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Abstract

Blazars are a subclass of active galactic nuclei with relativistic jets pointing toward the observer. They are notable
for their flux variability at all observed wavelengths and timescales. Together with simultaneous measurements at
lower energies, the very-high-energy (VHE) emission observed during blazar flares may be used to probe the
population of accelerated particles. However, optimally triggering observations of blazar high states can be
challenging. Notable examples include identifying a flaring episode in real time and predicting VHE flaring activity
based on lower-energy observables. For this purpose, we have developed a novel deep learning analysis
framework, based on data-driven anomaly detection techniques. It is capable of detecting various types of
anomalies in real-world, multiwavelength light curves, ranging from clear high states to subtle correlations across
bands. Based on unsupervised anomaly detection and clustering methods, we differentiate source variability from
noisy background activity, without the need for a labeled training data set of flaring states. The framework
incorporates measurement uncertainties and is robust given data quality challenges, such as varying cadences and
observational gaps. We evaluate our approach using both historical data and simulations of blazar light curves in
two energy bands, corresponding to sources observable with the Fermi Large Area Telescope and the upcoming
Cherenkov Telescope Array Observatory. In a statistical analysis, we show that our framework can reliably detect
known historical flares.

Unified Astronomy Thesaurus concepts: Blazars (164); Transient detection (1957); Outlier detection (1934);
Neural networks (1933); Gamma-ray astronomy (628); Astronomical methods (1043); Extragalactic astron-
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1. Introduction

Observations of transient phenomena are key to disentangling
the physical processes at play in astrophysical systems. In past
years, notable transient events have included the spatial correlation
of an astrophysical neutrino with a flaring gamma-ray
source (M. G. Aartsen et al. 2018), the observation of gamma
rays and gravitational waves produced by a kilonova (B. P. Abbott
et al. 2017), and the discovery of new classes of very-high-energy
(VHE; >100 GeV) gamma-ray emitters such as gamma-ray bursts
and novae (H. E. S. S. Collaboration et al. 2019; MAGIC
Collaboration et al. 2019; F. Aharonian et al. 2022) via detection of
transient emission. Measuring or constraining the VHE gamma-ray
emission from transient events is of particular interest, as these
gamma rays track the most extreme acceleration processes.

Imaging atmospheric Cherenkov telescopes (IACTs), such
as VERITAS, MAGIC, H.E.S.S., and the next generation
Cherenkov Telescope Array Observatory (CTAO), are the most
sensitive instruments for measuring VHE gamma-ray
emission (F. Aharonian et al. 2006; B. S. Acharya et al.
2013; N. Park 2015; J. Aleksi¢ et al. 2016). However, they
have fields of view of less than 10°, which limits the chance of
serendipitous transient detection. Source variability detected at
other wavelengths is therefore used to trigger IACT observa-
tions, increasing the probability of observing transient events
with TACTs. The deep learning approach presented here
collates multiwavelength information on the activity state of
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known gamma-ray sources and uses this information to
anticipate periods of unusual emission (e.g., flares) in the
VHE band. In developing this method, we focus on blazars, a
gamma-ray source class which shows strong variability on all
observed timescales and wavelengths, and for which a large
archive of VHE and multiwavelength observations exists. The
code used in this work is available on GitLab at https://gitlab.
desy.de/trans_finder/blazar_flares.

1.1. Blazars

Blazars are a class of active galactic nuclei with a relativistic
jet oriented toward the observer, resulting in strongly Doppler-
boosted emission. They are the most numerous source class
detected in high-energy (HE; 100 MeV-100 GeV) and VHE
gamma rays. However, the mechanisms driving particle
acceleration in the jets and the observed gamma-ray emission
are not well understood, and models of varying complexity
abound (for discussion of acceleration, see, e.g., J. G. Kirk
et al. 2000 and L. Sironi et al. 2015; for emission, see
M. Cerruti 2020, and references therein).

Gaining a better understanding of the underlying acceleration
and emission mechanisms in blazars is relevant for a number of
topics. For example, blazars are plausible sources of ultra-high-
energy cosmic rays, should protons be accelerated in their jets (e.g.,
K. Murase et al. 2012; X. Rodrigues et al. 2018). As extragalactic
sources, located at cosmological distances from Earth, blazar
observations can be used to probe the photon and magnetic fields
traversed en route to Earth, and to test for signatures of Lorentz
invariance violation and photon coupling to axion-like particles,
effects that are expected to grow with gamma-ray propagation
distance (see J. Biteau & M. Meyer 2022, and references therein).
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For such scientific goals, precise measurements of the broadband
spectral energy distributions (SEDs) of sources is critical, being the
main handle for interpretation of the emission mechanisms.

The photon emission from all VHE-detected blazars is
characterized as variable at some or all observed wavelengths,
from radio to VHE, on timescales from minutes to years. Bright
states are of particular interest, but it is challenging to
simultaneously detect a source and measure the SED over
multiple wavelengths. This is due in part to limitations on the
collection areas of instruments in different wavelengths, as well
as to the intrinsic variation in flux as a function of energy.
Sources that are typically too dim to be detected in the HE and
VHE bands without long integration periods (weeks to months)
can conversely be detected during flaring episodes within
minutes or hours.

The SED of a variable blazar is modeled most robustly using
simultaneous multiwavelength observations, in order to ensure
that different time-dependent flux states are not conflated.
Bright states are key to probing the emission mechanism of
blazars, and to their physical interpretation. Particularly
important is the VHE band, where the photon flux is
comparatively low. Flare detection is therefore a cornerstone
of the scientific programs of the IACT community (see
F. Aharonian et al. 2007; J. Albert et al. 2008; V. A. Acciari
et al. 2009; A. U. Abeysekara et al. 2015, for selected
examples). Identifying correlated variation at different wave-
lengths is also valuable, as different models of blazar emission
predict correlations (or lack thereof) between different bands.
However, consistent definition and identification of flares
remains a challenge in the community, as discussed for
example by R. Zimmerman et al. (2024).

1.2. Deep Learning and Anomaly Detection

Machine learning, in particular deep learning, are widely
used in astronomy. Many applications are based on supervised
learning. This involves input data which are labeled, where the
algorithm is trained to encode the mapping between inputs and
labels. Examples include classification, such as ~/hadron
separation for IACT experiments (see, e.g., Q. Feng &
T. T. Y. Lin 2016; D. Nieto Castafio et al. 2017), as well as
regression tasks, e.g., the evaluation of the redshift of a
galaxy (I. Sadeh et al. 2016). Conversely, for unsupervised
learning, specific labels are not known a priori and the
objective is to find patterns in the data. Applications are
commonly based on clustering (E. Min et al. 2018) and/or
outlier detection (I. Reis et al. 2018; K. L. Malanchev et al.
2021).

In the following, we expand on the work of I. Sadeh (2020,
hereafter SA20), who utilized a recurrent neural network
(RNN) for outlier detection. An RNN is a form of directed
graph, representing a sequence of steps in time. Outputs from
each time step are fed as input to the next, in addition to the
respective temporal data. Such models are useful for char-
acterization of complex data on different timescales.

SA20 illustrated the use of their method for the detection of
various types of astrophysical transients, such as gamma-ray
bursts and neutrino emission by candidate neutrino point
sources. The general concept is to use an RNN to characterize
the background to a potential transient. This is done by
providing the network with existing /past data, taken before the
emergence of the putative transient event. For instance, in the
case of the search for an astrophysical neutrino transient, the
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background represents the continuously observed signals of
atmospheric neutrinos. The purpose of the RNN is to predict
the background within the near future (upcoming time steps of
the network) based on observations of the near past. Potential
transients are then detectable as deviations of new observations
from the expected background predictions.

For their chosen data sets, SA20 could construct RNN inputs
that increase with the intensity of putative signals. For example,
they used the reconstructed gamma-ray flux within a region of
interest (ROI) from an IACT experiment, which increases when
a new gamma-ray source appears. As such, transients would
always manifest themselves as upward fluctuations from the
background predictions of the network. Considering observa-
bles that by construction always scale up with the strength of
the signal enables the definition of a simple outlier score, acting
as a test statistic (TS) for detection. The latter is defined
by SA20 as the integrated difference between the predictions of
the RNN and the stream of real data.

In the current work, we focus on blazar flares as the target
transient phenomena. However, we set out to identify any
unexpected activity from the source, such as notable downward
deviations or correlated changes of the emission on different
timescales. For this purpose, the simple TS used by SA20 is not
appropriate, given that it is designed exclusively for upward
deviations from the background. In order to construct a
generalized TS for arbitrary types of flares, we expand the
architecture of the network used by SA20, as discussed in the
following.

This paper is organized as follows. In Section 2, we
introduce our machine-learning-based framework, and in
Section 3 we describe how it is trained. Section 4 contains a
simulation study, in which we evaluate the sensitivity of our
method. In Section 5, we demonstrate the utility of our method
in an analysis of real data from BL Lacertae, before concluding
in Section 6.

2. Anomaly Detection Pipeline

Our pipeline is illustrated in Figure 1 and the most important
concepts and parameters are summarized in Table 1. After
preprocessing of the input light curves, the data are organized
into a time-series format. We distinguish between a context
window and a search window for the analysis. In the latter, we
scan for putative flares.

Forecasting (BoxI in Figure 1). The inputs within the
context window, denoted by T, and the search window, Tgec,
are respectively mapped into the encoder and decoder
components of an RNN, similar to the approach of SA20. The
purpose of the encoder is to provide contextual information
(recent source activity) for the decoder. We train the model
under the assumption that the context window is devoid of
potential signals, and thus represents a realistic background for
flares. The outputs of the decoder, 7y, are the model predictions
for the light curve, given this background hypothesis.

Embedding (Box II). The predictions are contrasted with the
actual data in order to quantify anomalies. As explained in
Section 2.3, we derive the difference between the two sets as
Tres = Tdec — Tior» €mphasizing the most recent data in time
through a weighting scheme. We model the distribution of 7
for the background using an autoencoder, which compresses
the data into a low-dimensional space. For the subset of data
which comprises background configurations, 75 represents the
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Figure 1. Illustration of the architecture of the model, as described in the text.

intrinsic variations of the light curve in the absence of flares.
Otherwise, Ts quantifies the strength of a potential anomaly.

Clustering (Box III). The condensed representation provided
by the autoencoder facilitates comparison between new data
and the reference distribution, which comprises all known
background states. We parameterize the distribution of 7, for
the background data set with a Gaussian mixture model (a form
of clustering), as discussed in Section 2.4.

Significance calibration (Box IV). The compatibility of new
data with the modeled distribution of 75 is used for anomaly
detection. We follow the approach of SA20 in order to map the
corresponding TS into a significance for detection. A detailed
description and derivation of this calibration is given in the
Appendix of SA20. In addition, we derive another comple-
mentary TS directly from the outputs of the autoencoder, as

discussed below. The final p-value for flare detection is derived
from the combination of these two statistics (Section 2.5).

Once a significant flare is detected, it raises the question of
which elements in the data are driving the detection. We
analyze the contribution of different data to the overall
significance within the pipeline, as described in Section 2.6.
Below, the various elements of the pipeline are discussed in
detail.

2.1. Light Curves as Input Data

The multiwavelength inputs to our pipeline are a set of
light curves obtained from different instruments. Each input
(which we refer to in the following as a channel) captures an
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Table 1
Overview of Notions and Parameters
Notation Description
tref Reference time pivot in the input light curve
Tene> Tdec Inputs split into encoder (context) and decoder (search)

windows, comprising n and m time steps
Tfor Forecast of background activity for m time steps

Tress T hes Residuals between decoder, 74, and forecast, 7,; tagged
variable is adjusted by temporal weights

w Temporal weights applied to decoder residuals

Trec Reconstruction of the weighted residuals, T/res

0] Embedding vector representing residuals, 7/

TSiecs Orec Test statistic (TS) and significance, based on the reconstruction
error

TSimms 0mm TS and significance, based on the clustering model compat-

ibility metric
O combo Combined significance from TS, and TS,

Vtimeaggr Time bin width (in days for the current study) to be considered
a single time step

Vsignoise Threshold (in units of standard deviation) to constrain varia-
bility; used to quantify background states for training

YVdecay Temporal decay rate, used for suppressing old anomalous data

observable related to source brightness (e.g., flux, magnitude),
with associated uncertainties.

A potential flare is always searched for within a specific
temporal context. The data collection process behind each
channel, however, is typically affected by numerous observa-
tional constraints, such as the visibility of the source and
weather constraints for ground-based instruments. Conse-
quently, the observing cadences commonly vary across
channels and over time. Frequently, limited data availability
and long gaps in coverage need to be handled. To address these
temporal dynamics, we employ a series of techniques, which
we discuss in the following.

Consistent time binning. To jointly analyze observables in
the timescales that are relevant for blazar flares, we first ensure
a consistent time binning in each channel. Specifically, we
contrast between high-density and low-density channels, given
the selected width of our time binning, Yimeager (€.2., One day,
customizable per channel). High-density channels, which
generally contain multiple data points within Yimeager» are
downsampled by randomly selecting a single data point per
Viimeager- Lhis effectively captures the average state in the
channel.

Dynamic windowing. A potential flare is searched for in the
data that is available up to a time pivot, f.r. Observation
cadences and the corresponding coverage will generally vary
across inputs and over time. The number of data points within a
fixed time window may therefore differ between channels. To
effectively interpret source activity in context, it may be
necessary to consider older data from sparse channels together
with recent data from dense channels. Instead of relying on
fixed-duration windows, it is hence desirable to consider time
windows of variable lengths. We employ a dynamic-window-
ing approach, which considers a fixed number of the most
recent available data from each channel, up to f#.r. The first
(i.e., oldest) n data points in the window constitute the context
window for flare detection, 7.p; the last (i.e., newest) m data
points form the search window, Tgec.
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Variable and sparse coverage. In order to constrain emission
models and predict future flares, the observation time of an
individual measurement is crucial. However, the provenance of
the available multiwavelength data is subject to potentially
arbitrary constraints. The cadence of measurements is influ-
enced by several confounding factors, including observing
conditions, source visibility, and instrumental availability.
Correspondingly, the presence of a particular measurement
could itself be seen as abnormal. While our framework is
designed to consider any type of anomaly in the input channels,
it must be agnostic to changes in data cadence, while modeling
the relevant temporal context. For this reason, we consider the
difference in cadence between measurements only indirectly
through a dynamic weighting scheme, as described in the
following.

In the assessment of potential flaring activity in channels
with varying sparsity, recent data are generally considered
more relevant than older data. This is particularly important for
low-density channels, which generally contain a single data
point within a period of several Yiimeager- The search window of
a low-density channel may consist entirely of data that lie far in
the past (relative to 7). It may thus capture flaring behavior
that is irrelevant for assessing the current activity of the source.

We use a scheme of temporal weights to ensure the
sensitivity to potential new flares, given the possible presence
of old anomalies. Weights are defined as

w(tstep, 'Ydecay) = (1 — maX(O, tstep — tdelay))fwdecay . (1)

Here, fcp is the temporal distance of a particular data point
relative to t.r. We define #4e1ay as the period during which all
data are considered recent. This parameter is defined by the
number of decoder steps, m, and the time step interval, Vimecaggrs
as

Idelay = M X Viimeaggr- )

The parameter, Ygecay, controls the strength of the temporal
decay.

The temporal weights are used to scale the inputs to the
autoencoder. Weights are constructed such that they are equal
to unity in search windows that are not sparse. This scheme
serves to relatively shift the residuals for older data toward
background-level values. Thus, the impact of anomalies which
are driven by source variability in the far past is suppressed.

The temporal weighting scheme is illustrated in Figure 2.
Here, the top panel shows an example input light curve
comprising two channels and a time pivot, #.r. The first channel
has dense coverage and thus a short window size. The second
channel is more sparsely sampled. The corresponding window
covers a wider time interval, as required to capture n + m data
points. The lower panel shows the corresponding time-series
structure separated into the context window, Ten., and the
search window, Tg... The dynamic weighting scheme and the
effect of Ygecay is also illustrated in the two bottom panels.
Here, the data in the sparse channel are shifted toward
background within the decoder, as there exists a notable gap
between the most recent data and ¢, In contrast, the weights of
the dense channel leave the data within the decoder
unmodified.

Limited data availability. The availability of data in a
channel may be limited, for instance due to novel instruments
starting operations, or to having made only few observations of
a source. In some cases, a channel may contain less data than
required for the construction of a single window. To ensure the
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Figure 2. Illustration of a dynamic-window transformation of two light curves
into a combined time-series structure. The top panel shows two light-curve
channels, C1 and C2, with a reference time pivot, #.r. The context window,
Tene» and the search window, 74, are highlighted as light and dark shaded
regions. The middle panel shows a zoom in of both windows over the time
relative to #.r. The bottom panel shows both windows in n + m discrete time
steps as they are ingested into the forecaster and autoencoder. Colored lines in
the lower panels show the corresponding temporal weights, w, for three
representative settings of Ygecay. The dotted horizontal line marks a weight, w,
of zero.

compatibility of our approach with limited data, we add
padding to the beginning of the window. It consists of new data
points, derived from existing data, randomly scrambled in time.
This includes time stamps lying in the far past. With the
aforementioned weighting scheme, we ensure that the padding
segment of data does not result in anomalies.

Uncertainty on observables. In order to account for the
uncertainties on individual measurements, we draw a sample of
Yerr time series with feature values sampled from the assumed
normally distributed, potentially asymmetric uncertainties of
the data. While this is a common approach, the framework
remains agnostic to the choice of distribution used for modeling
uncertainties on observables. The following stages indepen-
dently process the original time series as well as all uncertainty
samples. In the final calibration, as discussed below, their
corresponding TSs are aggregated. The final outcome is then a
calibrated significance with an associated uncertainty which
represents the propagated input uncertainties from all channels.

2.2. Forecasting Background Activity

After preprocessing, the input light curves are transformed
into fixed-size windows that follow a time-series structure of
n+ m time steps. Each step contains k features, one for each
input channel. The specific values chosen for these parameters
are specified in Section 4.2. As illustrated in Figure 1 (Box I), a
window is then split into two parts, an encoder, Te,., and a
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decoder, 7T4... The encoder serves as the reference for a
forecast, T¢,, representing the predicted background-level
source activity. Both 74, and 7¢, comprise the same m time
steps following the n time steps in 7.,.. To obtain the forecast
of background activity, we employ a multivariate, multistep
RNN with probabilistic output layers, similar to the encoder-
decoder architecture utilized by SA20.

2.3. Representation Learning

After the forecasting of background activity, we contrast the
actual data with the background forecast, 7¢,. That is, we
derive element-wise residuals as

Tres = Tdec — Tfor- (3)

Each element in 7 is then multiplied with its corresponding
temporal weight,

!/
Tres — W - Tress “4)

where the elements of 7/, serve as the inputs to the next
element of the model.

This definition of 7., is motivated by the fact that small
numerical values of the residuals correspond to background
states, while larger positive or negative values represent
increasingly significant anomalies. Effectively, this weighting
scheme shifts older data toward background states, with w = 1
corresponding to the original data and w = 0 being fully
compatible with background.

Based on the weighted residuals, 7., we obtain an
embedding vector, ¢, that represents the source variability
across channels. The purpose of the mapping into an
embedding vector is to capture a condensed representation of
variability across all channels. It enables the comparison of
relative distances between source activity states, which is
fundamental to one of our two test statistics, TS,,, used for
flare detection (see Section 2.4).

To map 7., into an embedding vector, we employ a
variational autoencoder with probabilistic output layers based
on RNNs. As the autoencoder is a modeled distribution of
observed source activity, it can fail to generalize to novel
source activity. This could happen if the novel activity is too
different from the data used for training, and would result in
unreliable mappings into the embedding space. We interpret
such a case as a potential type of flaring state, where the
differences to known source activity are so pronounced that a
comparison in the embedding space is infeasible.

To reliably detect this type of flare, we compare the
reconstruction outputs from the autoencoder, 7, to the inputs,
7. When the embedding vector is unreliable, the corresp-
onding reconstruction error is high. Hence, we define a test
statistic, TS,.., as the compatibility of each output with its
corresponding input distribution. Specifically, this TS is
calculated as the summed negative log-likelihood of each
element in 7., with respect to the corresponding distribution
reconstructed from the embedding vector:

m k
TSreC(T;esa Tree) = Z Z — log p(Tres,‘_,'/lﬂeci,j)- 5
i—0j=0

The mapping into embedding space and derivation of TS is
illustrated in Figure 1 (Box II).
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2.4. Clustering

The embedding vector, ¢, obtained from the autoencoder,
represents an unknown state of source activity. Next, we
calculate a test statistic, TS,,,, that quantifies the compatibility
of this state with a model for the background. We use a
Bayesian Gaussian mixture model (BGMM; G. J. McLachlan
& D. Peel 2000; D. M. Blei & M. L. Jordan 2006), x, for
modeling background activity in the embedding space. The
goal is to allow for complex clusters of different background
states to be jointly modeled.

The calculation is illustrated in Figure 1 (Box III).
Intuitively, one can relate TS,,, to the geometric distance
between the embedding vector of a source state and the
distribution of modeled background states derived from the
BGMM. The “farther away” the source state embedding lies
from the background embeddings, the less likely it is for this
source state to be compatible with the background model.
Technically, the TS is derived as the negative log probability of
the embedding vector with respect to the mixture model:

TSmm(¢) = —log p(xI¢). (6)

2.5. Significance Derivation

Box IV in Figure 1 illustrates the final step of the pipeline,
carried out after the model has been fully trained. Here, we map
the two test statistics, TS, and TS, into their respective p-
values for anomaly detection, pmvm and przc. As defined above,
the first metric, TS, represents in-distribution anomalies (low
compatibility with the background model). The second metric,
TS,ec, captures out-of-distribution anomalies (large reconstruc-
tion errors of the autoencoder). The p-values are conveniently
represented by their corresponding significance values, the
clustering significance, o, and the reconstruction signifi-
cance, Oyec.

In addition to these two quantities, we derive a high-level
TS. This metric is based on the two individual p-values, and is
defined as

TScomb = _10g pr‘;c - 10g pr‘r/my @)

The combined TS is similarly used to derive the final p-value
and significance for the pipeline, p) . and ocomp.

The so-called calibration process between each TS and the
related significance for detection follows the prescription
of SA20. We employ a numerical approach that involves
evaluating each TS multiple times, given a representative
sample of background examples. The corresponding distribu-
tion of TSs therefore represents the null hypothesis for
anomalies. The TSs are constructed such that high numerical
values correspond to larger potential anomalies. The distribu-
tion for the background data set may therefore be used to
estimate the probability for a high TS value (small p-value),
and the related significance.

2.6. Characterization of Signals

When a flare is identified by the framework, retracing what
aspects of the data contribute to this identification is nontrivial.
However, understanding what part of the overall behavior is
considered anomalous is key in furthering our understanding of
the nature of blazar flares. An anomaly in the behavior of a
single channel can constitute a flare, as well as the combined
behavior of multiple channels. For instance, a correlation
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between two channels may be anomalous, even in cases where
the same data would not individually be flagged as unusual.

To guide the identification of anomalous behavior, we assess
the significance when considering only subsets or individual
channels. This is accomplished by modifying the temporal
weights, w, on 71... Specifically, we set w = 0 for all channels
that are not considered in a given iteration during inference.
This is effectively a Boolean mask that sets all data from
masked channels to correspond to background. In the
evaluation, we demonstrate how this enables the tracing of
significant detections back to individual input channels.

We note that these projections in the embedding space are
not individually calibrated to p-values. That is, the corresp-
onding significance of individual channels is indicative of their
relative contribution to anomalies. However, they should not be
interpreted as the final significance for detection.

3. Training the Model

All components of the pipeline are trained on data
corresponding to background source activity. The available
data, however, typically consist of light curves which include
flaring periods or other anomalies. To obtain a background-
only version of the data, we rely on a combination of (optional)
manual filtering to remove obvious flaring states, as well as
several automated cleaning and augmentation procedures. Both
methods are described in detail in Section 3.1. They include
several randomization procedures for statistically removing
potential remaining anomalies from the data used for training
(forecasting and clustering stages) as well as for calibration. At
this stage, the training data set is normalized, such that each
channel (i.e., feature) has a mean of zero and a standard
deviation of 1.

The data set is augmented in order to increase the robustness
of our model. As described in Section 3.2, we introduce
randomly generated long-term states to a subset of training
examples. As part of training the autoencoder, we also add
randomly generated short-term fluctuations, as described in
Section 3.3. This augmentation ensures that the embedding
space covers a wide range of source activity. It helps to reduce
potential reconstruction errors and improves the general-
izability of the pipeline. By construction, these fluctuations
deviate from the background distribution we intend to model.
We therefore emphasize that they are not used for fitting the
BGMM or for the significance calibration process.

The training process proceeds as follows.

Step 1. The forecasting model is trained on background-only
data using the Adam optimizer (D. P. Kingma & J. Ba 2014)
with the summed log probability for the loss, a learning rate of
0.005, a dropout of 10%, L2 regularization of 0.0001, and early
stopping.

Step 1I. The autoencoder is trained analogously to the
forecasting model. As a notable difference, the training data set
is enriched with injected short-term fluctuations. After training
the forecasting model, the inputs to the autoencoder, T/, are
normalized to have a mean of zero and a standard deviation of
1. The temporal weight decay, Ygecay, 15 set to randomized
values within the range {1, 2} to further enhance the phase
space of the embeddings. The optimizer and regularization
techniques are analogous to the training of the forecasting
stage.

Step 11I. The Gaussian mixture model of background-level
activity is fitted using a Markov Chain Monte Carlo (MCMC)
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approach. Here, we adaptively increase the complexity of both
the model and the MCMC parameters until there is no notable
improvement in the quality of fit. The dynamic parameters
include the number of model components as well as the number
of MCMC steps, of burning steps, and of step-size adaptations.
The quality of fit is determined through a two-sample
Kolmogorov—Smirnov test for equal distributions between the
input and the posterior sample distribution. To further improve
the convergence stability, multiple MCMC chains are fitted in
parallel. The best chain is selected according to the quality of fit
and is used for subsequent inference. Through adaptively
increasing the complexity of the model and the fit, we ensure
convergence once the process terminates regularly, i.e., without
reaching a time-out.

3.1. Cleaning Anomalies from the Training Data Set

Available data sets for training typically comprise light
curves that include flaring periods or other anomalies. As the
input to the training stage of the pipeline should consist only of
background examples, such data are cleaned prior to training.
Well-defined and extreme flaring intervals are removed by
hand. This procedure is optional.

Following manual cleaning, some anomalies may remain in
the data, such as weak, short-term fluctuations, or other
correlations between channels. To ensure sensitivity to these
types of anomalies, the pipeline includes additional statistical
randomization and cleaning steps.

As part of automated cleaning, we use a variability threshold
(in units of standard deviation), defined by the parameter
Vsignoise- When a particular window contains data with a local
signal-to-noise ratio higher than 7g;gnoise» We exclude it from the
training and calibration stages. This ensures that the model
becomes sensitive only to deviations stronger than the
configured threshold. Tuning this parameter is crucial; increas-
ing the value of Yggnoise T€duces the rate of false positives, but
also decreases the sensitivity to faint flares. On the other hand,
lowering the threshold raises the rate of false positives, while
improving the sensitivity to faint flares.

We also shuffle data inside each window. This suppresses
residual correlated anomalies within the training data set. It is
important to avoid introducing a bias to the pipeline by always
having the same observation cadence in any one channel. We
therefore randomize the time stamps of individual data points
as follows. Considering data points i and j taken at times ¢; < ¢;,
we reassign the time stamp f#;, — t/ to a random value that
satisfies the condition ¢; < ti’ < t; and conforms to the selected
time bin width, “imeager- This is done for each data point in
each input channel independently.

Finally, we apply a randomized temporal shift to each light
curve individually; this is done globally for the entire channel.
Multiple randomized realizations of the data set cover a wide
range of relative global shifts between channels. Such
transformations suppress possible inter-band correlations.

3.2. Timescales for Anomaly Detection

Blazars are known to exhibit variability on short (minutes),
intermediate (days), and long (years) timescales. The examples
featured in the current study are focused on detecting medium-
timescale behavior, on the order of a few days. We account for
very short flares with the choice of Vimeager = 1 day. It
therefore remains important to consider the impact of long-term
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variability. Over long enough time periods, on the order of a
few years, blazar emission can exhibit trends and correlated
behavior of different levels of intensity. We would like to avoid
false-positive detections for a medium-timescale search. Such
slow-changing trends should therefore be made indistinguish-
able from background in the training data set.

We augment the training sample accordingly. We introduce
randomly generated long-term states in the input light curves.
This is done by globally shifting the data up or down by up to 6
standard deviations for a particular realization. Here, all data in
a given channel have the same vertical offset applied, where
individual channels are treated independently. This augmenta-
tion also serves to improve the generalization of the modeled
background.

3.3. Embedding Space Augmentation

To allow the embedding space to represent different types
and intensities of potential flares, we enrich the data set for
training the autoencoder by introducing arbitrary short-term
fluctuations. These allow the embedding space to encode
distances between different types of potential flaring states.
Specifically, the random fluctuations are modeled as step
functions and Gaussians with amplitudes randomly sampled
within {2, 100} (upward) or {—2, —10} (downward) local
standard deviations. Their duration is within {1, 8} days. The
temporal onset of a fluctuation is randomly shifted across
channels by up to five 5.

4. Simulation Study

We evaluate the performance of our pipeline based on
simulations of quiescent and flaring states inspired by the TeV-
detected BL Lac object 1ES 1215+303. We simulate and
evaluate different flare scenarios, varying in duration and flux.
The light curves cover observations from Fermi-LAT
and CTAO.

The Large Area Telescope (LAT) is a pair-conversion
telescope on board the Fermi spacecraft (W. B. Atwood et al.
2009), covering an energy range from ~20 MeV to more than
500 GeV. During standard operations it covers the full sky once
every 3 hr.

The upcoming CTAO is a collection of VHE gamma-ray
TACTs, with one array on the Southern Hemisphere and one on
the Northern Hemisphere (Cherenkov Telescope Array Con-
sortium et al. 2019), covering energies between ~20 GeV and
300 TeV. With increased sensitivity compared to current IACTs,
it will significantly improve knowledge of the VHE sky.

In Section 4.1, we describe the simulation in more detail,
before discussing the training process and pipeline parameters
in Section 4.2. The results are shown in Section 4.3.

4.1. Data Set

We simulate the multiband gamma-ray light curve of a
quiescent source, mimicking the 2017 steady-state spectrum of
1ES 12154303, as measured by J. Valverde et al. (2020) with
Fermi-LAT and VERITAS. The measured Fermi-LAT log-
parabola and the VERITAS power law are jointly well described
with a log-parabola that accounts for extragalactic background
light (EBL) absorption, shown in Figure 3. Assuming constant
source behavior, we use the gtobssim tool from Fermitools
(version 2.2.0), and the gammapy package (v 0.20.1; C. Deil et al.
2017) to produce simulations of 1000 days daily-binned Fermi-



THE ASTROPHYSICAL JOURNAL, 980:141 (20pp), 2025 February 10

1078

1079 L
!
W

H

2
L
o

——
Fermi-LAT log-parabola
VERITAS powerlaw

—— Combined baseline SED

107F _ Flare SED

| Fermi-LAT Upper limit

107F ¢ CTAO

¥  Fermi-LAT

=

<DI
-
[

E2 dN/dE [TeV cm~2s71]
=
<
s

10—15

1074 1073 1072 1071 10° 10! 102
E [TeV]

Figure 3. Spectral energy distributions for the simulated data set, inspired by
the 2017 steady-state spectrum of the blazar, 1ES 1215+303. Horizontal
arrows show the sensitivity regions of Fermi-LAT, VERITAS, and CTAO,
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given in J. Valverde et al. (2020) for LAT (VERITAS), and the solid green
(blue) line shows the combined, EBL-absorbed log-parabola used for the
baseline (flaring) simulations.

LAT and CTAO light curves, respectively." To simulate a
realistic IACT observing cadence, we conservatively decrease
the sampling of the CTAO light curve to mimic the sampling of
real VERITAS observations of this source. Subdividing the
light curves into multiple, nonoverlapping energy bins allows
us to keep some of the spectral information. The Fermi band
is divided into three energy bins (100-669 MeV, 669 MeV—
448 GeV, and 4.48-300 GeV); the CTAO band is divided
into four energy bins (31.6-79.4GeV, 79.4-199.5GeV,
199.5 GeV-1.2598 TeV, and 1.2598-12.589 TeV). The inputs
and specifics of these simulations are described in more detail
in Appendix A.

We create templates to evaluate the performance on simulated
flares, as described above. As a proxy for a high state, we use the
2017 flare studied by J. Valverde et al. (2020), denoted as Fier in
the following. For comparison, the SEDs of the baseline and the
unscaled flare are shown in Figure 3. We simulate observations
of a flare with a top-hat profile on six subsequent days with 1%,
10%, 50%, 100%, and 150% of F.; By applying these
templates only partially, we can also simulate flares with
durations between 1 and 5 days. To increase the richness of the
data set and to better account for random fluctuations in these
templates, we create 10 randomized realizations for each
template at each intensity. While we are generally interested in
sudden high-flux states in blazars, an unexpected decrease in
flux can also be anomalous and potentially interesting. To test
how the framework reacts to such cases, we create realizations
where we subtract these templates from the baseline.

4.2. Configuration Parameters and Training

We utilize a time bin width of Yimeager = 1 day to transform
the data into windows consisting of m = 10 context steps and
n = 5 search steps. To filter nonbackground data, a signal-to-
noise threshold of “gnoise = 5 is applied. We generate 100
augmented realizations of pure background, and 100 augmen-
ted realizations including short-term fluctuations. The temporal

4 https://github.com/fermi-lat/Fermitools-conda/
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weight decay is chosen as Ygecay = 1. The training converges,
which we confirm by inspecting the loss curves and calibration
control plots for the goodness of fit. We also require that the
adaptive MCMC fit terminates regularly.

4.3. Results

To study the performance of our pipeline, we first show that
flaring and background states are distinguishable by their
respective embedding vectors obtained from the autoencoder.
We then assess that the detection significance scales as
expected with varying flare strengths, considering the expected
time coverage within the Fermi and CTAO channels.

4.3.1. Background and Flaring States as Embeddings

We expect background and flaring states to be mapped into
distinctive embedding clusters. To confirm this, we visualize
the embedding vectors of our simulated data set in Figure 4. In
the bottom left, we show the distribution and pair-wise
projections for each embedding vector dimension. Background
states are shown in blue, and flaring states in orange. For
illustration, we also show 2D projections of the embedding
vectors using standard dimensionality reduction techniques to
visualize complex data, namely principal component analysis
(PCA; K. Pearson 1901) on the top, and uniform manifold
approximation and projection (UMAP; L. Mclnnes et al. 2018)
on the bottom. Here, the color of each point shows the
associated significance, with low-significance data (i.e., data
consistent with background states) shown in blue, and high-
significance data shown in yellow.

It is apparent that background and flaring states are distinct,
where some dimensions are more important for distinguishing
between states than others. The linear (PCA) and nonlinear
(UMAP) projections into 2D both show a notable difference
between flaring and background states. A certain overlap
between the two distributions is visible and expected, as some
aspects of the data can be consistent between background and
(weak) flaring states.

Another observation is that flaring states cover a larger space
compared to background states in most dimensions of the
embedding. The larger spread in the embedding vectors stems
from the larger intrinsic variability of light curves in flaring states.
The smaller variations in the background states are consequently
mapped to a relatively compact region. This is a desired outcome
of the model, illustrating that the representations capture features
of variability, which are the basis for anomaly detection.

4.3.2. Significance and Flare Strength

The detection significance is expected to scale with the
strength of a flare. To study this, we show the significance as a
function of flare strength in the three panels on the left of
Figure 5. The leftmost panel shows the combined significance,
while the next two panels show the mixture model significance
(top) and the significance of the reconstruction error (bottom).
In each panel, we show the respective significance for flares
related to both Fermi and CTAO, or flares exclusively affecting
either Fermi or CTAO. The error bars illustrate the variance of
the significance for the 10 randomized realizations of each flare
template.

We use scalings of the strength of flares, ranging from 1% to
150% of Ft, given a fixed flare duration of 3 days. The dashed
vertical line marks a scaling of 100%. We expect very faint
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flares to be compatible with background states. This is the case,
as can be seen by the low significance from flares with a flux of
1% F ;. With increasing strength, the significance rises.

The individual significance values from the mixture model
and the reconstruction error are similar; both contribute to the
combined significance. For strong flares, i.e., scalings above
100%, the significance from the mixture model appears to
saturate. However, the significance of the reconstruction error
continues to increase with the strength of flares. Consequently,
the increase is also continuous in the combined significance.

The highest significance is reached when a flare is present in
both channels. When a flare is present only in CTAO, the
corresponding significance is slightly lower. Flares that only
occur in Fermi result in significance values lower by a factor of
a few. The only exceptions are faint flares (1% F..f), which
always result in significance values close to zero.

It is expected that the significance of Fermi-only flares is
lower than CTAO-only flares. This is because Fermi has larger
flux uncertainties than CTAOQO, and therefore the same flare
appears less distinct from background variability in Fermi than
in CTAO. This is apparent by the fact that we obtain a
significance >50 from a CTAO-only flare with 10% strength,
whereas a Fermi-only flare with 50% only shows a significance
of around 2.50. The significance of flares occurring in both
channels is generally higher than the significance of a flare in
only a single channel.

Besides flaring activity corresponding to elevated short-term
states in observables, the framework is also sensitive to short-
term decreases in input values. We show this in the right panel
of Figure 6. Here, a flare is modeled by a 15% F s decrease
from background levels, which is clearly detected with
significance >120 for CTAO. However, this deviation is
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comparable with background fluctuations for Fermi, given the
large intrinsic uncertainties in this channel. As expected, the

significance increases when considering additional channels

that exhibit flaring activity.

4.3.3. Time Coverage

Time coverage describes the number of time steps per

channel that are affected by a flare. Coverage can greatly

10



THE ASTROPHYSICAL JOURNAL, 980:141 (20pp), 2025 February 10

impact the probability for detection. For weak flares, wider
time coverage is required in order to identify anomalies.
Conversely, even a single time step might suffice to confidently
claim the detection of a strong flare.

We show the impact of time coverage on detection
significance in the three panels on the right of Figure 5. Here,
we simulate observations of a flare with 100% F,.s and time
coverage between one and five time steps. We show the
combined significance (third column) and the contributions of
the individual significance components (last column), also
differentiating between detections in only some or in all
channels.

Most notably, the same trends are observed related to
independent detections in CTAO or in Fermi, as described in
the previous section. Flares detected only in Fermi generally
result in lower significance. This is again due to the Fermi light
curve being intrinsically noisier than the CTAO data.
Furthermore, we find that a second detection channel, even if
much less significant on its own, can increase the overall
significance.

Flares detected in CTAO or in CTAO and Fermi reach a high
combined significance with a single high-flux observation.
With each additional day of coverage, the significance
increases more slowly, and begins plateauing beyond 3 days.
Flares only present in Fermi channels, on the other hand, yield
a low combined significance at a coverage of 1 day; the
significance then increases continuously, reaching a plateau
beyond 4 days. This is consistent with the expectation that a
weak flare would require longer coverage in order to become
significant.

One may observe that the reconstruction significance
(bottom-right panel) dominates the overall significance for all
cases where a flare is detected in CTAO. This can be explained
by the makeup of the training data set: it consists of random,
short-term fluctuations with different amplitudes and durations.
Due to the intrinsic sparsity in the CTAO channels, only a few
cases of fluctuations having coverage of more than one time
step appear in the training data. Limited training data for this
particular pattern of multiday flares results in potentially greater
reconstruction errors. Conversely, the Fermi training data, due
to its much denser sampling, contains relatively more multiday
fluctuations. The corresponding reconstruction significance is
therefore much less dominant. The impact of incomplete
training data is mitigated by the complementary use of both
Omm and Opec.

4.3.4. Time Profile of a Detection

We expect the significance to rise in the presence of new
flaring data, and then gradually to fall as physical time passes.
We study this behavior in Figure 6. We show three zoomed-in
time lines with light curves and their corresponding signifi-
cance values for a weak upward flare (+10% F¢) on the left,
and a strong upward flare (+-100% F¢) in the center. On the
right, we show a moderate downward flare (—15% Ff). The
lowest panel illustrates the contribution to the detection
significance when considering individual channels. The flare
is highlighted as the gray shaded region.

As expected, the significance starts rising as soon as the first
flaring time step comes into play. It reaches a plateau just after
the end of the flaring period, and then decays with time. In the
case of the weaker flare on the left side of Figure 6, there is a
small peak after the flaring period. Here, a time step in the
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topmost channel exhibits comparable strength to the preceding
flare. The continuously elevated state on this timescale is
incompatible with background, resulting in high significance.
Thereafter the significance falls, as the variance of the
following data returns to background levels. The example of
injecting a negative fluctuation illustrates that the framework is
agnostic to the topology of potential flares.

5. Historical Blazar Study

After evaluating our framework on simulations, we proceed
to analyze historical data and flares of the blazar BL. Lacertae
(BL Lac). We assess the effectiveness of our framework by
comparing with the reactions of the real-time multiwavelength
community. In this context, we make use of alert systems, such
as the General Coordinates Network (GCN) and the Astron-
omer’s Telegram (ATel). ATels can be published with a delay
of up to a few days. We therefore compare the date the
framework detects an anomaly to the time of observation,
rather than to the date of publication.

5.1. Data Set

We obtained multiwavelength data of the blazar BL Lac
from a number of instruments operating in different parts of the
electromagnetic spectrum. The data span a time range of
~4000 days, MJD 55170-59200 (between 2009 December and
2020 December). Observation times are rounded to a timescale,
Viimeager = 1 day. A combined multiwavelength light curve for
these data is shown in the top panels of Figure 7. A detailed
description of the individual data sets and of the related
processing and analysis steps is given in Appendix B.

This light curve includes data from the following observa-
tories. In the VHE band between 100 GeV and 30 TeV, we
use data from VERITAS, an array of four IACTs in Arizona
(J. Holder et al. 2008). While VERITAS has published several
distinct emission episodes of BL Lac (T. Arlen et al. 2013;
Q. Feng et al. 2017; A. U. Abeysekara et al. 2018), the
complete data set remains private. The collaboration has kindly
allowed us to explore all available data for our analysis.
Accordingly, we use the flux of the source as input to our
pipeline. For visual purposes only (Figures 7 and 8 in the
following), we mask the data. Instead of flux, we show the
corresponding excess photon count rate, slightly modified by
random noise. Though the data presented in the figures are in
arbitrary units, they track the relevant changes to the measured
flux of the source. They can thus be used to appreciate the
performance of our method, as discussed below.

For energies between 100 MeV and 300 GeV, we use data
taken by the LAT on board the Fermi spacecraft
(W. B. Atwood et al. 2009), divided into the same three
energy bins as before (100-669 MeV, 669 MeV—4.48 GeV, and
4.48-300 GeV). In the X-ray band, we include observations of
BL Lac taken by the X-Ray Telescope (XRT) on board the
Swift satellite (D. N. Burrows et al. 2005), divided into soft
(0.3-1.5 keV) and hard (1.5-10 keV) bands.

Optical r-band data include observations taken with the Tuorla
optical telescope in Finland (K. Nilsson et al. 2018), observations
taken with the Palomar Transient Factory (PTF) monitoring
program (N. M. Law et al. 2009) in San Diego County, California,
and with the successor instrument, the Zwicky Transient Facility
(ZTF, E. C. Bellm et al. 2019a, 2019b). The latter two
observatories also provide g-band magnitudes of the source.
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Figure 7. Overview of the multiwavelength BL Lac data set and the corresponding significance of flares, oy, and ocombo. The lowest panel illustrates the
contributions of individual channels to the combined significance. Data marked with red crosses are excluded from the training and calibration samples. Horizontal
dashed lines indicate the associated background cuts. Gray shaded regions mark the time ranges highlighted in Figure 8. Both Swift-XRT channels contain an outlier,
hidden for readability.
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Figure 8. Highlighted intervals related to high-significance detections in the BL Lac data set (see caption of Figure 7).

Finally, we use radio/microwave data at wavelengths of
0.87 mm and 1.3 mm, taken by the Submillimeter Array (SMA)
located on Maunakea in Hawaii (M. A. Gurwell et al. 2007).

Data from VERITAS, Fermi-LAT, and SMA are in units of
flux, data from Tuorla and ZTF/PTF are in magnitude (Mag.),
and data from Swift-XRT consist of count rates. We decided
against performing an advanced X-ray analysis, which would
include using a spectral model and fitting the neutral hydrogen
column density. Instead, we use the lower-level data product,
provided through the Swift online analysis tools (see also
Appendix B). By design, the framework is agnostic to using
different types of input across channels. We approximate the
uncertainties on inputs by sampling; we use Gaussian
distributions, having standard deviations corresponding to the
quoted uncertainties.

In order to create a training sample that exclusively
comprises quiescent states, we first exclude data exhibiting
exceptional source activity. The definition of exceptional
activity as part of data cleaning determines the sensitivity
threshold of the model. We decide to first manually exclude
clearly identifiable high states from the light curves. In
particular, we remove flaring states based on VERITAS data
surrounding MJDs 55725, 57200, 57675, 58100, and 58600.
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We exclude any data taken within 50 days of the respective
VHE flares from all channels.

We proceed to perform algorithmic cleanup. We exclude all
data for a particular time period where at least one of the
channels exceeds a given cutoff. Cutoff values are defined in
terms of the variance of a channel. Specifically, we exclude
data above a maximum flux threshold in the VERITAS, Fermi-
LAT, and SMA channels, above a maximum count rate in the
Swift channels, and below a minimum magnitude for Tuorla
and ZTF/PTF.

5.2. Configuration Parameters and Training

The overall model and parameterization of training are
analogous to those used for the simulation study. However, we
increase the complexity of the model, as well as the
regularization parameter. While we do not perform an
exhaustive hyperparameter optimization, we manually adjust
some key parameters, in order to minimize underfitting and
overfitting. Specifically, we double the size of the RNN layers,
double the dropout rate to 20%, and increase the L2 norm
to 0.001.
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5.3. Results

In Figure 7, we show the full multiwavelength light curve of
BL Lac used in this work. The outcome of the data cleaning
process is indicated, where all excluded time periods are
highlighted by red crosses. For context, the automatically
derived cleaning cutoffs are shown as horizontal dashed lines.
Time intervals highlighted in gray are shown separately in
Figure 8. (The SMA channels are hidden for readability, as
they do not contribute notably to the significance for detection.)
The two panels on the bottom show the combined significance,
and the clustering significance for all channels. The individual
contributions to the significance from each channel are
illustrative, as discussed above.

In the following, we refer to ¢ as the time (number of days)
since MJD 55170.

5.3.1. Performance on Realistic Light Curves

The data used here are much more complex than the
simulated light curves investigated in Section 4. We utilize a
total of 10 channels. These cover a wide range of the
electromagnetic spectrum, having differing observing cadences
and occasional extended gaps. The 4000 days light curve
contains multiple flaring periods across different channels.
From the corresponding significance, one can clearly distin-
guish episodes of high activity from quiescent periods. This
shows that the framework is able to distinguish between
different blazar states.

The first flare contained in this light curve is a VHE flare,
detected by VERITAS at ¢ = 570 (R. A. Ong 2011). This flare
is fainter than subsequent VHE flares, and is detected by the
framework at ~2.5¢. Three of the highest-significance peaks
(t = 2500, 2900, and 3400 days) coincide with VERITAS
flares, each reaching ~60. A close-up view of the first peak is
shown in the left panel of Figure 8. The first and third of these
flares are accompanied by a flare detected by Fermi-LAT, as
indicated by the individual channel contributions to the
significance.

In general, we find elevated significance during the parts of
the light curve that were excluded for training. The main
exception to this is the significance peak at ¢ ~ 1450. At first
glance, the surrounding light curve does not show increased
variability. The signal here is mostly driven by the reconstruc-
tion significance. The lower panel reveals that the largest
contribution comes from the Swift-XRT channels. This can be
explained by the fast transition from a clear high state into a
low state. The transition is first observed at r~ 1300, and
continues after a gap in Swift coverage.

The SMA data yield low-significance detections with a ~1o
spike at 1~ 740 and a <20 spike at ¢t ~ 1250, both following
fast transitions between activity states in the respective
channels. The two peaks preceding the ~2¢ detection at
t = 1250 do not result in pronounced signals. This is
presumably due to the timescale of our analysis being days.
The respective evolution of the SMA light curves is slower; it
also exhibits relatively high intrinsic variance, which increases
the corresponding sensitivity threshold for anomalous
behavior.

5.3.2. Uncertainty Propagation

In Figure 9, we illustrate the impact of input uncertainties on
the output of our model. We show a zoom in of the Fermi-LAT
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Figure 9. Highlighted interval from the BL Lac data set (see caption of
Figure 7). The high significance can be traced back to the Fermi-LAT channel.
Large uncertainties on these data yield correspondingly high uncertainties on
the detection significance. This can be interpreted as a likely false-positive
signal.

channels for 7~ 3200. Here, multiple data points have
relatively high values, but these are also characterized by large
uncertainties. While the corresponding median significance
increases to ~20, the related uncertainty is quite high. We can
thus infer that the elevated state is likely a false-positive signal.

5.3.3. Real-time Detection and Prediction of Increased
Multiwavelength Activity

In this section, we compare the performance of the
framework with the response of the multiwavelength commu-
nity to two historical flaring episodes. A summary is provided
in Table 2; we show the light curves of these flares in the two
panels on the right of Figure 8.

The panel at the center shows a VERITAS flare between
t = 3436 and 3438, which is easily identified by the frame-
work at ~50. Additionally, the flux in the Fermi channels, most
notably in the highest-energy channel, Fermi-LAT 2, starts
increasing around ¢t = 3430. This precursor is also picked up
by the framework, as we can see in the bottom panels. One can
observe an increase in significance, driven by Fermi. For the
initial flux increase in the Fermi channels, the framework yields
a combined significance of <20 around ¢ = 3435. On
t = 3434, this trend was noted by the Fermi-LAT collabora-
tion, as reported in an ATel on the following day (S. Garrappa
& S. Buson 2019). This ATel was then used to trigger
observations with VERITAS and the MAGIC telescope at
t = 3436; VHE flaring activity was found and subsequently
reported by R. Mirzoyan (2019).
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Table 2

Summary of the Community and Framework Response to Historical Multiwavelength Flaring Events

t

Framework Response

(days) Event (Significance at Time) Historical Community Response
570 VHE flare 250 att = 570 Detected at t = 570 and reported in ATel at t = 571 by VERITAS
(R. A. Ong 2011).
2496 VHE flare 60 at t = 2496 Detected at t = 2496 and reported in ATel at ¢+ = 2496 by VERITAS (R. Mukh-
erjee & VERITAS Collaboration 2016).
3434-3435  Flux increase in Fermi 130 att = 3434, and 1.70  Detected at + = 3434 and reported in ATel at r = 3435 (S. Garrappa &
channels att = 3435 S. Buson 2019).
3436 VHE flaring activity So att = 3436 Detected by VERITAS and MAGIC at + = 3436 and reported at t = 3436
(R. Mirzoyan 2019).
3470-3500  Return to low state in VHE 40 att = 3467, and 2.70 at  No response.
t = 3498
3880-3900  Brightness increase in optical 30 att = 3896, and 3.80 at  Detected by Crimean Astrophysical Observatory and Fermi-LAT at t = 3900 and
and gamma-ray flare t = 3899 reported at = 3901 (C. C. Cheung 2020; T. S. Grishina &
V. M. Larionov 2020).
3909-3911  Increase in optical and 30 att = 3909 Detected at + = 3910 by Fermi-LAT and MAGIC, reported at t = 3913
gamma-ray variability (O. Blanch 2020a; R. Ojha & J. Valverde 2020). Optical brightening detected by
the Automatic Telescope for Optical Monitoring between t = 3909 and
t = 3911, reported at 1 = 3911, detected by Hans-Haffner-Sternwarte at
t = 3910, reported at = 3912 (F. Jankowsky & S. Wagner 2020; R. Steineke
et al. 2020).
3940-3941  Gamma-ray flare 240 att = 3940 (driven by  Detected by MAGIC at t+ = 3941 (O. Blanch 2020b)
Fermi data)
3952-3957  Increased gamma-ray activity — 3.60 at t = 3951, and 50 at  Detected by Fermi-LAT collaboration from ¢ = 3957 onwards, reported t = 3959
t = 3957 (I. Mereu 2020).
3958 Record X-ray flare 100 at t = 3958 X-ray and UV rise detected by Swift at t = 3957, reported at + = 3958 (F. D’A-

mmando 2020a), X-ray flare detected by Swift-XRT at + = 3958, reported at
t = 3959 (F. D’Ammando 2020b).

Note. The parameter ¢ denotes the time in days since MJD 55170.

After this flare, subsequent observations with VERITAS
around ¢ = 3470 and 3500 reveal a return to a low-activity
state. For these observations, our framework yields a
significance of ~4c0 and ~2.70, respectively, driven entirely
by the VERITAS channel. This shows that abrupt transitions
from high to low states can also produce a significant detection,
provided the low state is observed shortly after the high state.

The panel on the right shows a prolonged phase of increasing
multiwavelength activity in 2020, culminating in a brief, very
bright X-ray flare at + = 3958. From ¢~ 3880 onwards, the
optical brightness slowly starts increasing, with the significance
beginning to rise roughly 7 days later. The significance reaches
30 at t = 3896, and 3.80 at t = 3899. A day later, the
Crimean Astrophysical Observatory observed BL Lac in its
historical optical r-band maximum. The Fermi-LAT collabora-
tion observed a gamma-ray flare at the same time, both reported
in ATels the following day (C. C. Cheung 2020; T. S. Grishina
& V. M. Larionov 2020).

Up to this point, the significance is driven purely by the
continuing increase in the optical channels, and the brightening
gamma-ray flux is not significantly detected by the framework.
However, after a short period of fluctuation in the g-band and
Fermi-LAT channels, the framework yields another 3o
detection for ¢ ~ 3909. In this case, it is driven by a continued
increase in gamma-ray variability. Observations with Fermi-
LAT and the VHE gamma-ray telescope, MAGIC, revealed a
flare a day later (r = 3910). This was subsequently reported in
ATels (O. Blanch 2020a; R. Ojha & J. Valverde 2020). No

contemporaneous observations of this MAGIC-detected VHE
flare were taken with VERITAS.

Simultaneously, continued optical observations with multiple
instruments also found BL Lac in a high state at t = 3909
(F. Jankowsky & S. Wagner 2020; R. Steineke et al. 2020). A
further increase in Fermi-LAT flux is detected around ¢ = 3940
at 2.40. Att = 3941, the MAGIC collaboration again detected a
bright VHE gamma-ray flare (O. Blanch 2020b). Here, the
framework yields 240 one day earlier. At t = 3951, the
continued increase in gamma-ray variability is detected by the
framework at 3.60.

These increases in multiwavelength activity were used to
trigger observations with the Swift satellite for 4 days
(3954-3957). The XRT observed the second-highest count rate
from BL Lac up to that date, and the Swift UV-Optical
Telescope found the source to be in an elevated UV-optical state
at the same time (F. D’Ammando 2020a). Further Swift
observations at + = 3958 subsequently found a “record X-ray
flare,” with the highest observed count rate from this source
(F. D’Ammando 2020b). Also at ¢ = 3958, Fermi-LAT
observed a gamma-ray flare from BL Lac (I. Mereu 2020).
Meanwhile, the framework reaches a significance around 5o a
day earlier, at + = 3957, driven by the high flux in all Fermi
channels, particularly the HE ones. This significance then
quickly exceeds 100 with the detection of the exceptionally
bright X-ray state at # = 3958. Such a high X-ray state is quite
divergent from the data used to train the framework. Accord-
ingly, the reconstruction significance contributes strongly to the
combined signal.
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5.4. Conclusions

We demonstrate the ability of our model to reliably detect
flares of the blazar BL Lac, as well as hint at their precursors.
Detected events can be further characterized with our model.
This is accomplished by retracing the contributions of the
different channels (or combinations thereof) to the final
significance. We show that the uncertainties on the multi-
wavelength observables can be propagated onto the corresp-
onding significance for detection; this improves the reliability
predictions.

Our method is suited for real-time analyses. Comparing to
the historical response of the community, we show that the
framework detects flaring states at the same time or earlier than
the state-of-the-art. The significance obtained from our model
offers a simple, single-scalar metric to quantify anomalous
states (and possible precursors) in multiwavelength light
curves. Such a metric can be helpful for communication. Our
approach thus has the potential to improve the reaction of the
community to interesting events.

6. Summary and Discussion

In this work, we showcase a novel deep learning analysis
framework, capable of detecting various types of anomalies in
real-world, multiwavelength light curves. While handling
varying cadences and gaps in observational coverage, our
model differentiates source variability from noisy background
activity. As we avoid the need for a labeled training data set of
flaring states, we open the door to discovery of the unexpected.

We evaluate our framework on simulations and on historical
blazar light curves. We demonstrate that we can effectively
detect flaring behavior consisting of clear high or low states, as
well as of correlated signals across bands. An advantage of our
approach is the standardized quantification of anomalous states
in terms of their significance. This can be used to robustly make
consistent decisions on resource management for future
observations. It also facilitates communication within the
multiwavelength community, where different definitions of a
flare are commonly used.

Performance on simulations and on real data. Using light-
curve simulations, we show that upward and downward
fluctuations from the baseline state of a source are detectable.
The associated significance scales with the intensity of
deviations. Strong fluctuations from the baseline can already
be identified from a single data point. Fainter deviations or
those in noisy channels require multiple subsequent data points
for meaningful detection, as one would expect.

We evaluate real observations of blazar variability spanning
a wide range of the electromagnetic spectrum. Our framework
can reliably detect known historical flares as they occur in
different channels. The respective contributions to the detection
significance from different channels (or combinations thereof)
can also be traced. Comparing our results to the reaction of the
international community, we confirm that our framework can
consistently pick up flares on the same timescales. In some
cases, our model would have provided hints of upcoming
interesting activity earlier than was achieved in practice.

Timescales of source variability. A crucial characteristic of
blazars is their pronounced variability on various timescales,
ranging from minutes to years. By design, an instance of the
framework is sensitive to variability on a specific timescale.
(This is adjustable per channel, given the minimum time bin
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width parameter, Yimeager-) In the current study, we illustrate
the sensitivity of our framework for variability timescales of
days. Other timescales could be considered in the future, e.g.,
using an ensemble of trained pipelines, covering timescales
from hours to weeks.

The choice of a timescale for the search window is informed
by the science questions being investigated. It is also
constrained by the availability of relevant data. To resolve
this, one could for example augment existing data with
simulations. These may span different quiescent configurations,
usable as new training samples. Such an approach also opens
the door to tuning the sensitivity of the model to particular
topologies of flares.

Role of data cleaning. As the framework is trained on
nonanomalous data, which rarely exists in practice, prior data
cleaning is needed. This may introduce biases, as the definition
of anomalous source behavior is typically influenced by the
expectations and goals of the analysis. If the cleaning
procedure is too lenient, the framework will not be sensitive
to subtle anomalies. Conversely, cleaning that is too strict leads
to an increase in the number of false-positive signals. For some
highly variable sources, identifying and excluding anomalous
states can be challenging, especially when there are large gaps
in coverage. To address this challenge, our approach
incorporates a statistical data cleaning technique based on the
“Vsignoise parameter.

Impact of model dimensionality. In general, simple models
may not capture the richness of a data set, and could result in
underfitting. Increasing the number of dimensions enables the
framework to model more complex source variability. How-
ever, this comes at the cost of additional computational
complexity, and may result in overfitting.

As part of the forecasting stage, we address possible
underfitting by progressively increasing the size of the model.
This is moderated by verifying that the training score no longer
improves past a certain level of complexity. To avoid
overfitting, we use a wide range of augmented and randomized
realizations of the training data set, as described in Section 3.
We also incorporate standard regularization techniques.

Another crucial aspect of the framework is the complexity of
the autoencoder, and in particular the size of the embedding
vector. The number of components of the BGMM is also of
great importance. As described above, we gradually increase
the complexity until the mapping to clusters in the embedding
space stops improving. We use a diverse collection of
augmented and randomized inputs, as for the forecasting stage.
Augmentation in this case also includes addition of upward and
downward fluctuations to the data. Such examples reduce the
reconstruction error of the autoencoder for potential flares,
which are not present in the background training sample. The
performance of the autoencoder is also verified as part of
inference, by inspection of the reconstruction error via Opec.
Systematically high values of the reconstruction error would
indicate underfitting.

Resampling uncertainties on observables. We have illu-
strated how our model lends itself to propagating uncertainties
on input data. In particular, outliers with substantial uncertain-
ties yield significance values with respectively large uncertain-
ties. This allows one to effectively avoid false-positive
predictions that are related to low-quality data.

In order to propagate uncertainties from observables to the
corresponding significance, the input light curves are
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resampled. For the current study, the underlying assumption is
that the provided uncertainties on inputs are statistically
independent; more complicated correlations may be considered
as needed. We also note that after resampling individual values
may be nonphysical (e.g., correspond to negative fluxes).
While a restriction on the resampling process could circumvent
this, that would lead to an underestimation of the corresponding
uncertainty. In any case, the data-driven neural network
approach is agnostic to such transformations on input data.

Impact of varying observation cadence. We designed our
framework to be robust against potentially confounding
changes in cadence. Our solution, based on temporal weights,
enhances the sensitivity for recent signals in sparse channels.
The downside of this approach is that it does not differentiate
between recent low activity and lack of data. This may limit the
capability of the model to accurately capture intricate temporal
patterns within and across channels. More sophisticated
weighting schemes may be considered to address specific use
cases.

Future work and extensions. Our approach can be utilized to
detect and analyze transient phenomena in general; the main
constraint is that the signal is detectable via deviations from an
established baseline of background activity. Our framework
therefore sets the groundwork for a broad range of future work.
In particular, the pipeline is suitable for deployment as part of a
real-time automated broker system, such as AMPEL (J. Nordin
et al. 2019). It can therefore be used to quickly detect
interesting activity and alert the community.

For example, future work may explore more sophisticated
forecasting models. In particular, probabilistic modeling of the
differences between predictions and real data could increase the
robustness of the model.

Furthermore, the framework could be extended to differ-
entiate between known categories of activity, while remaining
sensitive to unexpected anomalies. For instance, separate
significance metrics could be derived for specific types of
variability, e.g., based on clustering in the embedding space.
This also has potential as a tool for comparing different
theoretical emission models, or for making predictions and
detecting flares in the context of specific models.
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Appendix A
Light-curve Simulations

This section describes in more detail the specifics of the
light-curve simulations of 1ES 1215+303. Three representative
examples of simulated multiwavelength light curves are shown
in Figure 6.

A.l. Fermi-LAT

The Fermitools package (version 2.2.0), a software package
provided by the Fermi-LAT collaboration to facilitate analysis
of telescope data, includes the gtobssim tool for simulating
LAT observations.” The inputs to these simulations are the
instrument response functions (IRFs) to be used, the time range
of the observations, a list of sources to be simulated and
parameters corresponding to each source, such as their
positions in the sky, their average fluxes, and their spectral
models. As the goal is to train the model on pure background
data, we simulate the source at a constant flux level, only
perturbed by Poissonian- and instrument-induced noise.
Because we are simulating the source in two adjacent energy
bands, Fermi-LAT and CTAO, respectively, we make sure that
the simulated spectra in both bands are connected. In order to
achieve this, we use the “SpectralTransient” class from
gtobssim, allowing us to simulate a log-parabolic spectrum.
As input to the simulation, we use the fluxes obtained for the
2017 nonflaring period defined by J. Valverde et al. (2020,
Table 9). We simulate a total of 1000 consecutive days of
Fermi-LAT observations between MJD 55999 and 56999. In
our case, we use the latest LAT IRF (P8R3_SOURCE_V3),
and choose to limit the simulation to the source in question. We
use the latest templates for diffuse and Galactic background
components (gll_iem_v07.fits, iso_P8R3_SOURCE_V3_vl.
txt). Additionally, we use the relevant spacecraft file for the
time range of the simulations, obtained online.®

After generating the simulated event files, we use
fermipy (v. 1.2, M. Wood et al. 2017) to perform a Fermi-
LAT maximum-likelihood analysis, fitting the target source
and the background components in three adjoining energy
bins (100-669 MeV, 669 MeV—-4.48 GeV, and 4.48-300 GeV)
over the full 1000 days. We use a 15° circular ROI
and apply standard event-quality cuts, (DATA_QUAL>0)&&
(LAT_CONFIG = = 1), evclass = 128, evtype =3, zmax = 90.

Finally, a daily-binned light curve is produced by fitting the
source parameters together with the normalization of the
isotropic diffuse background for each 1 day interval within
each energy bin. For all input light curves, low-confidence data
are discarded beforehand. This corresponds to all data with a
negative detection TS, and all data where the relative flux
uncertainty, AFlux/Flux, is larger than 5.

A.2. CTAO

Simultaneously, we simulate light curves of 1ES 1215+303
as it would be observed by the upcoming CTAO, using the
gammapy package (v. 0.20.1; C. Deil et al. 2017) together with
the public preliminary CTAO IRF.” Specifically, the IRF we
use is Prod5-North-20deg-AverageAz-4LSTs09MSTs.18000s-
v0.1 fits.gz. In order to simulate a CTAO light curve, one has to

> https://github.com /fermi-lat/Fermitools-conda/

 hups: //fermi.gsfc.nasa.gov/cgi-bin/ssc/LAT/LATDataQuery.cgi
" htps:/ /www.cta- observatory.org/science/cta-performance/
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supply the following inputs: the source coordinates, an
assumed spectral model, including average flux and a spectral
index, a time profile, and times and exposure durations for the
individual observation runs. We use the “ConstantTempor-
alModel” class to simulate a realistic [ACT observing cadence,
given actual observation times from the VERITAS data set of
the source in question. This allows us to keep a realistic mix of
small and large gaps between individual observations.

As a proxy for the source state, we use the flux and spectral
parameters of the 2017 quiescent state, as given in J. Valverde
et al. (2020). The spectral model the simulations are based
upon is the same log-parabola model as used for the Fermi-
LAT simulations. We add to this a term accounting for EBL
extinction (J. D. Finke et al. 2010), which results in a sharper
drop-off of the flux at VHE energies. The subsequent analysis
of the simulated data is also performed in gammapy. We divide
the simulated data in multiple adjacent energy bins
(31.6-79.4 GeV, 79.4-199.5GeV, 199.5GeV-1.2598 TeV,
and 1.2598-12.589 TeV). We discard data with a relative flux
uncertainty higher than 3.

Appendix B
Multiwavelength Data

B.1. VERITAS

VERITAS is an array of four IACTs, located at the Fred
Lawrence Whipple Observatory outside Tuscon, Arizona
(31.7° N, 110.0° W). The VERITAS instrument and perfor-
mance are described in detail in J. Holder et al. (2008) and
N. Park (2015). Of particular relevance for this study is the
VERITAS sensitive energy range, which extends from
~100 GeV to 30 TeV. VERITAS has observed BL Lac since
2008. We obtain a long-term VERITAS light curve of the
source, spanning the years 2008-2020 and including 80 hr of
quality-selected data (live time). Data were processed via the
standard ~ VERITAS  calibration and  reconstruction
pipelines (G. Maier & J. Holder 2017). Data with relative
uncertainty higher than 3 were discarded.

As mentioned above, we use the reconstructed flux of the
source as input for our pipeline. The full data set for BL Lac
has not yet been published by VERITAS. We therefore show
the corresponding excess photon count rate, slightly modified
by random noise, in Figures 7 and 8. This count rate traces the
relevant changes to the measured flux of the source, and is thus
shown here as a proxy for the flux of the source.

B.2. Fermi-LAT

The Fermi-LAT data are retrieved from the public LAT
database. In order to create a long-term light curve, we analyze
the LAT data in the same three energy bins as for the
simulation study, using identical event cuts. For each energy
bin, we perform an ROI fit of all photons within a 15° circle
centered on BL Lac. We take into account all sources from
4FGL-DR3 (S. Abdollahi et al. 2022) within a 20° circle. This
ensures that photons leaking from these sources into the ROI
are adequately modeled. We produce a daily-binned light curve
for each energy bin over the full duration, including all data
with nonnegative TS values. Data with relative uncertainty
higher than 3 are discarded.
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B.3. Swift-XRT

The XRT on board the Swift satellite (N. Gehrels et al. 2004;
D. N. Burrows et al. 2005) observes the X-ray sky at energies
between 0.2 and 10 keV. We select all observations of BL Lac in
the relevant time range and use the Swift online analysis tool to
automatically create a count-rate light curve (P. A. Evans et al.
2007).® In order to have some information about the spectral
evolution of the source, we make use of the fact that the
provided light curve can be separated into two energy bins: the
soft band, from 0.3 to 1.5 keV, and the hard band, from 1.5 to
10 keV. In each bin, we filter data having a relative uncertainty
>0.25. We additionally filter data that could be affected by
pileup due to high count rates, particularly in the photon-
counting mode (>0.5 counts s see, e.g., J. Ballet 1999).

B.4. Optical Data Sets
B.4.1. Tuorla

The Tuorla observatory, with its 1 m optical telescope
located in Finland, provides r-band magnitudes for a collection
of TeV blazars (K. Nilsson et al. 2018) between 2002 and
2012. From this database, we obtain the r-band light curve of
the blazar BL Lacertae for the relevant time range.

B.4.2. PTF and ZTF

The PTF was an optical monitoring program utilizing a
collection of telescopes located in San Diego County,
California between 2009 and 2012 (N. M. Law et al. 2009).
In 2017, this was replaced by the ZTF (E. C. Bellm et al.
2019a, 2019b). Both programs are focused on observing
transients, but due to their monitoring method also provide
long-term light curves of persistent sources such as blazars.
Data sets for both programs are publicly available. We make
use of their BL Lac r- and g-band light curves, provided
through the IRSA time-series tool (IRSA 2022). PTF and ZTF
data sets have to be retrieved individually, and individual
cleaning steps have to be taken. For PTF, we include data with
goodflag = =1, while for ZTF we filter data with catflag >
32768.

B.4.3. Combining the Data Sets

We join the three optical data sets into two light curves, one
for the r band and one for the g band. ZTF supersedes PTF and
only began operations 5 yr after the end of the Tuorla program.
All optical data after MJID 59784, following a long gap, are
therefore exclusively ZTF data.

Some temporal overlap exists between the PTF and Tuorla
data sets. Even though the photometry between the two
telescopes differs, quasi-simultaneous observations from the
instruments provide consistent magnitudes. We therefore
combine the respective r-band data.

ZTF and PTF also use different, though very similar filters
and photometric corrections. In the case of PTF, the Sloan
Digital Sky Survey is used as a reference, while the Pan-
STARRS1 Survey is used for ZTF. Given the large gap
between the latest PTF data and the first ZTF data, even a slight
offset between calibrations would not impact our results.

As some PTF data are associated with very large
uncertainties, we exclude all PTF data that have an absolute

8 https: //www.swift.ac.uk /user_objects/
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uncertainty larger than the largest uncertainty in the Tuorla and
ZTF data sets. This leaves no g-band data before the start of
operations of ZTF.

B.5. SMA

The 0.87 and 1.3 mm flux density data were obtained at the
SMA near the summit of Maunakea (Hawaii). They were
kindly provided to us by M. Gurwell. We filter all data that
have a relative measurement uncertainty >0.1. BL Lac is
included in an ongoing monitoring program at the SMA. It
aims to determine the fluxes of compact extragalactic radio
sources, which can be used as calibrators at millimeter
wavelengths (M. A. Gurwell et al. 2007). Observations of
available potential calibrators are from time to time observed
for 3 to 5 minutes. The measured source signal strength is
calibrated against known standard objects, typically solar
system objects (Titan, Uranus, Neptune, or Callisto). Data
from this program are updated regularly, and are available at
the SMA website.’
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