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Camilo Garćıa-Cely1 and Andreas Ringwald2

1
Instituto de F́ısica Corpuscular (IFIC), Universitat de València-CSIC,
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The high-temperature plasma in the solar interior generates stochastic gravitational waves (GWs).
Due to its significance as the primary source of high-frequency GWs in the solar system, we reexam-
ine this phenomenon highlighting some physical processes, including the contribution of macroscopic
hydrodynamic fluctuations. Our analysis builds upon several studies of axion emission from the Sun,
particularly in relation to the treatment of plasma effects. Similar to many well-motivated Early
Universe signals, we find that the resulting GW spectrum is several orders of magnitude below the
current sensitivities of axion helioscopes such as (Baby)IAXO.

Introduction. While current observational efforts [1–
6] to detect gravitational waves (GWs) have predomi-
nantly focused on frequencies below a few kHz, a grow-
ing community is seriously considering higher frequencies
with the hope of detecting Early Universe signals [7].
This prompts the question of identifying GW back-
grounds associated with the Standard Model (SM) at this
frequency range. The dominant source of such GWs is
the Sun.

A seminal work by Weinberg [8] estimated a total

power of approximately 6 × 107 W. Although this fig-
ure turns out to be an excellent approximation (we find

1.3 × 108 W), his spectrum was calculated only for soft
gravitons from proton and electron collisions and ne-
glected radial dependences –particularly of plasma ef-
fects [9, 10]– as well as additional contributions such as
that of photoproduction [11, 12]. Employing a state-of-
the-art solar model, we revisit the computation of the
solar GW spectrum. For this we rely on several studies
of axion emission from the Sun and show that they can
be adapted to solar GWs, particularly those related to
the treatment of plasma effects. Additionally, we point
out the contribution from hydrodynamical fluctuations,
previously overlooked, but essential for completing the
spectrum in its low-frequency range. Our prediction of
the complete solar GW power spectrum is summarized
in Fig. 1.

We organize the discussion as follows. We start by
reviewing properties of the solar plasma that will be rel-
evant throughout, then we compile all the contributions
to the GW spectrum of the Sun and clarify what has
been omitted in the literature. Subsequently, we discuss
implications for axion helioscopes. In the Appendix we
provide the details of our calculations. Throughout we
adopt Heaviside units, take ~ = c = 1, and utilize the
Minkowski metric ηµν = diag(+−−−).

The solar plasma. We model the Sun as a non-
relativistic plasma composed of electrons (e) and nucle-
ons (Z) following a Maxwell-Boltzmann distribution. We
take the corresponding temperature and number density
distributions from the B16-GS98 Solar model [13], and
estimate the electron density assuming full ionization.
Elements heavier than Helium are negligible and are ex-
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FIG. 1. GW power per unit logarithmic frequency, orig-
inating from the solar thermal plasma as a function of the
frequency, ω = 2πf .

cluded from the analysis.

GWs originate through microscopic and macroscopic
mechanisms, respectively corresponding to particle col-
lisions emitting gravitons and GW emission sourced by
hydrodynamic fluctuations. The former corresponds to
frequencies much larger than that of collisions in the so-
lar plasma, so that there is sufficient time for them not
to interfere with each other [14]. Below all collision fre-
quencies of the plasma, fluctuations are large compared
with the characteristic microscopic dimensions, allow-
ing a hydrodynamical approach to calculate GW emis-
sion [15, 16].

The estimation of the collision frequencies for each

species, ω(i)
c , is therefore of utmost importance for this

work. By following the approach detailed next, we ob-
tain the results presented in Fig. 2. We first calculate the
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FIG. 2. Screening scale (dotted), temperature (solid),
plasma frequency (dashed), and collision frequencies (dot-
dashed) as a function of distance from the center for the
adopted solar model [13]. See text for details.

viscosity cross section, σV . For instance, for eZ,

σ
(eZ)
V =

∫

dσ

dΩ

(eZ)

sin2 θdΩ ≃ 2πα2Z2

E2
i

LCoulomb , (1)

and similarly for ee. The collision frequencies are then es-

timated from the corresponding scattering rate as ω(e)
c =

neσ
(ee)
V v +

∑

Z nZσ
(eZ)
V v.

Screening gives rise, in the non-relativistic limit,
to an effective Yukawa potential with a range
given by the Debye-Hückel screening scale, κ =

(4πα(ne +
∑

Z ZnZ)/T )
1/2

[9], see Fig. 2. For instance,

for eZ collisions, VCoulomb = −Zα/r → −Zαe−κr/r. For
non-relativistic collisions, the scattering rate associated
with these potentials may be non-perturbative. Never-
theless, in the Sun the scattering largely occurs either in
the Born regime, where perturbation theory is applicable,
or in the semi-classical regime, where classical physics can
be employed. In these cases, the viscosity cross section is
given by the last equality in Eq. (1), where the Coulomb

logarithm, LCoulomb, equals log 2pi/κ and logEi/(Z
2ακ),

in the Born and semi-classical approximations, respec-
tively [17, 18].

We note that the collision frequencies should be re-
garded as transitions scales, particularly because Eq. (1)
is valid only up to logarithmic accuracy [19] and different
prescriptions exist for the velocity averaging [17]. Here,
we follow [14] and take v equal to its thermal average.
For further details, see the Appendix.

GWs from hydrodynamical fluctuations. We
closely follow Ref. [15] to calculate this contribution. In
essence, GWs in this limit are sourced by tensor fluc-

tuations of the energy-momentum tensor, whose Fourier
transform is largely independent of the frequency and
wave number. Being purely hydrodynamical, the tensor
fluctuations are simply proportional to the shear viscos-
ity, η, of the plasma. Plugging them in Einstein’s Equa-
tions, one obtains

dP

dω

∣

∣

∣

∣

∣

Hydrodynamics

=
16Gω2

π

∫

Sun

d3r ηT . (2)

While this emission has not been previously investigated
for the Sun or stellar plasmas, it is known that it con-
tributes to the GW emission from the Early Universe
plasma, that is, to the Cosmic Gravitational Microwave
Background (CGMB) [15, 20, 21]. The only conceptual
difference here is that viscosity must be computed differ-
ently because the solar plasma is non-relativistic.
Due to the significant mass ratio between protons and

electrons, the primary source of shear viscosity may be
attributed to momentum transfer involving protons. For
this we note that proton-proton collisions in the Sun are
semi-classical. Moreover, the proton component of the
solar plasma is not strongly correlated, meaning that
the average Coulomb potential energy is much smaller

than the thermal energy (which follows from αn1/3
p /T ∼

0.03 − 0.07 ≪ 1). This justifies to employ the numer-
ical fits to the state-of-the-art simulations reported by
Ref. [22] –more precisely, its Eq. (31)– for the calculation
of the viscosity. In practice, this is just a slight mod-
ification of the Landau-Spitzer theory, which predicts

η ∼ mpvp/σ
(pp)
V [19]. Let us remark that Eq. (2) loses its

validity when the sound waves associated with the hy-
drodynamical fluctuations are damped by viscosity [23],

which happens for ω & ω(p)
c in the one-component ap-

proximation.
The solar GW power spectrum from hydrodynamic

fluctuations is given by the dashed-dotted line in Fig. 1,
where we conservatively put a cut-off for frequencies

above 0.05ω(p)
c

∣

∣

Center
in light of damping.

GWs from particle collisions. This contribution to
the solar GW spectrum is obtained by thermally averag-
ing individual graviton emission rates,

dP

dω

∣

∣

∣

∣

∣

Collisions

=

∫

Sun

d3r
∑

i

ω

〈

dΓ(i)(r)

dωdV

〉

. (3)

The rates entering here are calculated by squaring
the relevant amplitudes using CalcHEP [24] and Feyn-
Rules [25], and taking the non-relativistic limit for elec-
trons and nucleons. Such rates, at leading order in the
screening scale, are summarized in Table I, while full
expressions are reported in the Appendix. We assume
spherical symmetry for the integration in the Sun.
Bremsstrahlung. We account for plasma effects follow-

ing the bremsstrahlung treatment of Ref. [10]. This en-
tails modifying the propagator of the photon exchanged
by the charged particles with an effective mass equal to κ,
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Collision dΓ
dωdV

Photoproduction
nγnZGZ2απ δ(ω − Ei)

pi

ω

∫

dcos θ
(

cot2 θ
2 [1 + cos2 θ]|F (θ)|2 +O(ω2

Pl/ω
2)
)

|F (θ)|2 =
(2ω sin θ

2 )
2

κ
2
+(2ω sin θ

2 )
2γ Z/e → Z/e h

Bremsstrahlung 32nenZGZ
2
α

2
pi

15ω

(

1
me

+ 1
mZ

)(

3(1 + ξ2)L+ 10ξ +O(ξ2s )
)

ξ = pf/pi, ξs = κ/pi
eZ → eZ h ω = Ei(1− ξ2)

Bremsstrahlung 16n
2

eGα
2
pi

15ωme

((

6(1 + ξ2)− 3(1−ξ
2
)
4
+7(1−ξ

4
)
2

2(1+ξ
2
)
3

)

L+ 20ξ − 6ξ(1+ξ
4
)

(1+ξ
2
)
2 +O(ξ2s )

)

L = log

√

(1+ξ)
2
+ξ

2

s

(1−ξ)
2
+ξ

2

s
ee → ee h

TABLE I. Emission rates of gravitons, h, from the indicated process in the non-relativistic limit. pi (pf ) denotes the initial
(final) momentum of the colliding particles in the center-of-mass frame, and Ei is total kinetic energy.

as suggested by the aforementioned Yukawa potential. In
addition to corrections of order κ2/p2i , this introduces an
infrared cut-off. This is essential because, in the absence
of screening, the rates exhibit a logarithmic divergence
for soft gravitons.

Notably, our explicit computations reveal that the
bremsstrahlung rates depend on a common regulating
logarithm, which for soft gravitons approaches the one
entering the viscosity cross section of Eq. (1). This
is not a coincidence, soft theorems [8] arising from
basic principles of quantum field theory dictate that

ωdΓ(eZ)/dωdV |soft = (32G/5π)E2
i sin

2 θ nenZσ
(eZ)
V v for

ω ≪ Ei ∼ T , and a similar expression for ee with a fac-
tor 1/2 [26]. Applying this to the center of the Sun is how
Weinberg [8, 14] originally found a flat power spectrum,
dP/dω, with only a minor logarithmic dependence. In-
terestingly, despite its quantum-mechanical origin, this
formula coincides [14, 27, 28] with the classical emission
rate of GWs associated with the quadrupole of the eZ/ee
hyperbolic orbit for sufficiently soft radiation [29].

Weinberg’s calculation motivated studies of
bremsstrahlung beyond the soft limit. Reference [30, 31]
reported rates associated with eZ –but not ee– using
similar methods to ours but assuming an infinitely heavy
nucleon and no screening. Likewise, bremsstrahlung
rates neglecting screening were calculated assuming
that the emission comes from one electron moving in
the Coulomb potential of a nucleon [32, 33] or another
electron [27]. Our results agree with these studies in the
appropriate limit [34].

It is worth mentioning that Ref. [27] calculated ee
bremsstrahlung rates in the non-relativistic limit through
the following clever insight: photon bremsstrahlung from
ee results from their quadrupole, as their dipole vanishes
by their indistinguishability, which allows adapting the ee
electromagnetic emission to gravitational radiation, with
the adjustment being a mere global factor. Our rates,
obtained through a different approach, support this con-
clusion.

Finally, let us remark that our procedure relies on
the validity of the Born approximation, which for ee
and eZ holds throughout the Sun, except in the out-
ermost regions, approximately the last 15% of the solar
radius. Since bremsstrahlung is dominated by processes
at the center, neglecting non-perturbative corrections to

the graviton emission is justified. The solar GW power
spectrum from bremsstrahlung is given by the solid line
in Fig. 1, where we put a cut-off for frequencies below

ω(e)
c

∣

∣

Center
. We remark that for this we use the full rates

reported in the appendix, where further details are pro-
vided.

Photoproduction. This is analogue to the Primakoff
and Compton production of axions. Our results in Ta-
ble I with κ = ωPl = 0 coincide with the differential rates
for graviton emission reported in Ref. [11]. Nevertheless,
from this it is impossible to make sense of the integrated
rate, as it diverges due to the collinear divergence ap-
pearing at θ = 0. To tackle this problem, we again em-
ploy insights from axion physics [10]. Concretely, we note
that charged particles in the solar plasma mutually in-
teract through their Coulomb fields, leading to a pair
correlation function [10, 35, 36]. This gives rise to an
effective form factor –F (θ), in Table I– that depends on
the screening scale κ and regularizes the total rate.

If one neglects such correlations and instead consider
photons scattering off individual screened charges, one
finds the rate given in Table I, but with |F (θ)| →
|F (θ)|2 [37]. In practice, this corresponds to modifying
the photon propagator with an effective mass, a picture
which is appropriate if the scattering process is so slow
that the charged particles can move around and rearrange
themselves [38]. This issue has been revisited recently
for the Primakoff process of axions, accounting for the
velocity in the form factor [39]. Despite the differences
between axions and gravitons, from this study correc-
tions to the choice given in Table I are expected to be
negligible.

Note also that the dispersion relation of the initial-
state photon is influenced by the surrounding plasma,
which imparts an effective mass to transverse photons

equal to the plasma frequency, ωPl = (4πneα/me)
1/2

.
However, since the solar temperature far exceeds it (see
Fig. 2), the GW spectrum remains largely insensitive to
the photon’s effective mass, a fact we have verified ex-
plicitly. The main consequence is the phase-space factor
pi/ω, that provides a lower cut-off to the photoproduc-
tion contribution at each point of the Sun. We note that
this is completely analogous to the Primakoff effect for
axions, which we discuss in the appendix for complete-
ness. It is noteworthy that Ref. [12] calculated photopro-





5

we could consider the emission of massive spin-2 particles
from the Sun, which could also constitute the dark matter
of the Universe, see e.g. [55–57]. Extending the methods
discussed here to such particles, we find that the resulting
spectrum is nearly identical to that of the solar GWs,
differing only by an overall factor associated with the
coupling of spin-2 particles to SM fields. In a separate
publication [58], we will discuss this synergy and present
observational prospects at helioscopes.
Our study represents a step towards establishing a

multi-frequency GW background from SM processes,
similar to that of neutrinos [59]. In fact, our approach can
be extended to other stellar plasmas [60] and to the early
stages of the Universe after nucleosynthesis, where plas-
mas are also non-relativistic. Figure 3 indicates that cur-
rent experiments are still many orders of magnitude away
from detecting signals from these backgrounds. Whether
we can aspire to probe such strain sensitivities in the

future remains an open question.
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where µ is the reduced mass. Ordinary quantum perturbation theory employing the potential in Eq. (S2) gives [65]

LCoulomb = log

(

2µv

κ

)

. (S4)

The semi-classical regime takes place when the de Broglie wavelength is much smaller than the range of the potential,
that is, κ ≪ µv [19]. In this case there is a critical parameter, β = |Za||Zb|κα/µv2, determining different sub-
regimes [18]. For β ≪ 1, of interest in this work, the plasma is weakly-coupled and the Coulomb logarithm is given
by [18, 19]

LCoulomb = log

(

µv2

|Za||Zb|ακ

)

. (S5)

The range of applicability of either regime along the position in the Sun is sketched in Fig. S1. The green portion of
the lines corresponds to the 15% outermost part, while the blue part corresponds to the innermost 85%. For simplicity
we only show ee, ep, eHe and pp collisions. We also show the line β = 1, above which the plasma is weakly coupled
and Eq. (S5) can be used. Note that pp collisions are semi-classical, as mentioned in the main text.

Appendix B: Graviton emission rates and Feynman rules

The emission rate per unit volume of one graviton in the collision of two particles is given by

dΓ

dωdV
(1 + 2 → hλ · · · ) =

∫

dn1dn2|M(λ)|2d(PS)(2π)4δ(4)
(

p1 + p2 − p−
∑

k

pk

)

, (S1)

where p = (ω,p) and λ are respectively the graviton momentum and helicity, while d(PS) is the phase space associated
with the final-state particles,

d(PS) =
ω2dΩp

(2π)32ω

∏

k

d3pk

(2π)32Ek

. (S2)

In addition, M(λ) is the graviton emission amplitude, which can be cast as

M(λ) = Mµνǫ
µν
(λ)(p) , (S3)

where polarizations tensors are given by

ǫµν±2(p) = ǫµ±(p)ǫ
ν
±(p) , with ǫµ±(p) =

1√
2







0
∓ cos θ cosφ+ i sinφ
∓ cos θ sinφ− i cosφ

± sin θ






, and pµ =







ω
|p| sin θ cosφ
|p| sin θ sinφ

|p| cos θ






. (S4)

When perturbation theory applies, Mµν in Eq. (S1) can be calculated from tree-level diagrams, with the vertices
obtained from

L =
1

2
∂ρhµν∂

ρhµν − 1

2
∂ρh∂

ρh+ ∂ρh∂νh
ρν − ∂ρhµν∂

νhµρ +
1

2
κG hµνT

µν , (S5)

where Tµν is the stress-energy-momentum tensor of the Standard-Model particles, and gµν =

ηµν + κGhµν with κG =
√
32πG. The corresponding Feynman rules of relevance for this work

are
C(fermion)

µν (p1, p2) =
i
8κG

[

2ηµν(/p1 + /p2 − 2mf )− (p1 + p2)µγν − γµ(p1 + p2)ν

]

,
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C
(photon)
αβµν (p1, p2) = − i

2κG

[

ηµνηαβ p1 · p2 − ηµνp1βp2α + ηναp1βp2µ − ηαβp1νp2µ + ηµβp1νp2α
−ηναηµβp1 · p2 + ηνβp1µp2α − ηαβp1µp2ν + ηµαp1βp2ν − ηνβηµαp1 · p2

]

,

C(quartic)
αµν = − i

4eZκG

[

2ηµνγα − ηαµγν − ηανγµ
]

.

The fermion line is either e or Z. These rules agree with existing literature (see e.g. [66, 67]), and were derived
implementing Eq. (S5) in FeynRules [25]. This process also gives the input needed by CalcHEP [24] for cross section
calculations. Using Package-X [68], we manipulate the symbolic output thus obtained to compute Mµν . For all
processes, we verify that

pµMµν = 0 , (S6)

as follows from energy-momentum conservation.

Validity of the Born approximation. The procedure just described relies on the validity of the Born ap-
proximation, which holds true for photoproduction, γa → ah, but becomes problematic for bremsstrahlung processes,
ab → ab h. (Here a or b stands for an electron or a nucleon, as above). Let us discuss bremsstrahlung first. This issue
is closely connected to the perturbativity in the ab collisions, discussed above. This can be understood as follows.
The Born approximation assumes that particles in the initial and final states are approximately described by plane
waves. While this assumption holds true for gravitons, it does not necessarily apply to electrons or nucleons, as they
are subject to mutual interaction. The extent to which a plane wave is a good approximation depends on whether this
mutual interaction is perturbative. If it is, the wave function of electrons or nucleons can be expanded perturbatively,
resulting in a plane wave with a small additional contribution, whose impact on the scattering rate appears beyond
the Born approximation.

The previous argument makes it clear that whenever perturbativity is a problem for graviton bremsstrahlung, it is
also a problem for the bremsstrahlung of axion or photons. Interestingly, Weinberg has recently revisited the latter
case, providing approximation formulas for photon bremsstrahlung valid beyond the Born approximation [17] (see also
Ref. [69]). Such formulas arise from the non-perturbative wave functions and provide substantial corrections when
v/Zα is small. In light of Fig. S1, this shows that for the main processes contributing to graviton bremsstrahlung
in the Sun –namely, ee, ep and eHe– the Born approximation works well except in the last 15% of the solar radius.
There, the temperature is comparatively lower resulting in v/Zα < 1, invalidating the plane-wave assumption. Since
bremsstrahlung is dominated by processes at the center, neglecting non-perturbative corrections to the graviton
emission is justified. Likewise, this argument applies to axion bremsstrahlung, where accounting for non-perturbative
wave functions gives corrections below 10% (see e.g. Ref. [39]).

Finally, the aforementioned argument justifies the use of the Born approximation for photoproduction because the
charged particles in the initial state, although non-relativistic, do not experience a distortion of their wave function,
as in the case of bremsstrahlung.

1. Photoproduction

Having justified the Born approximation, let us note that diagrammatically such collisions correspond to Feynman
diagrams where the photon emits h±2 and then collides with a charged particle (Primakoff-like scattering), or to
one photon impinging on a charged particle that subsequently emits h±2 (Compton-like scattering), or to a diagram

FIG. S2. Feynman diagrams for photoproduction
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involving a contact interaction with all particles. Using Eq. (S2), the amplitude can be cast as

Mαβ = u3Γαβµu2 ǫ
µ(p1) , (S7)

where the subscripts 2 and 3 refer to the fermion in the initial and final state, respectively, while 1 refers to the
incoming photon. Following the procedure outlined above, we find

Γαβµ = − Ze

(p2 − p3)
2C

(photon)
µλαβ (p1, p3 − p2)γ

λ (S8)

+
Ze

(p1 + p2)
2 −m2

f

C
(fermion)
αβ (p1 + p2, p3)

(

/p1 + /p2 +mf

)

γµ

+
Ze

(p1 − p3)
2 −m2

f

γµ
(

− /p1 + /p3 +mf

)

C
(fermion)
αβ (p2,−p1 + p3)

+ C
(quartic)
µαβ .

In addition to making sure that this satifies Eq. (S6), we also verify gauge invariance by means of the Ward–Takahashi
relation

pµ1

(

u3Γαβµu2 ǫ
αβ
(λ)(p)

)

= 0 . (S9)

Plugging Eq. (S8) into Eq. (S1), we obtain the photoproduction rates. Taking the non-relativistic limit, mf ≫ ω, we
obtain the differential emission rate

dΓ

dωdV dΩ
(γZ → Z h) = nγnZδ(ω − pi)Z

2 dσ

dΩ

∣

∣

∣

∣

e

, with
dσ

dΩ

∣

∣

∣

∣

e

=
1

2
αG cot2

θ

2

(

1 + cos2 θ
)

. (S10)

This cross section was reported in Ref. [11, 37]. As usual, here θ is the scattering angle in the photoproduction process,
i.e. the angle between the graviton and the incoming particles. So far, we have assumed that the photon is massless.
However, the surrounding plasma gives photons in the external line an effective mass given by the plasma frequency,
ωpl. A similar modification is required in the photon propagator and vertices. Nevertheless, the solar temperature
far exceeds ωpl (see Fig. 2), allowing us to calculate photoproduction rates by expanding on ωpl. In practice, this
approach is effectively equivalent to treating the external photon as massless while incorporating the plasma frequency
into the phase space, as reported in the Table I with κ = 0. The resulting cross section agrees with semi-classical
calculations [12] accounting for a non-trivial dispersion (without screening).

As is clear from Eq. (S10), the total rate diverges due to the pole at θ = 0. The origin of the divergence is the

photon propagator in the amplitude of the Primakoff-like diagram, whose denominator −(p2−p3)
2 equals in the non-

relativistic limit the square of the three-momentum transfer, |q| = 2ω sin(θ/2). To gain further intuition on this, let us
discuss the case of axions, where a similar divergence occurs for the Primakoff effect. As shown in [10], the divergence
is effectively regularized by accounting for correlations among plasma particles. This is closely related to screening,
and despite the differences between axions and gravitons, the same remains true for the latter in non-relativistic limit,
mf ≫ ω. We repeat the argument here for completeness.

In the non-relativistic limit, |q|/mf ≪ 1, and therefore the charged particles off which the photon scatters may be
regarded as at rest during the collision. As a result, the photon scatters off a charge distribution, ρ(r), with a cross
section

dσ

dΩ
=

dσ

dΩ

∣

∣

∣

∣

e

|F (q)|2 , where F (q) =
1

e

∫

dr eiq·rρ(r) . (S11)

The cross section with subscript e refers to electrons as introduced in Eq. (S10). For N point charges Zie located

at ri, a explicit computation shows that F (q) =
∑N

i Zie
iq·ri as well as |F (q)|2 =

∑N
i Z2

i +
∑N

i 6=j ZiZj cos
(

q · rij
)

where rij ≡ ri − rj . This must be averaged accounting for the statistical ensemble describing the plasma. Clearly,
the first term is associated with individual charges, while the second one describes interference effects. The latter
averages to zero for very diluted plasmas (κ → 0) because their particles are uncorrelated. In that case, the total rate
in Eq. (S11) simply consists of adding the contribution of individual charges. Nevertheless, in real plasmas particles
mutually interact through their Coulomb fields and their motion is slightly correlated. Concretely, the potential, φi,
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around a given particle is sourced by a charge cloud with density

ρi(r) = Zie

(

δ3(r)− κ2

4π

e−κr

r

)

= −∇2φi . (S12)

That is, the Coulomb field of any charge is screened over distances larger than about κ−1. To determine the afore-
mentioned average, and hence the effect of correlations, we note that the potential energy associated with Eq. (S12) is

given by U = 1
2e
∑N

i 6=j Ziφi. Employing the Boltzmann factor associated with this potential energy, e−U/T , at leading
order in α one finds that thermal average is

N
∑

j 6=i

Zj〈cos
(

q · rij
)

〉 = − Ziκ
2

κ2 + |q|2
, which leads to

〈

|F (q)|2
〉

=

N
∑

i=1

Z2
i

(

1− κ2

κ2 + |q|2

)

. (S13)

Hence, Eq. (S11) implies that [10]

〈

dσ

dΩ

〉

=

N
∑

i=1

Z2
i

dσ

dΩ

∣

∣

∣

∣

e

|q|2

κ2 + |q|2
. (S14)

In summary, one must add individual cross sections introducing a global factor determined by the screening scale.
This clearly regularizes the divergence at |q| = 0. Following this procedure, we obtain the rates reported in Table I.
A few comments are in order.
While the Compton process for axions arises from a renormalizable coupling, gaee, leading to a cross section indepen-

dent of the momentum transfer in the non-relativistic limit, the Primakoff process results from a non-renormalizable
coupling, gaγγ , and leads to a differential cross section scaling as the fourth power of the momentum transfer [10].
Thus, only the latter exhibits a divergence, raising the question of whether the Compton-like and Primakoff-like
diagrams for gravitons must be separated somehow. Nonetheless, unlike photoproduction of axions, where such a
separation is feasible, for gravitons that cannot be done in a meaningful manner. First, because they depend on
the same coupling, namely, the gravitational coupling in Eq. (S5). Moreover, although the identity in Eq. (S9) is
separately satisfied by the Compton-like diagrams of Fig. S2, that is not the case of the identity associated with
energy-momentum conservation, Eq. (S6). In the light of this, we apply Eq. (S14) to photoproduction of gravitons as
a whole.
One might ignore the correlations given by Eq. (S13) and assume that the incoming photon scatters off a single

charge distribution given by Eq. (S12). This is the regularization advocated by Ref. [37]. The resulting cross section is

that in Eq. (S14) with |q|2/(κ2+ |q|2) → |q|4/(κ2+ |q|2)2. As explained in the main text, this issue has been revisited
recently for the Primakoff process [39], accounting for the velocity in the form factor. Corrections to Eq. (S14) have
been deemed negligible. Coupled with this, let us remark that, as opposed to bremsstrahlung or two-two scattering,
the effect of screening here cannot be understood as an effective mass for the photon for several reasons. First,
the effective mass of transverse photons in the external line is given by the plasma frequency, ωpl, and not by the
Debye-Hückel screening scale, κ, which in the Sun satisfies ωpl ≪ κ. See Fig. 2. In fact, even if one adopts an ad-hoc
prescription in which the virtual photon in Fig. S2 has a mass κ, while the incoming external photon has a mass ωpl,
one quickly finds inconsistencies. For instance, this approach spoils Eq. (S6).

2. Bremsstrahlung

In the Born approximation, there are seven Feynman diagrams associated with bremsstrahlung in eZ collisions,
see Fig. S3. For ee collisions, additional diagrams are obtained by symmetrizing the final state of those shown in
Fig. S3. Note that bremsstrahlung from two-nucleon states are negligible. To calculate the corresponding Mµν , we
follow the procedure outlined above. Concretely, we manipulate the symbolic output provided by CalcHEP [24] using
Package-X [68]. Crucially, we verify that Eq. (S6) is satisfied. Subsequently, we use this together with the appropriate
polarization tensors to compute M(λ). To account for screening, we modify the photon propagators with an effective
mass equal to the screening scale. As argued above, that is the correct prescription for slow particles such as the
non-relativistic plasma components (in contrast to the external photon in the photoproduction process described
above). From this, we calculate the differential cross sections in energy. To the best of our knowledge, the expression
for these have never been reported in the literature in a general form. This is not surprising as the aforementioned
procedure is a daunting task, even in the the non-relativistic limit. After algebraic manipulation, in such a limit we
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find

dσv

dω

∣

∣

∣

∣

∣

eZ→eZ h

=
32Z2α2Gpi

15ω

(

1

me

+
1

mZ

)

[

3(1 + ξ2 + ξ2s )L (S15)

+10ξ +
1

3
ξ2s







(1− ξ)2
(

18(1 + ξ)4 + 29(1 + ξ)2ξ2s + 12ξ4s

)

(

(1 + ξ)2 + ξ2s

)3 − (ξ → −ξ)












,

with notation L, ξ and ξs introduced in Table I. In this calculation we do not take the limit mZ ≫ me, we simply
assume that both nucleons and electrons are non-relativistic. Likewise

dσv

dω

∣

∣

∣

∣

∣

ee→ee h

=
32α2Gpi
15ωme

{

20ξ − 6ξ(1 + ξ4)

(1 + ξ2)2
+

[

6(1 + ξ2)− 3(1− ξ2)4 + 7(1− ξ4)2

2(1 + ξ2)3
(S16)

1

2
ξ2s

(

6(ξ4 + 1)(1− ξ2)2

(ξ2 + 1)2(ξ2 + ξ2s + 1)2
+

2(ξ4 − 4ξ2 + 1)(1− ξ2)2

(ξ2 + 1)(ξ2 + ξ2s + 1)3
+

13ξ8 + 22ξ4 + 13

(ξ2 + 1)3(ξ2 + ξ2s + 1)
+ 15

)]

L

+ ξ2s

[

2(1− ξ2)2
(

− (1− ξ)4 − 80ξ2

16 ξ2(ξ + 1)2((ξ + 1)2 + ξ2s )
− 3(ξ4 + 1)ξ2s + 4(ξ6 + 1)

8ξ(ξ2 + 1)2(ξ2 + ξ2s + 1)2
+

6(ξ + 1)2 + 5ξ2s

3((ξ + 1)2 + ξ2s )
3

)

−(ξ → −ξ)]} .

For ξs = 0, these cross sections agree fully with those reported by Gould in Refs. [27, 33]. The total emission rate is
given by

dΓ

dωdV

∣

∣

∣

∣

∣

Bremsstrahlung

=
1

2
n2
e

dσv

dω

∣

∣

∣

∣

∣

ee→ee h

+
∑

Z

nenZ

dσv

dω

∣

∣

∣

∣

∣

eZ→eZ h

. (S17)

The partial contributions of each channel are shown in Fig. S4. To leading order in the screening scale the resulting
expressions are reported in Table I. While these approximations are quite accurate for eZ bremsstrahlung, they are
less precise for ee bremsstrahlung, as shown in Fig. S4. This underscores the critical importance of incorporating
screening effects in the bremsstrahlung rates.

Soft emission. Let us consider the initial state eZ. A soft graviton leads to ξ → 1. Taking ξs → 0, the effect of
screening appears only in the logarithm with L → LCoulomb, and the corresponding emission rate can be cast as

dΓ

dωdV

∣

∣

∣

∣

∣

eZ→eZ h

=
64α2Z2Gv

5
LCoulombnenZ =

8G

5π
nenZ µ2v5σ

(eZ)
V . (S18)

In the last equation, we use the viscosity cross section obtained in Eq. (S3) with Ei = µv2/2. Note that v =

FIG. S3. Feynman diagrams for bremsstrahlung in eZ collisions.



7

He

e

p

10
-1

10
0

10
1

10
5

10
6

10
7

10
16

10
17

10
18

10
19

(keV )

d
P
/d

(W
)

f (Hz)

e He

e e

e p

10
-1

10
0

10
1

10
5

10
6

10
7

10
16

10
17

10
18

10
19

(keV )

d
P
/d

(W
)

f (Hz)

FIG. S4. Left: Contribution of photoproduction processes to the solar GW spectrum. Right: Contribution of bremsstrahlung
processes to the solar GW spectrum. Solid lines are the full results determined by Eqs. (S15) and (S16). The dashed lines are
the leading results in the screening scale, reported in Table I.

pi

(

1
me

+ 1
mZ

)

. Similarly, for ee Eq. (S16) reduces to

dΓ

dωdV

∣

∣

∣

∣

∣

ee→ee h

=
32α2Z2Gv

5
LCoulombn

2
e =

4G

5π
n2
e µ

2v5σ
(ee)
V . (S19)

Here v = 2pi/me. As explained in the text, this was first proven by Weinberg [8], who used it to estimate the total
power emitted by the Sun.


