analytically continue this result for
any p, see Supplemental Material, Appendix E [18].
Conclusion—Multipoint conformal correlation functions

organize the CFT data in nontrivial functions of conformal
cross ratios. These functions have, generically, a complex
analytic structure that does not follow froma single exchange
of a physical operator. Instead, it is often the case that the
intricate structure only emerges after summing the contri-
butions of an infinite number of operators [1,2,9,10,41].
Using the conformal bootstrap, we analyzed the five-

point correlation function of one Lagrangian and four
lightest scalar operators, in terms of the three-point func-
tions of two leading-twist spinning operators and the
interaction Lagrangian. We computed these structure con-
stants for finite and large values of spin, connecting them
with anomalous dimensions (5), null pentagon Wilson
loops (25), null square Wilson loops with insertions
(16), and the cusp anomalous dimension (30).
In N ¼ 4 SYM, there are several distinct integrability

frameworks developed to study the different observables
listed above. Three-point correlation functions are
described by integrable hexagon form factors [19], null
polygonal Wilson loops can be constructed out of inte-
grable pentagons [42], and anomalous dimensions can be
computed via the quantum spectral curve [43]. The sharp
maps that we derived here connect all these quantities and
could be a great laboratory for developing a unifying
integrability description of N ¼ 4 SYM.
It would be interesting to study the expectation value of

the square Wilson loop with other types of insertions using
the techniques developed here. It should also be possible
and very interesting to generalize our analysis to other
physical observables, for example, null square Wilson
loops with two operator insertion, or null pentagon,
Wilson loops with a single operator insertion [44], and
to connect these quantities with conformal manifold
constraints [45,46] and integrability.
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