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1 Introduction

Top quarks are copiously produced in proton-proton (pp) collisions at the CERN LHC. At
LHC energies, the dominant production mode is via strong interaction processes, resulting in
the production of top quark-antiquark pairs (tt). The LHC experiments have measured the
inclusive tt production cross section at various centre-of-mass energies, using different top
quark decay channels [1-20]. Top quarks can also be produced singly in electroweak processes
in three different modes known as ¢ channel, s channel, and W-associated production (tW).
The ATLAS and CMS Collaborations have observed or reported evidence for single top quark
production in all three modes at several centre-of-mass energies [21-24].

A different mechanism can lead to the production of tt pairs in pp scattering via the
exchange of colourless particles, such as photons () or pomerons. In this case, one or both
protons may remain intact after the interaction, while part of their energy is used to produce
the tt pair. The process where the two protons survive the collision, pp — pttp, is called
central exclusive production. It receives contributions from quantum electrodynamics (QED)
and quantum chromodynamics (QCD) diagrams [25]. The diagram with -y fusion, sketched
in figure 1, is expected to dominate in the phase space region accessible to forward proton
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Figure 1. Leading Feynman diagram for tt central exclusive production via y-y fusion.
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detectors at the LHC [25, 26]; the pomeron-pomeron fusion, which can be described at the
lowest order in perturbation theory as a colour-singlet two-gluon exchange, as well as the
photoproduction (7y-pomeron) process, give negligible contributions in comparison.

Predictions for central tt exclusive production in the framework of the standard model
(SM) are available, including both QED and QCD contributions [26-32]. A critical element, in
particular in the case of strong interaction processes, is the evaluation of the so-called proton
survival probability. This is the probability that no additional soft interactions between the
spectator partons of the colliding protons take place, which can lead to energy loss and/or break
up of the interacting protons. For the 7y fusion process this value is close to unity, while it is
limited to a few percent for the QCD processes. The cross section for the pp — pyyp — pttp
process (referred to as ¢y — tt) amounts to 0.22 4+ 0.05 fb including next-to-leading-order
(NLO) perturbative QCD corrections [32]. While the observation of the central exclusive
production of tt pairs is only expected to become possible at the high-luminosity LHC [33],
contributions from physics beyond the SM could enhance the production cross section, making
it detectable with the data collected so far. In particular, this production mechanism is
sensitive to the ty vertex, which makes it suitable for interpretations in the context of Effective
Field Theory [34] or anomalous couplings [29, 35]. This offers complementary information
to processes like tty production, measured by CMS and ATLAS at 13 TeV [36-39]. This
process is also sensitive to models that incorporate extra spatial dimensions [40].

This paper reports on a search for central exclusive tt production at the LHC, carried
out by reconstructing the top quarks from their decay products in the CMS central detector,
and looking for the presence of two forward protons with the CMS-TOTEM precision proton
spectrometer (CT-PPS) [41]. Each top quark decays almost always to a W boson and a
bottom quark. At least one of the two W bosons from top quark decays is reconstructed in
the leptonic (ev, or pv,) channel (including W — tv, decays where the tau lepton decays
leptonically), while the other W boson is reconstructed either in the leptonic or hadronic
decay mode. Throughout the paper, the events where both top quarks decay in the leptonic
channel are referred to as dileptonic, while events with one top quark decaying leptonically
and the other hadronically are referred to as lepton + jets (¢ 4 jets). The two scattered
protons are detected by CT-PPS, one on each side of the interaction region. The analysis
is based on data collected in 2017.

The paper contains seven sections. Section 2 briefly illustrates the CMS detector, the
CT-PPS experimental setup, and the reconstruction of basic objects. Section 3 specifies the
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Figure 2. A schematic layout of one arm of CT-PPS along the LHC beam line. The RPs shown in
red host the detectors used in this analysis.

data and simulation samples used in the analysis. Section 4 outlines the analysis strategy,
and details its various steps. Section 5 is devoted to the treatment of systematic uncertainties.
Section 6 describes the statistical analysis and presents the results. The paper is closed
with a summary in section 7.

2 Experimental setup and particle reconstruction

2.1 The CMS detector and the CMS-TOTEM precision proton spectrometer

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal
diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon
pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and
a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap
sections. Forward calorimeters extend the pseudorapidity () coverage provided by the barrel
and endcap detectors. Muons are detected in gas-ionisation chambers embedded in the
steel flux-return yoke outside the solenoid. A more detailed description of the CMS central
detector, together with a definition of the coordinate system used and the relevant kinematic
variables, can be found in ref. [42].

The CT-PPS detector is an array of movable, near-beam devices, called Roman Pots
(RPs), enclosing tracking or timing detectors, and installed along the LHC beam line at
about 210 m from the CMS interaction point (IP), on both sides, in LHC sectors 45 (“arm 0”)
and 56 (“arm 17). A sketch of the system layout for one arm is shown in figure 2. During
normal data taking, detectors are inserted horizontally, their edges approaching the beam
as close as 2-3 mm from its nominal orbit, in order to reconstruct the flight path of intact
scattered protons coming from the IP. As insufficient information was available from the
timing detectors in 2017, only data from the tracking stations are used in this analysis. In the
2017 configuration, one tracking station per side was equipped with silicon strip detectors [43]
and one with silicon pixel detectors [44], at a distance of about 213 (210 far”) and 220 m
(“220 far”) from the IP, respectively. They can provide up to five and up to six measured
points per track, respectively. Each strip tracker allows the reconstruction of at most one
proton track per event; if hits compatible with more than one track are reconstructed in
at least one strip tracker, the event is discarded, to avoid ambiguities arising from wrong
combinations of orthogonal strips. Each pixel tracker allows the reconstruction of multiple
tracks per event, up to 10.



2.2 Particle reconstruction

In CMS, object reconstruction is based on the particle-flow algorithm [45], which aims
at reconstructing and identifying each individual particle in an event, with an optimised
combination of information from the various detector elements.

The electron momentum is estimated by combining the energy measurement in the ECAL,
including all bremsstrahlung photons spatially compatible with originating from the electron
track, with the momentum measurement in the tracker. The transverse momentum (pr)
resolution ranges from 1.6 to 5% for electrons with pp ~ 45 GeV from Z — eTe™ decays [46].

The muon momentum is obtained from the curvature of the corresponding track. Matching
muons to tracks measured in the silicon tracker results in a relative pp resolution of 1% in
the barrel and 3% in the endcaps [47], for muons with pt up to 100 GeV.

The primary vertex (PV) is selected using tracking information only: vertices with at
least four tracks and a longitudinal distance of less than 24 cm from the centre of the detector
are selected. From these candidates, the PV is taken as the one with largest scalar sum of
associated particle pp, as described in section 9.4.1 of ref. [48].

Jets are clustered from reconstructed particles using the anti-kt algorithm [49, 50] with
a distance parameter of 0.4. The jet momentum is determined as the vectorial sum of all
particle momenta in the jet, and is found from simulation to be, on average, within 5-10%
of the true momentum over the whole pt spectrum and detector acceptance. To mitigate
effects from additional pp interactions within the same or nearby bunch crossings (“pileup”),
tracks identified to be originating from pileup vertices are discarded, and an offset correction
is applied to correct for remaining contributions [51, 52]. Jet energy corrections are derived
from simulation studies so that the average measured energy of jets becomes identical to that
of particle-level jets. In-situ measurements of the momentum balance in dijet, photon+jet,
Z+jet, and multijet events are used to determine any residual differences between the jet
energy scale in data and in simulation, and appropriate corrections are applied [53]. The jet
energy resolution amounts typically to 15-20% at 30 GeV, 10% at 100 GeV, and 5% at 1 TeV.

The missing transverse momentum vector pp 55 i computed as the negative vector sum
of the pt of all the particle-flow candidates in an event, and its magnitude is denoted as
PP [54]. The vector pp™ is modified to account for corrections to the energy scale of
the reconstructed jets in the event.

Intact protons emerging from interaction vertices at small angles are detected by CT-PPS,
either with a single RP station (pixels or strips), or the combination of the information
from two stations in the same arm (multi-RP reconstruction). The latter features superior
resolution, thanks to the lever arm between the two stations, while it suffers from lower
efficiency because of the double-track requirement. In this analysis, only multi-RP proton
candidates are used. The proton reconstruction efficiency is evaluated as the product of
three different contributions [55]. The first one is the efficiency of the strip detectors, locally
degrading in time because of radiation damage. The second contribution is the multi-RP
reconstruction efficiency, which combines the acceptance of protons propagating between the
near and far stations, the pixel detector efficiency (similarly affected by radiation damage), and
the efficiency of the reconstruction algorithm. Values for the combination of these two effects
are determined, as functions of the position of the track in the transverse plane, for each of five



data-taking periods (“eras”). Finally, the efficiency of the single-track requirement in the strips
mentioned in section 2.1 is taken into account by applying scaling factors, derived globally
per arm, for each era. This is the most significant contribution to proton reconstruction
efficiency, with values below 50% for the periods with the highest instantaneous luminosity.

The kinematic state of the proton is characterised by the fractional momentum loss,
defined as & = (|pi| —|P,|)/|Pi|, where p; and p, are the momenta of the incoming and outgoing
protons, respectively. The value of £ is derived from the measured slopes and intercepts of
the outgoing proton along with detailed knowledge of the LHC magnetic field. Dedicated
alignment and calibration procedures are in place for different fills and LHC optics setup [55].
The detector acceptance as a function of ¢ is determined by the geometry of the detectors and
the LHC collimators, and also depends on the specific LHC settings: in 2017, most detectable
protons had & values in the range 0.02 < £ < 0.15 [55]. Those used in the analysis are required
to be within fiducial regions in the £ — 6, plane (with 6, denoting the proton scattering angle
in the horizontal plane at the IP) where the efficiency can be reliably determined.

3 Data and simulation samples

This analysis uses data collected in 2017 considering only runs where all CT-PPS strip
and pixel detectors were operational, which corresponds to an integrated luminosity of
29.4fb " [56, 57]. The beam crossing angle at the IP, cx, defined here as the angle between
the LHC axis and one of the beams, was set at different values, with most data being recorded
at ax = 120, 130, 140, or 150 urad. The remaining data, corresponding to less than 1 fbfl,
are not included in this analysis.

To simulate the signal and background processes, different Monte Carlo (MC) event
generators are used. For all processes, the response of the central CMS detector is simulated
using the GEANT4 package [58].

A v — tt signal sample is produced at leading order using FPMC [59] as the matrix
element generator, with the equivalent photon approximation for the photon flux [60] and a
proton survival probability of 0.9 [33, 35]. Events are generated for 0.02 < & < 0.20. Top
quark decays are simulated with MADSPIN [61], selecting dilepton and ¢ + jets decays. The
outgoing protons are propagated through the beamline from the IP to the RPs using a fast
forward-proton simulation that includes beam-divergence and vertex smearing at the IP as
well as the beam crossing angle dependence [55]. Hits in the CT-PPS detectors are simulated
taking into account aperture limitations for a given crossing angle, and sensor acceptance and
resolution. The efficiency is accounted for at a later stage by assigning appropriate weights
to the events as discussed in section 4.4. The simulated hits are then used to reconstruct
proton tracks by means of the standard CT-PPS reconstruction algorithms.

Backgrounds arise from a variety of hard processes in combination with two uncorrelated
protons from pileup interactions within the CT-PPS acceptance. The dominant hard-
process background is inclusive tt production. A smaller contribution comes from single
top quark production in the tW channel and, for the ¢ + jets channel, from QCD multijet
events; additionally, depending on the tt decay channel, there are small but non-negligible
contributions from V + jets, where V is either a W or a Z boson, and Drell-Yan events.
Other possible background sources such as inclusive VV’ production and other single-top



production channels have been found to have negligible impact and are not considered
further in the analysis.

The inclusive tt sample is simulated at NLO precision using the POWHEG (v2.0) [62—64]
event generator. The inclusive tt production cross section is scaled before the fit to the best
available theoretical prediction at next-to-next-to-leading-order (NNLO) in QCD, amounting
to 832 pb [65]. For all background sources containing top quarks, the pr spectra of top quarks
in simulated samples are reweighted according to predictions at NNLO QCD accuracy [66].
For both signal and background event generation, a top quark mass of 172.5 GeV is assumed.

For all processes, the parton showering and hadronisation are simulated using PYTHIA
8.2 [67] with the CP5 underlying event tune [68]. The NNPDF3.1 [69] NNLO parton
distribution functions (PDFs) are used.

No simulated sample is used to evaluate the contribution of the QCD multijet background.
Instead, a purely data-driven method is applied, as described in section 4.3.

4 Analysis strategy

The analysis is conducted independently for the events in the dilepton decay channel and for
those in the ¢ + jets decay channel. The resulting distributions from the two channels are
used as input to a common maximum likelihood fit, and a combined result is extracted.

4.1 Event selection

Events of interest are selected by CMS using a two-tiered trigger system. The first level,
composed of custom hardware processors, uses information from the calorimeters and muon
detectors to select events at a rate of around 100 kHz [70]. The second level, known as
the high-level trigger (HLT), consists of a farm of processors running a version of the full
event reconstruction software optimised for fast processing, and reduces the event rate to
around 1kHz before data storage [71].

In the dilepton analysis, events are selected using a combination of single-lepton and
dilepton triggers that identify leptons within || < 2.5. The single-lepton HLT selection
requires the presence of an isolated electron [46] (muon [47]) reconstructed with pp > 35
(27) GeV. Alternatively, a 24 GeV requirement is applied for muons within || < 2.1. The
dilepton HLT selection requires the presence of two isolated electrons with pp > 23 and
12 GeV, two isolated muons with pp > 17 and 8 GeV, one isolated electron with pp > 23 GeV
and one isolated muon with pp > 8 GeV, or one isolated muon with pr > 23 GeV and one
isolated electron with pp > 12 GeV.

In the ¢ + jets analysis, events are selected using a combination of single-lepton and jet
triggers. The single-lepton HLT selection requires the presence of a single isolated electron
(muon) with pp > 35 (27) GeV, reconstructed within || < 2.5. The remaining selections
require the presence of a single electron with pp > 28 GeV and a sum of the pt of the jets
greater than 150 GeV, or the presence of a single electron with pp > 30 GeV and at least one
jet with pp > 35 GeV; in both cases, the electron must be reconstructed within |n| < 2.1.

Offline, the reconstructed lepton with highest pp must have pr > 30 GeV and, if it is
an electron, it must have |n| < 2.1, while if it is a muon it must have |n| < 2.1(2.4) for the



dilepton (¢ + jets) analysis. In the dilepton analysis, the lepton with the second highest value
of pr must have pr > 20GeV and |n| < 2.4. Additionally, the charged leptons are required
to satisfy specific quality criteria. A set of scale factors is applied to simulated events as
a function of the lepton pt and 7 to account for differences observed in the lepton trigger,
reconstruction, and identification efficiency between data and simulation [46, 47].

Reconstructed jets are required to have pr > 30 (25) GeV in the dilepton (¢ + jets)
channel, and || < 2.4. Moreover, the angular distance AR = V (An)® + (A¢)? between a jet
and a lepton must be greater than 0.4, where ¢ is the azimuthal angle in radians.

Jets originating from the hadronisation of b quarks are identified with the DEEPCSV
algorithm [72] as b-tagged jets. The “medium” working point is used, corresponding to a
typical efficiency of about 70% for correctly identified b quark jets, with a misidentification
probability of 12 (1)% for ¢ quark (gluon or light quark) jets. Scale factors are applied to the
simulated events as a function of the jet pt and n to account for the differences observed
in the b jet identification efficiency between data and simulation.

The final selection in the dilepton channel requires the presence of at least two leptons,
with the two highest pr leptons having opposite charge; the dilepton system they form is
required to have an invariant mass my, > 20 GeV. For the events with two reconstructed
leptons of the same flavour, my, is required to be outside a 30 GeV window around the Z
boson mass peak: (my, < 76 GeV) U (my, > 106 GeV). Events are categorised according to
the final-state charged leptons as ee, ey, or pp. Only events with at least two b-tagged jets
are retained. In the ¢ + jets channel, the final selection requires the presence of exactly one
lepton (electron or muon), at least two jets passing the b tagging selection criteria, and at
least two jets failing the b tagging selection criteria.

Both the dilepton and the £ + jets analysis require one multi-RP proton track to be
reconstructed in each arm.

The overall efficiency of the selection, including detector acceptance, is about 2% for
the dilepton channel and 0.8% for the ¢ + jets channel.

4.2 Top quark pair reconstruction

Full reconstruction of the tt pair can be used to relate its kinematics to that of the forward
protons. In central exclusive production, the momentum transfer at the interaction vertex is
typically quite small, implying very small values (below 1 GeV) for the transverse momentum
of the outgoing protons and, consequently, of the central system. Moreover, the invariant
mass and the rapidity of the central system X are related to the momentum loss of the
protons by the expressions:

mx = /8§18, (4.1)

1
Yx = iln— (4.2)

where /s is the centre-of-mass energy and &, &, are the fractional momentum losses of the
outgoing protons in the positive and negative z direction, respectively. The reconstruction
of a tt candidate through its decay chain is carried out independently for the dilepton and
{ + jets channels, in order to take advantage of their different kinematic properties. In the



dilepton channel, the tt system is reconstructed by means of an analytic method, briefly
outlined in the following, and the resulting tt observables are used as input to the multivariate
discriminant described in section 4.5, together with the kinematic observables of the tagged
protons. In the £ + jets channel, the kinematics matching between the tt system and the
tagged protons is explicitly used as a constraint in a global kinematic fit.

In the dilepton analysis, the two charged leptons and the two b-tagged jets with the
highest pt are selected. The association of the leptons with the jets relies on a kinematic
reconstruction algorithm [73] that also estimates the kinematics of the top quark and antiquark.
The missing transverse momentum is assumed to originate solely from the two neutrinos
in the decay, and the W boson and top quark masses, my and m;, are constrained to
their known values [74]. For both lepton-jet combinations, multiple replicas of the energy-
momentum conservation equations are generated, with particle momenta varied according
to their resolution and the width of the W boson. For each of them, the solution with the
smallest value of the tt invariant mass (m.;) is chosen, and a weight is assigned based on
the resulting invariant mass of the lepton and b quark jet system, with the generator-level
spectrum as reference. The weights are then used to obtain weighted averages of the kinematic
observables of the top quark and antiquark. The combination of leptons and jets that yields
the highest sum of weights is chosen. This algorithm finds a physical solution in about 90%
of the events passing the previous selection, both for data and for simulation. For simulated
tt events, the correct association of lepton and b jet is achieved in 70% of the cases. The
events for which no physical solution is found are not removed, but a fixed, unphysical value
is assigned to their tt observables.

In the ¢+jets analysis, only the b-tagged jets and the non-b-tagged (denoted ‘light-flavour’)
jets with the highest pt values are considered: up to four of each type are selected. Top quark
candidates with the W boson decaying leptonically are reconstructed from combinations
of a b-tagged jet, the selected lepton, and a neutrino candidate. The neutrino candidate
is initially reconstructed from the missing transverse momentum, with the longitudinal
component assigned by imposing the constraint m,, = my . In cases where the two solutions
of the resulting quadratic equation are real, the one closest to the longitudinal momentum
of the lepton is chosen. Top quark candidates with the W boson decaying hadronically
are reconstructed from combinations of a b-tagged and two light-flavour jets. The choice
of the two b quark jets to be used for top quark and antiquark reconstruction, and of
their association with the other objects, is based on the invariant mass of the reconstructed

t and t candidates, m;"*® and m;®°. The combination that yields the lowest value of
1My — mef| 4 [mE — m{] is selected, where m{*" is chosen to be 173.1 GeV, from direct

measurements [74]. Using this procedure, b quark jets are found to be correctly assigned in
75% of all cases. The kinematic observables of all reconstructed objects are further corrected
by means of a kinematic fit. The momentum components of the lepton, the four jets, and the
neutrino, as well as the fractional momentum loss of the forward protons, are used as inputs
to the fit and allowed to float, constrained by Gaussian probability distribution functions
centred on their measured values and with the widths equal to the measurement uncertainties.
The longitudinal component of the neutrino momentum is left free to float in the fit. The
W boson mass (myy) and my are constrained to their known values, and the total pr of the
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Figure 3. Normalised distribution of the relative resolution of the reconstructed m,; in simulated
signal events, for the dilepton (left) and ¢ + jets (right) analyses. The resolution is shown only for
events where the reconstruction is successful. For the ¢ + jets decay mode, the hatched blue and
the dotted red histograms represent the distribution before and after applying the kinematic fit,
respectively.

tt system is set to zero. Finally, m,; and the fractional momentum loss of the protons are
required to satisfy eq. (4.1), where X is the tt pair.

Figure 3 shows the m,; resolution achieved for the dilepton and ¢ + jets channels. The
poorer resolution obtained for the dilepton mode, for which the width of the Gaussian
core of the distribution is ~15%, is understood from the presence of two neutrinos in the
final state. For the ¢ + jets case, the resolution is shown before (~7.5%) and after (~5%)
applying the kinematic fitter.

4.3 Background from multijet events

For the ¢ + jets analysis, the background originating from QCD multijet events has been
evaluated with a data-driven approach. The method is based on the observation that the
leptons selected in such events are generally not produced promptly in the primary interaction,
but are rather real leptons from semileptonic decays of hadrons, or other objects incorrectly
identified as leptons.

Samples of events enriched with nonprompt leptons are created by imposing looser
selection criteria on the lepton. A “tight-to-loose” ratio is defined as the ratio of the number
of nonprompt lepton events satisfying the tight (nominal) selection to the number of those
passing the loose ID selections described in refs. [46] and [47] but not the tight one. It is
evaluated in a data sample mostly populated by multijet events (“control region”, or CR) and
then used to estimate the number of nonprompt lepton events passing the nominal ¢ 4 jets
selection (“signal region”, or SR) described in section 4.1.

The CR is defined by the same selection criteria as the SR, except for the requirement that
no jet pass the b tagging selection, and that p=™ < 20 GeV. Contributions from background
sources other than multijet events are subtracted using the simulated samples. Values of
the tight-to-loose ratio are calculated as a function of the lepton pp separately for the two



lepton flavours, and then applied to data in the SR, after all simulated contributions from
prompt-lepton background sources have been subtracted.

This method can be used to obtain the distribution of any kinematic variable for the
nonprompt lepton component, as well as of the multivariate discriminant used for signal
extraction described in section 4.5. For the latter, the resulting shape is observed to
be consistent, within statistical uncertainties, with that from the dominant inclusive tt
background. Since the inclusive tt normalisation is a free parameter in the final fit described
in section 6, separately for the dilepton and the £ 4 jets channels, and the contribution of the
nonprompt lepton component is estimated to be much smaller (about 13%), an independent
QCD multijet background contribution is not included in the final fit.

4.4 Signal and background models

The presence of multiple proton interactions within the same LHC bunch crossing results in
the superposition of objects from different PVs both in the central CMS apparatus and in
CT-PPS. The probability to have at least one proton in the acceptance of a given arm of
CT-PPS, for any bunch crossing, ranges from 40 to 70% depending on the LHC optics settings
and instantaneous luminosity. However, while the pileup activity in the central detector can
be modelled with adequate accuracy, no simulation has been validated so far for protons from
uncorrelated diffractive events, where the pp interaction is mediated by strongly interacting
colour-singlet exchange. As a consequence, in the MC samples, background events contain
no forward protons, while signal events contain exactly two forward protons on opposite
sides (though not necessarily within the acceptance).

The presence of pileup protons, uncorrelated with the event reconstructed in the central
detector, has two effects:

¢ a background event may be selected because exactly one random proton per arm has
been reconstructed in CT-PPS;

« a signal event may be rejected because of the multiple proton reconstruction inefficiency,
or it may be wrongly reconstructed because a background proton is selected instead
of the signal one that went undetected as a result of detector inefficiency or limited
acceptance.

In order to correctly take these effects into account, a pool of forward proton pairs
reconstructed in the collision data is collected to be used as a sample of pileup protons, from
events subject to the same requirements of the nominal selection (including one reconstructed
proton in each CT-PPS arm) except for those on b-tagged jets. In the procedure outlined
below, the proton reconstruction efficiency discussed in section 2.2 is considered as a function
of £&. Moreover, the probability of having zero (not including multitrack inefficiency) or one
proton reconstructed in each arm is taken from the same studies [55]. Because the detector
and beam conditions varied significantly throughout the data taking, both the forward proton
pools and the efficiency /probability values are considered separately for each of the five eras
and, except for the reconstruction efficiency, for four values of the beam crossing angle ax
at the IP (120, 130, 140, and 150 prad).

~10 -
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Figure 4. Distribution of ¢ in data and background simulated samples after pileup proton mixing
and pileup reweighting, in the ¢ + jets channel. Protons in CT-PPS arm 0 (left) and arm 1 (right),
as defined in the text. The solid histograms show the expected background contributions, while
the red open histograms show the expected signal shapes, normalised to a cross section of 25 pb,
approximately 10° larger than the SM cross section prediction from ref. [32]; points with statistical
error bars represent collision data. The lower panels show the data-to-prediction ratios; the hatched
bands represent the relative uncertainty in the predictions.

For each simulated event, a pair of protons is selected from the pool according to the
relative normalisation of the (era, ax) samples. Then, the following procedure is applied:

o for background events, the proton pair is added and a weight corresponding to the
probability of reconstructing one proton in each arm is assigned;

o for signal events, the number of reconstructed protons is first determined according to
the detector acceptance and a random correction based on the multi-RP reconstruction
efficiency. If only one of the original protons is left, the other is replaced with one
from the pool, and an appropriate weight is assigned to the event, according to the
probability of ending up with exactly one proton in that arm. Events in which neither
forward proton is reconstructed are treated in the same way as background events, as
described above.

In order to match the pileup conditions for simulated events to those in the collision
data, a further reweighting procedure is applied to simulated events, based on the number of
reconstructed interaction vertices. The normalised distribution of this number for a given
simulated sample, PMC(thX), and that for the data in each of the 20 (era, ax) regions,
P (| era, ax), are determined. A weight wpy = P (ny,, | era, ax)/PMC (nyy) is
assigned depending on the sampled region.

To assess the validity of the background model obtained from this procedure, the
distributions of various event variables in data and simulated samples are compared, and
very good agreement is observed. Figure 4 shows the overall distribution of £ in each arm
of CT-PPS for the ¢ + jets decay mode.
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4.5 Multivariate analysis

In order to enhance the signal content of the selected samples, information from variables
showing discriminating power against background sources is efficiently exploited by means of
multivariate analysis techniques. For both the dilepton and the £ + jets channels, a boosted
decision tree (BDT) algorithm [75] is used, implemented with the TMVA toolkit [76]. The
training samples consist of simulated signal events with both protons reconstructed, and
simulated inclusive tt production events, by far the largest source of background, with two
pileup protons added from collision data, as described in the previous section. In general,
effective discrimination is mostly achieved by exploiting the absence of extra jets in the
exclusive production event, and the kinematic closure when including both the forward
protons and the centrally produced objects. Because of the different final products in the two
final states and their related kinematics, the specific choice of the discriminating variables
is different for the two decay modes. For each decay mode, a large set of variables was
initially tested, and then reduced to a smaller set through optimisation, where the most
performant and uncorrelated variables were selected.

For the dilepton decay mode, the following 15 kinematic variables are used: the mass and
the rapidity of the central system reconstructed both from the tt decay products and from
proton kinematics (eqs. (4.1) and (4.2)); p*°; the invariant mass and the angular distance
AR of the two leptons; |A¢| of the two selected b-tagged jets; the rapidity of the system
formed by the two b quark jets and the two leptons, and the sum of the absolute values of their
individual rapidities; the rapidity of the system formed by all other reconstructed jets, and the
sum of the absolute values of their individual rapidities; the squared energy sum for all objects
used for the tt reconstruction; the minimum absolute value of the rapidity difference for any
two systems formed by a lepton and a b-tagged jet; and the number of light-flavour jets.

For the ¢ 4+ jets decay mode, the following 10 kinematic variables are used: the number
of light-flavour jets and of b-tagged jets; the sum of the invariant mass of all jets; the total
energy of all light-flavour jets; the mean AR for all pairs of light-flavour jets; the total
energy of all extra jets (not used for tt reconstruction); the lepton momentum and a variable
quantifying its isolation from other particles in the event [46, 47]; m,;; the difference in
central system rapidity reconstructed from the tt and the pp systems (eq. (4.2)); and the
X2 of the kinematic fit.

The distributions of some of the kinematic variables of interest are shown in figure 5
for the two decay modes.

5 Systematic uncertainties

Several sources of systematic uncertainty affect the normalisation of the signal and background
yields, as well as the shape of the BDT output used as the final discriminant. For each of
them, the impact on the final result is assessed by varying appropriately the parameters
involved, and repeating the analysis. When the variations imply a change in the BDT shape,
a smoothing procedure (using the ‘353QH’ algorithm described in ref. [77]) is applied to
the associated template used in the fitting procedure described in section 6. Modified BDT
shapes are compared to the nominal one using a Kolmogorov-Smirnov-inspired test: if the
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Figure 5. Distribution of a selection of the kinematic variables of interest for the dilepton (upper)
and ¢ + jets (lower) analysis. The solid histograms show the expected background contributions,
while the red open histograms show the expected signal shapes, normalised to a cross section of 25 pb,
approximately 10° larger than the SM cross section prediction from ref. [32]; points with statistical
error bars represent collision data. The lower panels show the data-to-prediction ratios; the hatched
bands represent the uncertainty in the predictions. The leftmost and rightmost bin in each histogram
includes accepted events outside the histogram range.

test result (calculated as described in section 6.2.2 of ref. [78]) is larger than 0.95 for both
the upwards and downwards variation, the corresponding systematic uncertainty is only
included as an overall normalisation effect; otherwise, the shape uncertainty is included as
a nuisance parameter and profiled in the likelihood fit.

The sources of systematic uncertainty can be subdivided into experimental and theoretical
components.

Experimental uncertainties. The measured integrated luminosity that is used to normalise
the MC predictions has an associated systematic uncertainty of 2.3% [56, 57]. Several
uncertainties arise from the reconstruction and identification of various objects. For leptons,
b quark jets, and forward protons, efficiency correction scale factors are varied within their
uncertainties [46, 47, 53, 55], which affect both the shape and normalisation of the final
discriminant. The uncertainty in the jet energy has an effect on the reconstruction of
the kinematic variables used to calculate the discriminants: the corresponding uncertainty
is evaluated by rescaling the pp- and n-dependent scale factors of the reconstructed jet
energy [53] and jet energy resolution. The variation in four-momentum for each selected jet is

—miss

propagated to pr  and the b tagging scale factors. Uncertainties in the efficiency corrections
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for the lepton trigger are estimated as functions of the lepton pt and 7 from control samples
in data; for electrons (muons) they are within 3% (below 1%), except for pr < 35 GeV, where
they range up to 8 (3)%. In the pileup proton mixing procedure described in section 4.4,
the normalisation of the simulated data samples is performed according to the pileup proton
probability measured in real data with no requirement on the b quark jet multiplicity. A
possible bias of the proton tag probability arising from the different b quark jet selection
is estimated by measuring the proton tag probability again after requiring N}, jo; > 1: the
difference in the predicted tagged proton probability is taken as the corresponding systematic
uncertainty. For the signal sample, the simulation of forward protons is tuned to reproduce the
expected bias and resolution in £ reconstruction assuming perfect knowledge of the detector
alignment and LHC optics. The effect of uncertainties in this assumption is estimated by
shifting, in each event, the reconstructed & values according to the “systematics” contribution
described in ref. [55].

Theoretical uncertainties. The uncertainties related to the choice of the factorisation
and renormalisation scales at the matrix element level are estimated by varying the scales
independently by factors 2 and 0.5 [79]. For PDF modeling, two effects are considered: a
variation of the strong coupling constant ayg, and the root-mean-square of the variations from
a collection of PDF error eigenvectors sets, as described in the PDF4LHC Collaboration
recommendations [80]. The uncertainty associated with parton shower emission in initial
and final state is evaluated by varying the renormalisation scale for QCD emissions by
factors of 2 and 0.5. For the signal sample, only the final state radiation uncertainty is
considered, and is taken to be fully correlated with that of the background processes. The
normalisation of the inclusive tt background (incorporating any additional contribution from
events with nonprompt leptons) is free to vary around its nominal values for the ¢ + jets and
the dilepton channels separately, while single top quark and other backgrounds normalisation
uncertainties are taken to be 5% [81] and 30% [82-84], respectively. Finally, the effect of
the finite size of the simulated samples used for the analysis is taken into account with
the Beeston-Barlow method [85].

6 Results

A profile maximum-likelihood fit is performed to the distributions of BDT discriminants for
the two decay modes. While the sensitivity with the current data does not allow to obtain
evidence for central exclusive tt production, an upper limit for its cross section can be derived.
The limits are computed based on an asymptotic approximation of the distributions of the
test statistics, which in turn is based on the profile likelihood ratio, under given hypotheses
for the signal and the background [86-88]. The sources of systematic uncertainty described
in section 5 are included in the fit as nuisance parameters.

The impact of a given systematic uncertainty on the upper limit is defined as the relative
difference between the nominal limit and the limit extracted by including all other systematic
uncertainties but excluding the uncertainty in question. For the final result, uncertainties
whose impact on the upper limit is less than 0.1% are not included.
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Figure 6. Distribution of the BDT output in the signal region for simulated events after the fit,
and for data. Left: dilepton channel; right: ¢ + jets channel. The different ranges of the two BDT
output distributions depend on the specific details of the algorithms chosen in the two cases. The
solid histograms show the expected background contributions, while the red open histograms show
the expected signal shapes, normalised to a cross section of 25 pb, approximately 10° larger than
the SM cross section prediction from ref. [32]; points with statistical error bars represent collision
data. For both reconstruction modes, all signal regions are combined. The lower panels show the
data-to-prediction ratios; the hatched bands represent the relative uncertainty in the predictions.

In the dilepton analysis, a simultaneous fit is performed to each of the final-state lepton
combinations ee, ey, and ppu, integrating over era and ayx. For the ¢ + jets analysis, the
simultaneous fit is performed on each of the 20 samples defined by (era, ax), combining the
two lepton flavours. These choices are the result of an optimisation based on a compromise
between the expected sensitivity and the statistical uncertainty. The BDT distributions are
binned in 14 and 22 intervals for the dilepton and the ¢ 4 jets analysis, respectively.

The expected and observed distributions of the BDT variable for the dilepton and £ + jets
decay modes are shown in figure 6, where all signal regions are combined. The values of
the nuisance parameters returned by the fit are consistent with their inputs; in particular,
the normalisation factors for the tt contribution to the background are 0.96 4= 0.04 and
1.02 £ 0.03 for the dilepton and the £ 4 jets channel, respectively. The goodness-of-fit has
been checked with toy-MC studies.

In the dilepton decay mode, the fit yields an observed (expected) 95% confidence level
upper limit on exclusive central production of tt pairs of 1.71 (2.02) pb; in the £ + jets
mode, an upper limit of 0.78 (1.54) pb is obtained. The two modes are then considered
jointly in a combined fit, where each source of systematic uncertainty is treated as fully
correlated between the two channels. The observed (expected) limit resulting from the
combined fit is 0.59 (1.14) pb.

The results of the fit are shown in figure 7, for the separate decay channels, as well
as for the combination. The value of the extracted limit depends mostly on the statistical
precision; the increase due to inclusion of the systematic uncertainties is about 10%. The
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Figure 7. Expected and observed 95% confidence level (CL) upper limits for the cross section of
pp — pttp, for the dilepton and £ + jets channels separately and combined. The green and yellow
bands show the 68 and 95% intervals, respectively, for the expected upper limit.

most important contributions from systematic uncertainties are those related to background
normalisation, final-state radiation modelling, jet energy corrections and resolution, as well
as proton reconstruction with CT-PPS.

7 Summary

A search is reported for the central exclusive production of top quark-antiquark pairs in proton-
proton interactions, pp — pttp, for the first time using tagged intact protons, reconstructed
by the CMS-TOTEM precision proton spectrometer. The tt pairs are reconstructed by
the CMS detector either in the dilepton or the lepton + jets decay modes. The search is
conducted both separately for the two modes, and in a combined fit. With a data sample of
proton-proton collisions at a centre-of-mass energy of 13 TeV corresponding to an integrated
luminosity of 29.4 fb_l, results consistent with predictions from the standard model are
obtained. An upper limit of 0.59 pb at 95% confidence level (compared to an expected limit
of 1.14 pb) is set on the central exclusive production of tt pairs, with fractional momentum
loss of the intact protons in the range 0.02 < ¢ < 0.20. These results are tabulated in the
HEPData record for this analysis [89].
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