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Abstract A search for exotic decays of the Higgs boson (H)
with a mass of 125 GeV to a pair of light pseudoscalars a; is
performed in final states where one pseudoscalar decays to
two b quarks and the other to a pair of muons or t leptons. A
data sample of proton—proton collisions at /s = 13 TeV cor-
responding to an integrated luminosity of 138 fb~! recorded
with the CMS detector is analyzed. No statistically signifi-
cantexcess is observed over the standard model backgrounds.
Upper limits are set at 95% confidence level (CL) on the
Higgs boson branching fraction to ppbb and to ttbb, via a
pair of as. The limits depend on the pseudoscalar mass m1,,
and are observed to be in the range (0.17-3.3) x 10~ and
(1.7-7.7) x 1072 in the pwbb and ttbb final states, respec-
tively. In the framework of models with two Higgs doublets
and a complex scalar singlet 2HDM+S), the results of the
two final states are combined to determine upper limits on the
branching fraction B(H — aja; — ££bb) at 95% CL, with £
being a muon or a t lepton. For different types of 2HDM+S,
upper bounds on the branching fraction B(H — aja;) are
extracted from the combination of the two channels. In most
of the Type II 2HDM+S parameter space, B(H — aja;)
values above 0.23 are excluded at 95% CL for m,, values
between 15 and 60 GeV.

1 Introduction

The discovery of the Higgs boson (H) by the ATLAS and
CMS experiments at the CERN LHC [1-3] strengthened
the case for the standard model (SM), which states that the
electroweak (EW) symmetry is broken by a complex scalar
field [4-9]. However, the SM is not a complete theory as
it cannot account for a number of experimental observa-
tions. For example, the origin of neutrino mass and dark mat-
ter remains unexplained in the SM. Several beyond the SM
(BSM) theories address these observations while identifying
the 125 GeV resonance as part of an extended group of scalar

*e-mail: cms-publication-committee-chair@cern.ch (corresponding
author)

particles. The Two-Higgs-Doublet Models (2HDMs) [10-
12] predict five physical scalar and pseudoscalar particles
and allow different couplings of each scalar to SM fermions.
The two real scalar singlet extension [13,14] of the SM
results in three neutral scalar bosons. A broad class of
2HDMs extended with an additional complex scalar singlet
(2HDM+S) contains seven physical scalar and pseudoscalar
particles [11]. In all these models, one of the scalars is iden-
tified as the discovered Higgs boson with a mass of 125 GeV.

Recent measurements of the Higgs boson’s couplings at
the LHC do not rule out exotic decays of the Higgs boson
to BSM particles. The ATLAS and CMS experiments put,
respectively, 12 and 16% upper bounds on the branching
fraction of the Higgs boson to undetected particles at 95%
confidence level (CL) using data collected in 2016-2018
(Run 2) [15,16]. Given these bounds, it is crucial to examine
the data for direct evidence of new particles coupling to the
Higgs boson, in particular, to test possible extensions of the
SM.

The exotic decay channels may include the Higgs boson
decaying to a pair of light pseudoscalar particles that sub-
sequently decay to pairs of SM particles. This signal can
be experimentally discriminated from SM Higgs boson
decays. These decays arise naturally in the phenomenology
of 2HDM+S, which is described here in more detail. The
2HDM+S couplings are such that a fermion can couple to
only one of the scalar doublets to avoid flavor changing neu-
tral currents at tree level. Under this condition, four types of
2HDM+S models are possible [11,17]. While the SM-like
couplings of the Higgs boson to fermions and gauge bosons
can be preserved, the singlet state of the 2HDM+S can also
serve as a dark matter candidate that couples to the Higgs
boson [18,19]. In 2HDM+S scenarios of Type I, the sec-
ond doublet, ¢, can couple to any fermion whereas the first
doublet, ¢, cannot couple to fermions. In Type II models,
¢1 couples to down-type quarks and charged leptons while
¢> couples to up-type quarks. This model is close to the
next-to-minimal supersymmetric SM (NMSSM), which is a
special case of 2HDM+S and provides a solution to the so-
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called p-problem [20,21]. The NMSSM particle spectrum
contains two pseudoscalars, a; and aj, the lighter a; can
have a mass smaller than the Higgs boson to allow H — aja;
decays. Another valid extension has quarks coupling to ¢,
and charged leptons coupling to ¢, referred to as the Type
IIT or “lepton-specific” model. Finally, in the Type IV or
“flipped” model, ¢, couples to up-type quarks and charged
leptons while ¢ couples to down-type quarks [11,17].

The branching fraction, B, of aja; — SM particles
depends on the type of 2HDM+S model, the mass of the
pseudoscalar, m,,, and the ratio of the vacuum expectation
values of the two doublets, tan 8. The decay width of a; to
fermion pairs depends, in addition, on the mass of the decay
products. In Type II 2HDM+S models, B(aja; — ttbb) is
slightly above 10%, while it can reach up to ~50% in Type
IIT models. The large predicted branching fraction makes this
channel particularly attractive. The decay of a; pairs to ujLbb
has a much smaller branching fraction. In Type III models,
for tan 8 = 2, B(aja; — ppbb) is predicted to be about
0.2%. Despite the small branching fraction, this channel can
provide competitive results given the high performance of the
muon reconstruction and the excellent dimuon mass resolu-
tionin CMS. The possibility of the Higgs boson decaying into
a pair of a;s is studied in this paper for both ttbb and pwbb
decay modes. The gluon-gluon fusion production mechanism
(ggF) constitutes the dominant Higgs bosons production pro-

cess, with a cross section of oglgFTeV = 48.58 £ 1.56 pb [22]

at next-to-next-to-next-to-leading order (N>LO) accuracy in
perturbative quantum chromodynamics (QCD) and next-to-
leading order (NLO) in EW corrections. The contribution
of the Higgs boson production through vector boson fusion
(VBF) is also taken into account with a cross section of
a;(fgeV = 3.72 4 0.08 pb [22], which includes NLO QCD
and EW corrections.

Similar searches have been performed at the LHC. The
latest analysis by the ATLAS Collaboration [23] has placed
astrong bound of B(H — aja; — ppbb) < (0.2-4) x 10~4
in the range 16 < m,, < 62 GeV, using the LHC Run 2 data
at /s = 13TeV, extending its prior analysis with a partial
data sample [24]. The existing CMS search at this center-of-
mass energy [25] is based on a data sample corresponding to
an integrated luminosity of 36 fb~! and results in an upper
limit on B(H — aja; — ppbb) of (1-7) x 107, con-
sidering m,, between 20 and 62.5 GeV. At 8 TeV, the CMS
experiment has provided an upper bound of B(H — aja; —
ppbb) < (2-8) x 10~* [26]. In the Ttbb final state, an
upper limit of B(H — aja; — ttbb) < (3-12) x 1072 was
reported by CMS using a 36 fb~! dataset at /s = 13 TeV,
where m,, ranged between 15 and 60 GeV [27]. The analy-
sis examined both leptonically and hadronically decaying t
leptons, the latter denoted by ty.
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This paper reports an extension of CMS searches [25,27]
with the proton—proton (pp) collision data collected in Run 2,
corresponding to an integrated luminosity of 138 fb—! at 13
TeV. Improved techniques in these analyses bring higher
sensitivity to the allowed branching fractions. In the pwbb
final state, in particular, a more in-depth study of the signal
achieves a greater gain in sensitivity than that offered by the
additional LHC data alone. This channel looks for a bump
over the dimuon mass spectrum after a cut-based event selec-
tion. A neural network approach to optimize the signal region
(SR) selection provides better sensitivity to the signal pro-
cesses in the ttbb channel. The results in the two final states
are combined, and interpretations are provided in different
types of 2HDM+S models.

The paper is organized as follows: Sects. 2 and 3 dis-
cuss the CMS detector and the simulated data samples used
in these analyses. The event reconstruction and event selec-
tion procedures are presented in Sects. 4 and 5, respectively.
The background prediction methods are described in Sect. 6.
Section 7 presents the signal extraction methods, and the
discussion of the systematic uncertainties can be found in
Sect. 8. Results and interpretations are detailed in Sect. 9
and a summary is presented in Sect. 10. Tabulated results of
this analysis are provided in the HEPData record [28].

2 The CMS experiment

The central feature of the CMS apparatus is a supercon-
ducting solenoid of 6 m internal diameter, providing a mag-
netic field of 3.8 T. Within the solenoid volume are a silicon
pixel and strip tracker, a lead tungstate crystal electromag-
netic calorimeter (ECAL), and a brass and scintillator hadron
calorimeter (HCAL), each composed of a barrel and two end-
cap sections. Forward calorimeters extend the pseudorapid-
ity () coverage provided by the barrel and endcap detectors.
Muons are detected in gas-ionization chambers embedded in
the steel flux-return yoke outside the solenoid. The collision
data are recorded with the help of Level-1 (L1) trigger, high-
level trigger (HLT), and data acquisition systems ensuring
high efficiency in selecting interesting physics events [29].
A more detailed description of the CMS detector, along with
a definition of the coordinate system used and the relevant
kinematic variables, can be found in Ref. [30].

3 Simulated event samples

Simulated samples are used to design and optimize the analy-
sis strategy and, where needed, to estimate background con-
tributions. A number of Monte Carlo (MC) event genera-
tors are used to produce events using either leading order
(LO) or NLO matrix element calculations. In all cases, parton
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showering and fragmentation are implemented using PYTHIA
(version 8.212) [31]. The description of parton distribution
functions (PDFs) relies on the NNPDF3.1 set [32]. Jets pro-
duced at the matrix element level are matched with those
generated by PYTHIA using the MLM [33,34] method for LO
samples. The FxFx matching [35] is implemented in the case
of NLO samples generated with MADGRAPH5_aMC@NLO
(version 2.2.2 for the simulation of the 2016 data and 2.4.2
for 2017-2018) [36]. For the underlying event description,
the CUETP8M1 [37] tune was used for MC samples simulat-
ing the 2016 data, while for those simulating the 2017-2018
data, the CP5 [38] tune was employed. The GEANT4 [39,40]
package has been used for the detector simulation. To model
the effect of additional collisions within the same or adjacent
bunch crossings (pileup), minimum bias interactions are sim-
ulated and superimposed on the hard-scattering events. Sim-
ulated events are then reweighted to reproduce the pileup
distribution in data.

The H — aja; — pubb signal events are gen-
erated with the NMSSMHET model [17] using MAD-
GRAPHS5_aMC@NLO (version 2.6.5) at LO [34]. Both ggF
and VBF Higgs boson production mechanisms are consid-
ered, within the a; mass range of 15-60 GeV. While the ggF
samples are generated with 5GeV steps in m,,, the VBF
samples are generated only for m,, of 20, 40, and 60 GeV.
Interpolation methods are used to estimate the signal yield
and the shape of the dimuon resonance for all mass hypothe-
ses. Similar settings are used to produce H — aja; — ttbb
signal events at 11 a; masses between 12 and 60 GeV, for
both ggF and VBF Higgs boson production modes.

The major backgrounds for the analyses are the Drell-Yan
(DY) process (Z/y*+jets), the production of a top quark—
antiquark pair with additional jets (denoted tt+jets), single top
quark production, and massive vector boson pair production
(Diboson). In the pubb channel, the background estimation
is performed using methods fully based on control samples in
data with no reference to simulation. Simulated background
samples are, however, used to optimize the signal selection
criteria. In the ttbb channel, only the backgrounds from DY
production with Z — tt, QCD multijet events in the e final
state, and events with jets misidentified as T, candidates are
estimated using control samples in data.

The DY process in the dilepton final state is modeled using
MADGRAPHS5_aMC@NLO. Based on the dilepton invariant
mass (mge) threshold at the generator level, two DY sam-
ples are considered, one with my; > 50 GeV and the other
with 10 < my; < 50GeV. The high-mass DY samples are
produced at (N)LO, with up to four (two) additional partons
at the matrix element level. For the low mass, samples are
primarily produced at LO with additional partons, similar to
those of high mass, while NLO and LO samples inclusive
in number of jets are also utilized. In the ppbb analysis, the
NLO samples at high mass are employed, and at low mass,

NLO QCD K-factors are applied to the LO cross section.
An uncertainty of 30% is considered on these K-factor cor-
rections, as they are extracted from NLO low-mass samples
with limited number of events. The accuracy of the DY sam-
ple is found to be sufficient for optimization purposes, which
is the only use of the simulated backgrounds in the pbb
channel. The ttbb analysis makes use of LO DY samples in
the entire mass range. The cross sections are normalized to
next-to-NLO (NNLO) in QCD using K-factors [41]. In addi-
tion, the Z boson pr distribution is corrected by reweighting
simulated events to data in bins of my¢ and the pr of the
dilepton system.

The POWHEG BOX v2.0 framework [42—45] event genera-
tor is used to produce tt+jets and single top events at NLO.
The simulated tt+jets events are reweighted to match the top
quark pr distribution at NNLO QCD and NLO EW [46] pre-
cision. Diboson and W+jets events are generated by MAD-
GRAPHS_aMC@NLO. Similar to the high-mass DY sample,
W-+jets events are simulated with up to four additional par-
tons at the matrix element level for all years. The tt+jets,
DY, and W+jets samples are normalized to cross section val-
ues accurate to NNLO in QCD [47-55]. All SM backgrounds
containing the Higgs boson are generated using POWHEG v2.0
at NLO [56-60].

4 Object reconstruction

The ppbb and ttbb analyses together reconstruct a diverse
set of final-state particles for a H — aja; signal. The pwubb
analysis relies on the presence of two prompt muons. In the
ttbb channel, on the other hand, final states with at least one t
lepton decaying to an electron or muon, i.e., e, €Ty, and LTy,
are considered. The t lepton decays resulting in same-flavor
leptons, or in two Ty, candidates, are not included as they bring
negligible sensitivity to the analysis. The signal acceptance
of Tyt is very low due to high trigger thresholds, whereas
ee and pp final states suffer from low branching fractions.
The particle-flow (PF) algorithm [61] is used to recon-
struct and identify each individual particle (PF candidate)
in the event, with an optimized combination of information
from the various elements of the CMS detector. The energy
of photons is measured in ECAL. The energy of electrons is
determined from a combination of the electron momentum at
the primary interaction vertex as measured by the tracker, the
energy of the corresponding ECAL cluster, and the energy
sum of all bremsstrahlung photons spatially compatible with
originating from the electron track. The energy of muons is
obtained from the curvature of the corresponding track. The
energy of charged hadrons is evaluated via a combination of
their momentum measured in the tracker and the matching
of the ECAL and HCAL energy deposits, corrected for the
response function of the calorimeters to hadronic showers.
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Finally, the energy of neutral hadrons is obtained from the
corresponding corrected ECAL and HCAL energies.

The primary vertex (PV) is taken to be the vertex cor-
responding to the hardest scattering in the event, identified
using the tracking information alone, as described in Sec-
tion 9.4.1 of Ref. [62].

Muons can be produced directly in a; decays in the ppbb
final state, or from decays of the t leptons in the ttbb chan-
nel. In both analyses, muons must lie within || < 2.4. The
pt threshold for muons in the ttbb analysis depends on the
trigger selection, see Sect. 5 and Table 1. In the 1y, final
state, it is required to be 1 GeV greater than the HLT muon
pr threshold in order to be in a region where the efficiency
of the respective trigger is independent of pt. The muon pr
requirement in the e final state, selected with an e trigger,
is 24(13) GeV when the muon is the leading (subleading)
lepton in the pair. In the pbb analysis, the leading (sub-
leading) muon pt must exceed 17 (15) GeV. The two muons
are required to have an opposite electric charge and to be
separated by a minimum AR = /(An)? + (A¢)? = 0.4,
where ¢ is the azimuthal angle of the particle’s momentum
in the plane perpendicular to the beam line. In cases where
more than two muons satisfy these criteria, the pair with the
highest pt are considered.

In order to suppress contributions from nonprompt decays
of hadrons and from their shower penetration in the muon
detectors, selected muons must pass dedicated identification
requirements. The so-called tight identification [63] is used
in the pbb analysis with an efficiency varying between 95
and 99%, depending on 7, where the data and simulation
agree within 1-3%. Looser requirements for muons, known
as medium identification criteria [63], are employed in the
ttbb analysis, with an overall efficiency of 99.5% for simu-
lated W and Z events.

The lepton isolation variable /¢ is calculated by summing
the transverse energy deposited by other particles in a cone of
size AR = 0.4(0.3) around the muon (electron) and divid-
ing by the lepton pr. The contribution of charged particles
from pileup is suppressed by requiring the charged particles
to be associated with the PV. An average pileup energy is
subtracted from the total energy of neutral particles and pho-
tons within the isolation cone, since vertex association is not
known in this case. Muons are required to pass Ire] < 0.15
in the ttbb analysis.

In the pubb analysis, a looser requirement of Ire] < 0.25
is imposed, which results in about 99% efficiency for muons
with pr > 20GeV, independent of 1 [63]. Electrons from
T lepton decays are selected within |n| < 2.4 with different
pr thresholds, according to the ttbb final state. In the ep
channel, the threshold is 24 GeV if the electron is the leading
lepton. Otherwise, it is reduced to 13 GeV. In the ety chan-
nel, the electron pr must be more than 1 GeV beyond the
HLT threshold. A multivariate analysis (MVA) discriminant
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is used to identify electrons. The MVA exploits several prop-
erties of the electron candidate, including energy deposits in
the ECAL, the quality of the associated track, and the shower
shape in the calorimeters [64]. The chosen MVA working
point has a 90% efficiency to correctly identify an electron.
Identified electrons are further required to be isolated, ful-
filling I < 0.10. In the ep channel of the ttbb analysis,
the electron must be separated from the muon by AR > 0.3
and have an opposite electric charge. For both electrons and
muons, correction factors for the reconstruction and identi-
fication efficiencies are obtained from data and applied to
simulation.

Jets are reconstructed by clustering the charged and neu-
tral PF candidates using the anti-kt algorithm [65,66] with
a distance parameter of 0.4, up to |n| < 4.7 for tagging
VBF events. The reconstructed jet energy is corrected for
effects from the detector response as a function of the jet
pr and 7. Furthermore, contamination from pileup and elec-
tronic noise is subtracted using the charged-hadron subtrac-
tion method [61]. To achieve a better agreement between
data and simulation, an extra n-dependent smearing is per-
formed on the jet energy in simulated events [67,68]. Events
are required to have at least two (one) jets with || < 2.4
and pt > 15(20) GeV in the pbb (ttbb) analysis. Jets are
required to be separated from any selected electron, muon,
or T, by AR > 0.4 (0.5) in the ppubb (ttbb) analysis.

Both channels rely on identifying jets that likely origi-
nate from b quarks. The DEEPJET flavor classification algo-
rithm [69,70] is used to tag b jets. Three different work-
ing points on the b tagging discriminator values correspond
to 0.1, 1, and 10% misidentification probabilities, known
respectively as tight (T), medium (M), and loose (L) working
points. The misidentification probability to tag a light-flavour
jetas ab jetis measured in inclusive QCD multijet MC sam-
ples, and they depend on the pt and 5 of the jet. The corre-
sponding b tagging efficiencies, measured in tt+jets events,
are about 65, 80, and 95%, respectively [71]. In the pbb
analysis, the selected jet with the higher b tagging score is
required to pass the tight working point whereas the second
one fulfills the loose b tagging requirements. In this paper
the latter is referred to as the ‘looser’ b jet. In the ttbb analy-
sis, the medium working point is used to identify b jets. The
shape of the distribution of the b tagging discriminator, and
thus the b tagging efficiencies, can be different between data
and simulation. Since the ppbb analysis relies on the b tag-
ging discriminator distribution, shape-based corrections are
applied on simulation to match the data. A similar method is
used in the ttbb final state, which, by construction corrects
the b tagging efficiency for all b tagging discriminator scores.

The hadron-plus-strips algorithm [72] with anti-kT jets
as seeds is used to reconstruct the hadronically decaying t
leptons. The algorithm combines one or three tracks with
energy deposits in the calorimeters to identify the t lepton
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Table 1 The electron, muon, and 1, pr thresholds in GeV at trigger level for the ppbb and ttbb channels
Year Single/dilepton trigger pt pwpbb ttbb
CL €Th W Th
i e u e T w T
2016 Single lepton 24 - - 25 - 22 -
pr-leading lepton 17 23 23 - - - 20
pr-subleading lepton 8 12 8 19 -
2017 Single lepton 24 - - 27,32 - 24,27 -
pr-leading lepton 17 23 23 - 30 - 27
pr-subleading lepton 8 12 8 24 - 20 -
2018 Single lepton 24 - - 32,35 - 24,27 -
pr-leading lepton 17 23 23 - 30 - 27
pr-subleading lepton 8 12 8 24 - 20 -

decay modes. Neutral pions are reconstructed as strips with
a dynamic size in n-¢ from reconstructed electrons and pho-
tons, where the strip size varies as a function of the pts of
the electron or photon candidate. The prt of the t, candi-
dates are required to be 5 GeV greater than the threshold at
the trigger level. In events triggered by single leptons, the ty,
pr must exceed 20 GeV. The pseudorapidity of the ty, candi-
date also depends on the trigger. It is restricted to || < 2.1 if
a 1y, identification is performed at the HLT, and to || < 2.3
otherwise. To distinguish genuine t, decays from electrons,
muons, or jets originating from the hadronization of quarks
or gluons, the DEEPTAU algorithm [73] is used. Information
from all individual reconstructed particles near the t, can-
didate axis is combined with properties of the tj, candidate.
The probability for a jet to be misidentified as a T;, candidate
by the DEEPTAU algorithm depends on the pt and the jet fla-
vor. In simulated W+jets events, the misidentification rate for
jets is estimated to be 0.4% for a genuine Ty, identification
efficiency of 70%. The misidentification rate for electrons
(muons) is 2.6% (0.03%) for a genuine Ty, identification effi-
ciency of 80% (> 99%). In the ety, and 1y, final states of the
ttbb channel, the 1, candidate must be separated from the
electron or muon by AR > 0.4 and they must be oppositely
charged.

The missing transverse momentum vector [J'Tmiss is com-
puted as the negative vector sum of the transverse momenta
of all the PF candidates in an event, and its magnitude is
denoted as p?iss [74]. The ﬁ%ﬁss is modified to account for
corrections to the energy scale of the reconstructed jets in the
event. Anomalous high- p%ﬁss events can be due to a variety
of reconstruction failures, detector malfunctions or noncol-
lision backgrounds. Such events are rejected by event fil-
ters that are designed to identify more than 85-90% of the
spurious high-pIs* events with a mistagging rate less than
0.1% [74].

5 Event selection

Table 1 summarizes the different pr criteria for online recon-
structed electrons, muons and ts in the pwubb and ttbb
channels.

The wubb event candidates are selected based on the
requirement that either one or both muons are reconstructed
at the HLT. Passing the double-muon trigger necessitates
two isolated muons with pt exceeding thresholds of 17 and
8 GeV, which increases to 24 GeV for an isolated muon in
the single-muon trigger path. Accepting events from both
single- and double-muon triggers improves the trigger effi-
ciency by including events in which the second muon is not
reconstructed at the trigger level.

Depending on the decay of the t lepton and the data-
taking period, the ttbb candidates must pass either a single-
electron, single-muon, e, ety, or LTy trigger selection. The
single-muon, ep and Wty triggers require the reconstructed
muon to be isolated, while electron isolation is required for
the single-electron, ey and ety triggers. Two ep dilepton
triggers have been used for all data-taking years, having pr
thresholds of 23(23) and 12 (8) GeV for the pr-leading and
-subleading lepton of the trigger in the case of electrons
(muons). The single-muon and single-electron triggers with
pr thresholds of 22 and 25 GeV, respectively, are used for
analyzing the 2016 data. The pt thresholds of electron and
1, candidates are, respectively, 24 and 30 GeV for the ety
dilepton trigger in the 2017-2018 data. For the 1y, dilep-
ton trigger, the pr thresholds of muon and Ty, are, respec-
tively, 19 (20) and 20(27) GeV for the data taken during 2016
(2017-2018). The increase in the pr threshold is necessary
to control the trigger rate at a larger instantaneous luminosity.
Similarly, the pT requirements are tightened for single-lepton
triggers across the years. This results in two different thresh-
olds for single-electron and muon triggers for 2017-2018.

Offline, in the pubb channel events are required to have
two muons and at least two b jets passing the kinematic, iden-

@ Springer



493 Page 6 of 38

Eur. Phys. J. C (2024) 84:493

MS 138 fb™ (13 TeV)
1Wgr———T T T T T T T
- ¢ Observed
uubb final state e

[T DY (10 <m, <50 GeV)
[ DY (m, > 50 GeV)

Events / bin
803

URERLLL BELELRLLLL BELRRLLL. O

10° [ Single t
[ Diboson
—— Signal 20 GeV
10* - Signal 40 GeV
E —— Signal 60 GeV

wl vl vl 3l sl

£l
10
L AL ]
R I —
Z ok ok

= EE attatameaemmmsnnmi
EO.QE 3¢’? : =
O 06F; i ; i

50 100 150 200

Leading p: (GeV)
CMS 138 b (13 TeV)
c 10— —T— , — 5
Ke] 3
- : ¢ Observed ]
710 uubb final state B ietn N
S [C_] DY (10 <m, <50 GeV) 3
> 6 [ DY (m > 50 GeV) &
(10 AL -
[ Single t 3
[ Diboson ]
10° —— Signal 20 GeV/ —
Signal 40 GeV 3
—— Signal 60 GeV ]

|

s "' J' WEEH ]' ""“?I' ’|'F"'I LRELL [RLEALLL .

B L e UL AL L B

Obs./Exp.

50 200
Leading p_'; (GeV)

»50. i .100.

Fig. 1 The distributions of leading and subleading (upper) muon prt
and (lower) b jet pr in the selected events. The uncertainty band in the
lower panel represents the limited size of the simulated samples together
with a 30% uncertainty in the low-mass DY cross section. Simulated

tification, and isolation criteria detailed in Sect. 4. While the
final search in this channel is performed for m,, between 15
and 62.5 GeV, events are selected with a dimuon invariant
mass, my,,, between 14 and 70 GeV. The additional side-
bands in m,;, help model the backgrounds at the boundaries.
To reduce the background contribution from tt+jets, events
with p%iss > 60GeV are rejected. The selection yields a
total of 109 821 data events while the corresponding expected
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samples are normalized using the corresponding theoretical cross sec-
tions. To evaluate the normalization of the signal, SM Higgs boson cross
sections are multiplied by the B(aja; — pbb) value that is calculated
in the Type III model with tan 8 = 2

yield from simulated backgrounds is 103900 =+ 7300. The
background contribution should be compared with about 80—
100 expected signal events, depending on m,,, from both
ggF and VBF Higgs boson production. The branching frac-
tion B(aja; — ppbb) is evaluated in the Type III model
with tan 8 = 2. Figure 1 shows, in data and simulation, the
pt distributions of the pt-leading and -subleading muons
and b jets. Although the estimation of backgrounds in this
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Fig. 2 The pr distributions of the (upper) dimuon systems and (lower)
di-b-jet system. The uncertainty band in the lower panel represents the
limited size of the simulated samples together with a 30% uncertainty
in the low-mass DY cross section. Simulated samples are normalized to
using the corresponding theoretical cross sections. To evaluate the nor-
malization of the signal, SM Higgs boson cross sections are multiplied
by the B(aja; — pbb) value that is calculated in the Type III model
withtan g = 2

analysis does not rely on simulation, the observed level of
agreement between data and simulation justifies the use of
simulated events to optimize the sensitivity. Figure 2 shows
distributions for the pr of the dimuon (p;") and the di-b-jet
systems (p%b).

To further suppress backgrounds, a x2, variable is defined
as gy = Xy + x5- 1t examines the compatibility of my,
and mpp, with m,,, and of m,,,pp With the Higgs boson mass
in signal events. The components of Xt%)t are defined as

— — 125 GeV
_ (Mpp muu) and xy = (muubb € )
Obb OH

Xbb ()
The variables opp, and oy are the mass resolutions of the
di-b-jet system and the Higgs boson candidate, respectively,
which are derived from Gaussian fits to simulated distribu-
tions of mpp and the mass of the Higgs boson candidate.
While oy is found to be constant, opp increases linearly with
my, and is modeled as a function of m,,, (opp = amy,, +b),
assuming m,,,, = ma,. The x2, variable is evaluated on an
event-by-event basis. It was shown in Ref. [25] that apply-
ing a threshold on Xt%)t leads to a large suppression of back-
grounds while keeping the majority of signal events. Such
a requirement translates to a circle centered at zero in the
2D-plane of xpp and xg, as shown in Fig. 3. However, the
xbb and g components are clearly correlated as can be seen
in Fig. 3 (lower). This leads to a loss of signal efficiency
when imposing the circular requirement. In addition, both
Xbb and xy distributions are slightly biased away from zero,
adding more inefficiencies. Therefore, in the current analysis
the definitions of the variables were adjusted to be unbiased
and uncorrelated.

The correlation between the y o components, as well as
their bias, depends on m,, . The bias is modeled as a function
of my,, and is corrected event by event. After applying this
correction, a principal component analysis [75] is performed
on the bias-corrected variables. The bias-corrected variables
are therefore transformed using the eigenvalues, A1 and A7,
a
b

a b
<XH) _ (v I <XH)
Xbb/ 4 75 75/ b/

Xi= XI%I,d + Xt%b,d ()

and eigenvectors ( ) , of the correlation matrix:

with subscripts d and c, respectively, standing for decorre-
lated and bias-corrected components of xo. The transfor-
mation matrix in Eq. (2) has three independent parameters,
a//A1, a/</A2, and b/a, that are modeled as functions
of my,. Figure 4 compares the performance of the selec-
tion based on xJ and x2, variables in terms of the sig-
nal (m,, = 40GeV) efficiency and background rejection
probability. Based on the optimization studies, events with
X(% < 1.5 are selected.
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Fig. 3 The distribution of yxpp versus xy as defined in Eq. (1) for
(upper) simulated background processes and (lower) the signal pro-
cess with m,, = 40 GeV. The contours indicate lines of constant x2,.
The gray scale represents the expected yields in data. To evaluate the
yield of the signal, SM Higgs boson cross sections are multiplied by the
B(aja; — pubb) value that is calculated in the Type III model with
tanf =2

Table 2 summarizes the number of observed events in data
together with the expected yields for the main backgrounds
and the signal for different m,, hypotheses.

Events are further categorized according to the jet pr, the
b tagging score of the jets, and additional jet activity in the
event compatible with the VBF signature. Events containing
at least one of the two selected b jets with pt < 20 GeV
are put in a separate category (Low pr). This category brings
extra sensitivity to the signals with lower m,, values and con-
tains about 70% (40%) background (ggF signal) events. For
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Table 2 Event yields in the pjubb channel for simulated processes and
the number of observed events in data after applying x§ < 1.5. The
expected number of simulated events is normalized to the integrated
luminosity of 138 fb~!. The Type III parametrization of 2HDM+$ with
tan B = 2 is used to evaluate B(aja; — pubb)

Process Yield
tt+jets 86.3+£22
DY (10 < mygr < 50 GeV) 289.6 +89.5
DY (mge > 50GeV) 200.2 +31.9
Diboson 1.5£0.9
Single top 114+1.6
Total expected background 589.1 £95.1
Data 641

Signal for ggH (jujubb)
my, = 20GeV my, = 40GeV my, = 60 GeV
154+£0.2 18.7+£0.2 40.5+0.3

the VBF category, events must have at least two jets, in addi-
tion to b jets, with pt > 30 GeV, |n| < 4.7, and an invariant
mass mj; > 250 GeV. About 50% of VBF signal events fall
in this category. The remaining events are categorized based
on the b tagging score of the looser b jet. Three exclusive cat-
egories are defined where the second jet passes the loose but
fails the medium (TL), passes the medium but fails the tight
(TM), and passes the tight (TT) b tagging working point. This
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Table 3 Summary of the categorization requirements in the ppbb
channel. Events in these categories contain two muons and two b jets.
As stated in the text, L, M, and T stand for the loose, medium, and tight
b tagging criteria, respectively

Categories for selected events

Low pt At least one b jet with p < 20 GeV

VBF Two additional jets with pt > 30GeV,
In| < 4.7, and mj; > 250 GeV

TL Looser b jet passes L but fails M

™ Looser b jet passes M but fails T

TT Looser b jet passes T

categorization relies on the fact that events with genuine and
misidentified b quark jets are distributed differently among
those categories. About 20% of backgrounds as well as the
ggF signal events fall into the TL category. The TM and TT
categories almost equally receive 20% of the ggF signal and
5% of the background events. Table 3 summarizes the cate-
gories of the current analysis, whereas the expected yields in
different categories are presented in Table 4.

In the ttbb channel, the offline signal event signature con-
stitutes at least one b jet, and depending on the t lepton decay
mode, an e, an ety, Or a LTy pair. Any event with an addi-
tional electron or muon is rejected to reduce the contribution
from DY and multilepton processes. The selection and iden-
tification requirements for all objects are discussed in Sect. 4.

Each final state is subdivided into two categories based
on the presence of exactly one b jet or at least two b jets in
the event. Requiring at least two b jets in the event intro-
duces an additional category compared to Ref. [27], capa-
ble of reconstructing the full signal hypothesis and bringing
further signal-to-background discrimination power. In total
there are six event categories, considering the number of b
jets and the decay modes of the t leptons. A deep neural net-
work (DNN) with two hidden layers and 40 nodes is used to
discriminate signal from background events in each category.
The DNNSs are trained using simulated events.

Kinematic properties of the decay products are utilized
to construct variables that are inputs to the DNN training,

such as the pt and transverse mass (mT) of the leptons and b
jets, pr and 7 of the di-t system, the invariant mass of each
system made of a lepton and a b jet, and AR between vari-
ous combinations of the identified particles. One of the most
important discriminating observables used in the training is
the invariant mass of the decay products of the t leptons and
the pr-leading b jet, denoted by mp.;. The mp value is
typically smaller for signal than for background events. Sim-
ilarly, angular separation and other invariant mass variables
can be reconstructed with different combinations of the four
final-state particles, employing the correlation between the
resonance decay products. The mT between an e or . and
p‘Tniss is one of the discriminating variables and is defined as

mr(e/i, P = 25" pRS 1 — cos(Ad)], 3)
where p%/ "is the transverse momentum of the lepton and A¢

is the azimuthal angle between the lepton direction and ﬁrT“iss.

Events from tt+jets and misidentified Ty, backgrounds, such

as W+jets, have larger prT“i“, thus result in higher mt values.
Another variable useful in the training is D, defined as

D = p; — 0.85p)™, 4)

where the bisector of the directions of the visible t decay
products transverse to the beam direction is denoted as the
¢ axis. The quantity p; is defined as the component of the
ﬁ%‘isg along the ¢ axis, and pZiS to be the sum of the com-
ponents of the lepton transverse momentum along the same
direction [76]. The Z — tt background corresponds to large
D, values because the prTniss is approximately collinear to the
1t system. The tt+jets events tend to have small D, values
due to a large prT‘“iss that is not aligned with the tt system.
The signal has intermediate D, values because the meiSS is
approximately aligned with the tt system, but its magnitude
is small.

For events in the category with two or more b jets, a vari-
able can be constructed to measure the difference between
the invariant mass of the two b jets and the invariant mass of

the tt system (m2+¢):

Amal = (mpp — m‘t‘t)/m‘t‘[~ 4)

Table 4 The expected yields for backgrounds and different signal hypotheses in each category of the jLbb channel

Category Signal for ggH (ppbb) Expected background
my, = 20 GeV my, = 40GeV my, = 60 GeV

Low pr 7.4+0.1 7.3+0.1 17+£0.2 421 +88

VBF 0.2+ (<0.1) 1.0£ (< 0.1) 1.1+£04 S5£2

TL 2.1£0.1 2.8+0.1 6.7+0.1 109 £ 30

™ 2.7+0.1 3.3+0.1 7.7+0.1 27+ 15

TT 2.8£0.1 42+0.1 8.1£0.1 28 £ 11

Total 154+£0.2 18.7+0.2 40.5£0.3 589 £95
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This variable is of particular interest since it peaks at zero for
signal events. The m, distribution reconstructed with the
SVfit algorithm [77] is used to test the presence of signal,
and thus is not directly included as an input to the DNN.

Figure 5 shows, as an example, the DNN score distribu-
tions in the pty channel separated for events with one or
at least two b jets. The distributions are obtained by com-
paring the estimated signal and background distributions of
the DNN score to that of the data before the fit described in
Sect. 7 (pre-fit).

In each category, subregions are defined using a threshold
on the DNN score. The expected limits are scanned by vary-
ing the DNN thresholds to obtain the highest sensitivity to
the simulated signal. This optimization method also ensures
that the expected number of background events in each sub-
region is large enough to perform the final likelihood fit of
the m . distribution. There are three SRs for events contain-
ing one b jet: SR1, SR2, and SR3, whereas events with two
b jets are divided into two categories: SR1 and SR2. The
only exception is the ety final state in the two-b-jet cate-
gory where no significant gain was observed when adding
a second signal region. The remaining subregion containing
events with the lowest DNN scores is used as a control region
(CR) to constrain various background normalizations in the
final likelihood fit.

6 Background estimation

The presence of a jupLbb signal is expected to appear as a peak
over the m,,,, distribution centered at m,,. The background
shape and its normalization in this channel are collectively
determined from data with no reference to simulation. Dif-
ferent parameterizations of polynomials are used to model
the m,,, distribution in data of every category, separately.
For each group of models, a maximum degree of the poly-
nomial, determined through statistical tests, is imposed. This
is to ensure that the data are not overfit. Parameters of every
selected model vary within their uncertainties in the final fit to
extract the signal strength, defined as the ratio of the observed
signal rate to that predicted by the SM. The latter uses the dis-
crete profiling method [78—80] where every functional form
of the selected background models is treated as a discrete
nuisance parameter. Along with the determination of the sig-
nal strength, one of the background models, its parameters,
and the corresponding normalization are determined by the
fit, as described in Sect. 7.

A major background contribution to the ttbb channel is
Z — 1, which is estimated from data using an embedding
technique [81]. The method is based on the reconstruction
of Z — p events in data where the muons are replaced
with simulated t leptons with the same kinematic properties.
In comparison with the simulation of the Z — tt process,

@ Springer

138 fb" (13 TeV)
109"'I"'I"'I"'I"'
+ Observed Djﬁ—ﬂh

S

e 10° B ¢1bb final state

£ 10, 1btag Cloter  [Jzm

C . titjets  — m, =35 GeV,B=10%
L

~ |Bkg. unc.

g 14
g 12
; 1he 0 e @ig @ e 0 0 0 g 8
PSS .
S e ;
0 0.2 0.4 0.6 0.8
Score
CMS 138 fb™! (13 TeV)
T —T—r

10° ——————7r——7
+ Observed Diﬂ—"h

8

S 10° B 11bb final state

‘g 107 Mh' >1b tag |:| Other |:| Z>11

S [[tttiets  — m, =35 Gev,B=10%
w 10° Bkg. unc.

Obs./Exp.

Score

Fig. 5 Pre-fit distributions of the DNN score for the pty channel
divided into events with one (upper) or at least two (lower) b jets. The
shape of the H — aja; signal, where m,, = 35GeV, is indicated
assuming B(H — aja; — ttbb) to be 10%. The lower panel shows
the ratio of the observed data to the expected yields. The gray band
represents the unconstrained statistical and systematic uncertainties

this technique allows a more accurate description of variables
related to prT“iss and jet activity. The embedded sample also
estimates other SM processes with two genuine t leptons,
such as tt+jets and Diboson.

The QCD multijet contribution to the e final state of the
ttbb channel is estimated using the data in a sideband (SB)
region with same-sign e pairs. The event selection in the SB
region is otherwise identical to that in the e SRs. The contri-
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butions of other processes in the SB are taken from simulation
and subtracted from the data. The resulting number of data
events in the SB is scaled by the ratio of the expected multijet
contribution in the SR to the expected multijet contribution
in the SB. Scale factors are calculated in data orthogonal to
the SR, as functions of the jet multiplicity and the AR sepa-
ration between the electron and the muon, in order to account
for possible kinematic differences between the two regions.

Backgrounds with hadronic jets that are misidentified as
1, candidates contribute significantly to ety and pty final
states and are estimated from data. This background includes
the W+jets, QCD multijets, and tt+jets processes with at least
one top quark decaying to hadrons. In a data sideband region,
events are required to pass all the baseline etp/pLty selec-
tion criteria, but fail the Ty, isolation. The data in this SB are
reweighted with afactor f/(1— f), where f is the probability
for a jet to be misidentified as a t, candidate and is evalu-
ated as a function of the pr(ty). The Z — pp+jets events
in data are used to measure the misidentification probability.
The final state must contain a dimuon pair compatible with
the decay of the Z boson, as well as a 1, candidate. Sim-
ulation is used to subtract from data the contribution from
events with a genuine Ty lepton. The measurement is done
separately for the et, and wty final states. This is because the
antilepton discrimination working points in the Ty, identifica-
tion change depending on the lepton selected is an electron or
a muon [73]. The difference between the two fake rate mea-
surements is observed to be around 10%. The misidentifica-
tion probability also depends on the jet multiplicity, which
characterizes the hadronic activity in the event.

Another dominant background is tt+jets, which has to be
carefully estimated from simulation. Because tt+jets events
with two genuine T leptons in the final state are an irreducible
contribution to the embedded sample described above, the
tt+jets background estimate from simulation described here
does not include these events. It also does not include tt+jets
events in which a reconstructed t, candidate arises from a
simulated jet, as the estimation of the misidentified t}, back-
ground is derived from data SBs, as described above. The
normalization of backgrounds is free to vary within a range
limited by the a priori uncertainty estimates in the final fit for
the signal extraction.

The presence of a ttbb signal is expected to appear as a
peak over the m, distribution centered at m,,. A fit to the
m+ distribution is performed simultaneously in the SRs and
CRs described in Sect. 5.

7 Signal extraction
In the ppbb final state, an unbinned maximum likelihood fit

to the data my,,, distributions is carried out simultaneously
in all event categories. The fit is performed in the range
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15 < my, < 62.5GeV, using parametric models for sig-
nal and background. The parametric model of the signal is a
weighted sum of a Voigt profile and a Crystal Ball (CB) func-
tion [82], where the mean values of the two are constrained
to be identical [25].

Simulated samples are used to determine the parameters
of the signal model that may depend on m,, . The studies are
performed separately on signal samples simulated for differ-
ent years. This is to account for the effect of muon recon-
struction details on the signal model in different data-taking
periods. Most of the parameters are found to be independent
of m,, and fixed in the final fit. Only the resolutions of the
Voigt profile and CB function demonstrate linear variation
with the pseudoscalar mass. The slope of the linear models
are floating parameters in the signal extraction fit. In each
category, contributions from different years are normalized
considering the signal selection efficiency and acceptance,
and are used to construct the expected signal distribution in
data. The expected signal efficiency and acceptance are inter-
polated for m,, values not covered by simulation.

To evaluate the background contribution, every selected
functional form is treated as a discrete nuisance parameter as
discussed earlier. In addition, the parameters of every model,
as well as the normalization, are part of the background
parameter space. A likelihood £ is constructed using the sig-
nal and the background models in all categories, including
systematic uncertainties associated with the signal, as nui-
sance parameters. In the minimization process of the nega-
tive logarithm of the likelihood, the discrete profiling method
chooses a best fit background model as the physics parameter
of interest, the signal strength, varies. The method incorpo-
rates the systematic uncertainty in the background model by
taking the envelope of the models provided to the fit.

In practice, a penalty term is added to the likelihood to
account for the number of free parameters in the final back-
ground model. The penalized likelihood, L, is a function
of the measured signal strength, w, the continuous nuisance
parameters, 7] , and the background models, b. The penalized
likelihood ratio is defined as

Z(datam, 6 l;u)
n —

—2In =2 .
L(data| 2, 0, b)

6)

with the numerator being the maximum L for a given p at
the best fit values of nuisance parameters and background
functions. The denominator is the global maximum of Z,
obtained at u = [i, 0 = é, and b = b. The background
function maximizing L at any u is used to derive the confi-
dence interval on w at any m,, [78]. It is verified that the fit
is unbiased using studies where signals at several m,, val-
ues are injected with different strengths. The relative change
in signal strength is found to be less than 10~*. The best
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fit background models together with their uncertainties are
shown in Fig. 6 for all event categories in the ppLbb analysis.

In the ttbb channel, a binned maximum likelihood fit is
performed on the m+ distribution with systematic uncertain-
ties included as nuisance parameters. The subregions of event
categories from all final states are included in a simultaneous
fit. Figures 7, 8 and 9 show the post-fit m+, distributions in
different subregions and categories for the 1y, final state.

The limits and confidence intervals are obtained using the
modified frequentist CLg approach [83,84] with an asymp-
totic approximation to the distribution of the profile likeli-
hood ratio test statistic [85]. Pseudoscalar masses between
12 and 60GeV are considered using simulated samples
described in Sect. 3.

The m,,,, and m+ expected distributions are compared to
data in a combined fit, integrating over the a; decay modes.
Integrating over a; decays makes the combination model
dependent since the branching fraction of a; to fermion pairs
depends on the model. The 2HDM+S and the theoretical pre-
dictions of Ref. [86] are used for the branching fractions of
aj to muons, T leptons, and b quarks which are fixed in the fit.
The selected events are mutually exclusive in the two analy-
ses as events with an extra muon and/or electron are vetoed in
the ttbb selection. A correlation model is employed between
the two analyses for the systematic uncertainties that are in
common.

8 Systematic uncertainties

The sensitivity of the two analyses, i jLbb and ttbb, is mainly
affected by the uncertainties arising from the finite size of
the data sample. Nevertheless, several sources of systematic
uncertainties are included in the determination of the results.
Most of the systematic uncertainties are common between the
two analyses, although their impact on the result may differ.
In this class of uncertainties fall those associated with the
modeling and acceptance of the signal, including the PDFs,
the strong coupling constant, and the renormalization and
factorization scales. In addition, experimental uncertainties
associated with, e.g., the jet energy calibrations, b tagging,
and muon reconstruction and identification are in common
between the two analyses, although the uncertainties related
to the background estimations are not. In the L bb analysis,
uncertainties associated with the parameters of the dimuon
resonance model in the signal are taken into account.

The unbinned maximum likelihood fit of the (L bb anal-
ysis accounts for the shape uncertainties in a different way.
The impact of systematic variations is found to be negligible
on the parametric model of the signal for all m,, hypothe-
ses. On the other hand, the modeling of the m,,, resolution
with my, (discussed in Sect. 7) has an uncertainty that is
included in the fit with a Gaussian profile. Uncertainties asso-
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Fig. 7 Post-fit distributions of m, for the jvt, channel signal regions
in events with exactly one b tagged jet: SR1 (upper), SR2 (middle), and
SR3 (lower). The shape of the H — aja; signal, where m,, = 35GeV,
is indicated assuming B(H — aja; — ttbb) to be 10%
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Fig. 8 Post-fit distributions of the m; for the pty channel signal
regions in events with at least two b tagged jets: SR1 (upper) and SR2
(lower). The shape of the H — aja; signal, where m,, = 35GeV, is
indicated assuming B(H — aja; — ttbb) to be 10%

ciated with the background model are evaluated by means of
the discrete profiling method as described earlier and con-
tribute to the statistical uncertainty of the result. Depending
on the signal mass hypothesis, they constitute about 10-25%
of the total uncertainty in the pbb results. Contributions
from uncertainties in the signal efficiency and acceptance are
significantly smaller. In the following, details are provided
for several sources of uncertainties.
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b tagged jets (lower). The contamination from the H — aja; signal,
where m,, = 35GeV, is barely visible assuming B(H — aja; —
1tbb) to be 10%

All uncertainties are included as nuisance parameters in
the final fit for the signal extraction. Uncertainties affecting
the event yields in categories, i.e., normalization uncertain-
ties, are assigned via multiplicative corrections, with a log-
normal probability density function. In the binned maximum
likelihood fit of the ttbb analysis, nuisance parameters that
modify the shapes of the m; distributions are assumed to
have a Gaussian profile. This means that for every nuisance
parameter of this type, two alternate distributions are pro-
vided to the fit: one with the distribution resulting from an
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increase of the nuisance parameter by one standard deviation
and the other with the distribution resulting from a decrease
by one standard deviation. The dominant systematic uncer-
tainty is found to be associated with the signal model, fol-
lowed by the normalization of the QCD multijet background
in the ep final state and the uncertainties in the tt+jets cross
section.

Integrated luminosity: the integrated luminosity of the
datarecorded by CMS for physics analyses is evaluated sepa-
rately for different years of the Run 2 data taking [87—89]. The
uncertainty in the measured integrated luminosity of a given
year has a component that is uncorrelated across the years.
It amounts to 1.0, 2.0, and 1.5%, for the 2016, 2017, and
2018 periods, respectively. Another component is correlated
across all three years and is 0.6% in 2016, 0.9% in 2017, and
2.0% in 2018. Furthermore, the luminosity measurements in
2017-2018 have additional uncertainties, of 0.6 and 0.2%,
respectively, that are considered correlated between the two
years. The overall uncertainty in integrated luminosity for
the 2016-2018 period is 1.6%.

Pileup: the uncertainty associated with the number of
pileup interactions per bunch crossing is estimated by vary-
ing the total inelastic pp cross section by 4.6% [90], fully
correlated across the years.

ECAL timing shift: during the 2016-2017 data-taking
periods, a gradual shift in the timing of the ECAL L1 trigger
inputs occurred in the forward endcap region, || > 2.4 [91].
This led to a specific inefficiency due to erroneous associa-
tion of detector readout to the previous bunch crossing in
a small fraction of the collision events. A correction to this
effect was determined using an unbiased data sample and
found to be relevant in events containing high-pr jets with
2.4 < |n| < 3.0. This correction is applied to simulation and
is accompanied by a 20% uncertainty. The uncertainty pre-
dominantly affects the VBF category in the ppbb analysis,
with a negligible effect on the results in this channel.

Jet energy corrections: the jet energy scale (JES) uncer-
tainties include several sources parameterized as a function
of the jet pt and n [92]. Those variations can modify the
content of the selected event sample. They also introduce
event migration between categories. In the pwbb analysis,
the event p%‘iss changes as a result of variations in the jet
kinematics whereas in the ttbb analysis, JES uncertainties
affect the m+, distribution. Variations in the expected signal
yield are between 15-50% in the ppbb analysis. In the ttbb
channel, distributions vary between 10—15% of the nominal.
Depending on the source, JES uncertainties are considered as
uncorrelated, fully correlated, or partially correlated (50%)
across the years. The jet energy resolution is also consid-
ered, where the smearing corrections are varied within their
uncertainties, uncorrelated across the years.

b tagging: sources of systematic uncertainty that affect
the data-to-simulation corrections of the b tagging discrim-

inant distribution are JES, the light flavor or gluon (LF) jet
contamination in the b jet sample, the heavy flavor (HF) jet
contamination in the LF jet sample, and the statistical fluctua-
tions in data and MC [70]. The JES variations in b tagging are
obtained together with the JES uncertainties on jet kinemat-
ics and follow the same correlation pattern across the years.
The statistical components of the b tagging uncertainties are
uncorrelated while the rest are assumed correlated between
different periods.

Muon reconstruction: the data-to-simulation correction
factors for the muon tracking, reconstruction and selec-
tion efficiencies are estimated using a ‘“tag-and-probe”
method [93] in DY data and simulated samples. These uncer-
tainties include the pileup dependence of the correction fac-
tors and are correlated across the years since common pro-
cedural uncertainties are the dominant source. The require-
ments between the two analyses are slightly different, mainly
because of a different impact parameter in T — | decays.
The corrections, and therefore associated systematic uncer-
tainties, are applied in bins of muon pt and |5| in the ppbb
analysis [63]. In the ttbb analysis, a 2% uncertainty, inde-
pendent of pt and n, per muon is used [94] and treated as
uncorrelated between simulated and 7-embedded events. The
muon momentum scale varies within 0.4-2.7% [63] and is
accounted for in systematic uncertainties on the signal and
background m distribution. Its impact is found to be negli-
gible in the pubb analysis.

Electron reconstruction: the electron energy scale uncer-
tainties in e and ety final states are accounted for using
methods outlined in Ref. [95]. The reconstruction and selec-
tion efficiencies are accompanied by a 2% uncertainty per
electron, independent of pt and 5 [64]. Similar to muons,
these uncertainties are uncorrelated between simulated and
T-embedded events. Uncertainties in the electron energy
scale also affect the shapes of the m, distributions and are
accounted for.

Hadronically decaying t lepton reconstruction: in jLty
and ety final states, there are uncertainties associated with Ty,
identification efficiencies and energy scale corrections where
the variations depend on pt (t3) and decay mode, ranging
from 3-5% and 0.2-1.1%, respectively. Systematic varia-
tions in the selected event yields as well as in the shapes
of the distributions are taken into account. Uncertainties are
considered uncorrelated across the bins of pt (th) and differ-
ent years for the MC [72]. Uncertainties of the same source
are treated as 50% correlated between the embedded DY
background and simulated samples. For events with a gen-
uine 1, lepton matched at the generator level, energy scale
uncertainties are considered using shape variations. In the
case of muons and electrons misidentified as Ty, candidates,
energy scale corrections are applied in bins of pr, n, and
decay mode of the misidentified t,. These corrections are
associated with uncertainties. A 50% correlation is consid-
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Fig. 10 Observed and expected upper limits at 95% CL on B(H —
aja; — pbb) as functions of m,, . The inner and outer bands indicate
the regions containing the distribution of limits located within 68 and
95% confidence intervals, respectively, of the expectation under the
background-only hypothesis

ered between the embedded and MC samples for these lepton
energy scale uncertainties.

Trigger efficiencies: an uncertainty of 1% is assigned to
the HLT efficiency in the pubb analysis. In the ttbb chan-
nel, an uncertainty of 2% is applied per single-lepton trigger
and 5-10% on the dilepton triggers with a 1, requirement.
Uncertainties associated with trigger efficiencies affect the
shape of the distributions in this channel. The shape effects
are taken into account in both simulated and embedded back-
grounds, where a 50% correlation is considered between the
two.

Background estimations in ttbb final state: the Z boson
pt reweighting uncertainty in DY samples, which amounts to
10% of the nominal value, is taken as a m; shape uncertainty.
The embedded samples include a 4% normalization uncer-
tainty [81]. Moreover, shape uncertainties related to tracking
efficiencies and contamination from non-DY events in the
embedded sample are considered. Since the contribution of
the QCD multijet background in the ep channel is obtained
from a same-sign sideband region with a limited number
of events, the validity of the method is tested in indepen-
dent same-sign SBs. This test results in a 20% normalization
uncertainty. The uncertainty in the scale factor between the
same-sign SBs and opposite-sign SRs is modeled using shape
variations in the fit used to obtain the nominal values. The
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misidentification probability, f, of a jet as a 1, candidate
depends on the jet multiplicity. A 20% normalization uncer-
tainty is applied to the estimate of the W+jets and QCD multi-
jet backgrounds due to f being measured in Z — L events
with different jet multiplicities. In addition, shape variations
due to different measurements of f are considered.

Limited size of the samples: to account for the limited
size of the simulated samples, as well as the data in SBs used
to estimate backgrounds, a bin-by-bin statistical uncertainty
is considered where a Poisson nuisance parameter per bin is
assigned to distributions in those samples [96]. This uncer-
tainty is specific to the ttbb analysis.

Modeling uncertainties: a total uncertainty of 3.6% is
assigned to the sum of the ggF and VBF Higgs boson pro-
duction cross sections [22] predicted by the SM and used to
describe the upper limits on B(H — aja; — pubb/ttbb).
It includes uncertainties from the perturbative QCD calcula-
tions, PDFs, and «s. In the ttbb analysis, PDF and as uncer-
tainties are considered for simulated backgrounds, namely:
4.2% for tt+jets, 5% for Diboson, and 5% for single top
quark processes. These uncertainties are obtained following
the PDF4LHC prescription [97]. To account for variations
in the signal acceptance in both channels, the renormaliza-
tion and factorization scales are doubled and halved simul-
taneously in simulation. In addition, the eigenvectors of the
NNPDF3.1 PDF set are varied within their uncertainties in
the final fit. The value of «g, computed at the energy scale
of the Z boson mass, is also varied within its uncertainty in
the PDF set. For the parton shower simulation, uncertainties
are separately assessed for initial- and final-state radiation,
by varying the respective scales up and down by factors of
two. Using the same model assumptions and procedures, the
aforementioned uncertainties are considered fully correlated
across the data-taking years.

9 Results

No excess of events over the expected SM backgrounds is
observed in either of the pwbb and ttbb channels. Upper
limits are placed, at 95% CL, on B(H — aja; — ££bb) as
a function of m,,, with £ being either a T lepton or muon.
The two final states are combined to set upper limits on
BMH — ajap), assuming fixed decay fractions of aj. The
branching fraction B(a; — ff) depends on the 2HDM+S
parameters, where f indicates either muon, b quark, or t lep-
ton. Since the results in both channels are statistically limited,
the combination mostly benefits from the additional data.
The combined results are still dominated by the statistical
uncertainties. At m,, = 35 GeV, all systematic uncertainties
amount to about 6% of the total uncertainty, with the domi-
nant contributions corresponding to JES in the jujLbb channel,
followed by the theoretical uncertainties in the signal, and
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finally the uncertainties in the QCD multijet backgrounds in
the ep final state of the Ttbb analysis.

Figure 10 shows the upper limits on B(H — aja; —
pbb) at 95% CL, assuming SM predictions for the Higgs
boson production cross section. The pbb search is opti-
mized for m,, values between 15 and 60 GeV, with sig-
nal sensitivity falling rapidly below m,, = 20GeV. This
is mainly because the two b jets start to merge as a result
of a higher momentum for a;. At 95% CL, the observed
upper limits are (0.17-3.3) x 10~ for the mass range 15 to
62.5 GeV, while the expected limits are (0.35-2.6) x 10~%.
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Figure 11 shows the observed and expected 95% CL upper
limits on B(H — aja; — ttbb) as functions of m,,. Only
the ep channel provides sensitivity to the 12 GeV mass point,
as in this channel the baseline selection on the AR between
the two t candidates is the lowest. For small m,, values,
the decay products appear as boosted and may not be recon-
structed as two separate objects. The low AR requirement
allows a selection of more signal events where the two t
candidates are close to each other. The w1y, final state is the
most sensitive, where limits as low as around 1.8% (1.7%)
are observed (expected) in the intermediate mass range at
my, = 35GeV. Combining all final states in the ttbb chan-
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nel, observed limits on the branching fraction are found to be
in the range 1.7-7.7%, for a pseudoscalar mass between 12
and 60 GeV, with corresponding expected limits in the range
1.5-5.7% at 95% CL.

Figure 12 shows the observed and expected limits at 95%
CL on B(H — aja; — ££bb), where £ stands for muons
or T leptons. Using decay width expression from Ref. [86],
the signal strength of each channel is scaled with a type and
tan B independent factor to obtain this limit in the context
of 2HDM+S models. The observed and expected ranges are
0.6-7.7% and 0.8-5.7% respectively, depending on ;.

The combined branching fraction B(H — ajaj) is
obtained upon reinterpretation of the ppbb and ttbb results
in different types of 2HDM+S and tan 8 values for 15 <
my, < 60GeV, illustrated in Fig. 13. Upper limits in the
range 5-23% are observed at 95% CL for all Type II sce-
narios with tan 8 > 1.0. The tightest constraint is obtained
for the Type III scenario with tan 8 = 2.0. At 95% CL, the
observed upper limits on the combined branching fraction
are in the range 1-7%, with a similar range for the expected
upper limits. For the Type IV scenario, the observed upper
limits on B(H — aja;) at 95% CL are between about 3 and
15% for tan B = 0.5, with corresponding expected limits
between about 3 and 11%.

The allowed values of tan 8 and m,, are shown in Fig. 14
in the context of Type III and Type IV 2HDM+S. The dashed
contours represent the upper limits at 95% CL on Higgs boson
to pseudoscalar decays, assuming the branching fraction to
be either 100 or 16%. Here 16% corresponds to the combined
upper limit on Higgs boson to BSM particle decays obtained
from previous Run 2 results [16].

10 Summary

A search for an exotic decay of the 125 GeV Higgs boson
(H) to a pair of light pseudoscalar bosons (a;) in the final
state with two b quarks and two muons or two T leptons
has been presented. The results are based on a data sam-
ple of proton—proton collisions corresponding to an inte-
grated luminosity of 138fb~! | accumulated by the CMS
experiment at the LHC during Run 2 at a center-of-mass
energy of 13 TeV. Final states with at least one leptonic t
decay are studied in the ttbb channel, excluding those with
two muons or two electrons. The results show significant
improvement, with respect to the earlier CMS analyses at
13 TeV, beyond what is merely expected from the increase
in the size of the data sample. A more thorough analysis
of the signal properties using a single discriminating vari-
able improves the bbb analysis, while the ttbb analysis
gains from a deep neural network based signal categoriza-
tion. No significant excess in the data over the standard model
backgrounds is observed. Upper limits are set, at 95% confi-

@ Springer

CMS 138 b (13 TeV)
|||||I|||||||||||||||||||IIIIIIIIIIIIIIIIIIllllll
14 95% CL upper limits ]
Ttbb + Mlbb —e— Observed
Combined ------ Median expected

|:| 95% expected
- 68% expected

B(H — aja, — 1 bb) (%)
o

0 II|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIIIIIIIIT

15 20 25 30 35 40 45 50 55 60
m, (GeV)
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Fig. 13 Observed and expected 95% CL upper limits on B(H — aja;)
in %, obtained from the combination of the ubb and ttbb channels.
The results are obtained as functions of m,, for 2HDM+S Type I (inde-
pendent of tan ), Type II (tan 8 = 2.0), Type III (tan B = 2.0), and
Type IV (tan B = 0.6), respectively

dence level, on branching fractions B(H — aja; — pubb)
and B(H — aja; — ttbb), in the ppubb and ttbb analy-
ses, respectively. Both analyses provide the most stringent
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Fig. 14 Observed 95% CL upper limits on B(H — aja;) in %, for
the combination of the ppbb and ttbb channels for Type III (upper)
and Type IV (lower) 2HDM+S in the tan Bvs. m,, parameter space.
The limits are calculated in a grid of 5GeV in m,, and 0.1-0.5 in
tan B, interpolating the points in between. The contours corresponding
to branching fractions of 100 and 16% are drawn using dashed lines,
where 16% refers to the combined upper limit on Higgs boson to unde-
tected particle decays from previous Run 2 results [16]. All points inside
the contour are allowed within that upper limit

expected limits to date. In the pubb channel, the observed
limits are in the range (0.17-3.3) x10~* for a pseudoscalar
mass, my,, between 15 and 62.5 GeV. Combining all final

states in the ttbb channel, limits are observed to be in the
range 1.7-7.7% for m,, between 12 and 60 GeV. By combin-
ing the ppbb and ttbb channels, upper limits are set on the
branching fraction B(H — aja; — ££bb), where £ stands
for muons or t leptons. The observed upper limits range
between 0.6 and 7.7% depending on the m,,. The results
can also be interpreted in different types of 2HDM+S mod-
els. For m,, values between 15 and 60 GeV, B(H — aja;)
values above 23% are excluded, at 95% confidence level, in
most of the Type II scenarios. In Types III and IV, observed
upper limits as low as 1 and 3% are obtained, respectively,
for tan 8 = 2.0 and 0.5.
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