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The parton branching method is crucial for Monte Carlo generators, which are essential for high-
energy physics predictions. We examine the impact of soft gluons on inclusive collinear and
Transverse Momentum Dependent (TMD) parton densities. By applying the Parton-Branching
(PB) method, we identify the non-perturbative Sudakov form factor with the integration range
I → 1, which is often neglected in collinear parton shower approaches.
The significance of soft gluons is demonstrated through the transverse momentum spectrum of
Drell-Yan lepton pairs, resulting in an intrinsic-:T distribution width that remains independent of√
B, contrary to observations in collinear parton shower approaches. This behavior is attributed to

the non-perturbative Sudakov form factor.
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1. Introduction

Experimental measurements in high-energy particle physics are often more precise than the

theoretical predictions generated by Monte Carlo (MC) event generators. One source of uncertainty

in collinear parton shower is neglecting soft gluon emissions in backward evolution. Another

potential problem comes from the differences between the details in forward evolution used for

Parton Distribution Functions (PDFs) extraction and backward evolution in the parton shower

algorithms. This seperation of forward and backward evolution, gives the freedom in choosing

parameters of parton showers.

The Parton Branching (PB) method serves as a straightforward connection between the Collins-

Soper-Sterman (CSS) approach and parton shower methods in MC event generators. It allows for

a detailed examination of their connection, especially in understanding the origins of the non-

perturbative Sudakov form factor [1, 2].

2. Parton Branching method

The PB method is a versatile MC approach for generating QCD high-energy predictions using

Transverse Momentum Dependent (TMD) PDFs, commonly referred to as TMDs. A key component

of this method is the forward evolution equation [3, 4], which describes the evolution of parton

density through real, resolvable branchings and virtual, non-resolvable contributions, managed

using Sudakov form factors. The PB method’s evolution equation for a TMD density A0 (G, k, `2)
for parton 0 at scale ` can be expressed in integral form as:

A0 (G, k, `2) = Δ0 (`2) A0 (G, k, `2
0) +

∑

1

∫ `2

`2
0

32q′

cq′2
Δ0 (`2)
Δ0 (q′2)

×
∫ IM

G

3I

I
%
(')
01

(UB, I) A1

(

G

I
, k + (1 − I)q′, q′2

)

, (1)

where G denotes the longitudinal momentum fraction, k represents the 2-dimensional transverse

momentum vector with :T = |k|, and |q′ | = @′. The initial distribution A0 (G, k, `2
0) in equation

(1) at scale `0 is parameterized in terms of a collinear parton density at the starting scale and an

intrinsic-:T distribution modeled as a Gaussian function with width f. The width parameter f of

the Gaussian distribution is related to @B by @B =
√

2f.

The Sudakov form factor, Δ0 (`2), derived from the momentum sum rule and unitarity, repre-

sents real, resolvable splittings as a non-emission probability. This offers a clear, intuitive view of

evolution as a sequence of branchings, enabling the PB evolution equation to be solved using MC

techniques through a parton branching algorithm. Beyond the evolution equation, the PB method

includes a procedure for fitting initial distribution parameters to experimental data via the xFitter

platform [5]. The resulting PB TMDs and PDFs [6–8] are accessible through TMDlib [9] and in

LHAPDF format for use in TMD MC generators. An important generator is the TMD MC generator

Cascade [10], which implements the TMD initial state parton shower with backward evolution

guided by PB TMDs. In Cascade we have no inconsistencies from the differences between the

details in forward evolution used for PDFs extraction and backward evolution in the parton shower

algorithms.
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2.1 Introducing non-perturbative Sudakov form factor

The Sudakov form factor Δ0 (`2) is essential in the formulation of the PB method:

Δ0 (`2) = exp

(

−
∑

1

∫ `2

`2
0

3q′2

q′2

∫ IM

0
3I I %

(')
10

(UB, I)
)

, (2)

The resolvable splitting functions %
(')
10

(UB, I) describe the process where a parton 0 splits into a

parton 1, with I representing the ratio of their longitudinal momenta. These functions typically

correspond to DGLAP splitting functions, either at leading or next-to-leading order. To ensure

numerical stability during calculations, a parameter I" is introduced, where I" = 1 − n and

n → 0. It is crucial that n → 0 to facilitate accurate cancellation of terms in the evolution equation

derivation and to accurately reproduce the DGLAP limit, as detailed in Ref. [3, 4]. This approach

also ensures stable solutions for TMD distributions.

Having angular ordering condition in the evolution, one can define a seperation tool of Idyn =

1 − @0/@′. The Sudakov form factor can now be decomposed into perturbative (0 < I < Idyn) and

non-perturbative (Idyn < I < IM) parts [2, 11]:

Δ0 (`2) = Δ
(P)
0 (`2) · Δ(NP)

0 (`2), (3)

where, in Δ
(P)
0 , the integral over I ranges from 0 to Idyn, while in Δ

(NP)
0 , it ranges from Idyn to IM.

The PB method facilitates a connection to the CSS formalism: by implementing angular

ordering with Idyn = 1 − @0/@′ and utilizing the transverse momentum @t = @′(1 − I) as a scale in

UB, it becomes feasible to derive purturbative components of the CSS Sudakov factor, extending up

to next-to-next-to-leading order, as elaborated in Ref. [11]. Moreover, a significant advantage of

the PB method is the ability to compute the non-perturbative Sudakov form factor Δ(NP)
0 , which can

be determined through fitting inclusive distributions [6]. In contrast, the CSS approach requires

additional constraints on this form factor from exclusive measurements.

2.2 Non-perturbative Sudakov form factor in inclusive and exclusive distributions

In Ref. [2], it was demonstrated that non-perturbative Sudakov form factors play a crucial role

in inclusive distributions, such as collinear parton densities and Drell-Yan transverse momentum

spectra. These soft emissions are integral to the "(-scheme, as neglecting them would result in

the non-cancellation of important singular terms.

Ref. [12] focuses on the transverse momentum spectrum ?T(ℓℓ) and determines the width

of the intrinsic-:T distribution through precise measurements at LHC energies [13] across a wide

range of DY masses <DY. Lower-energy measurements were also examined, showing that all data

can be effectively described using the PB approach. The width of the intrinsic-:T distribution

exhibits a very mild dependence on the center-of-mass energy
√
B, as depicted in Fig. 1.

In Ref. [1], it was confirmed that this stable result is obtained with the original PB set, where

@0 < 0.01 GeV. As shown in Fig. 2, excluding the non-perturbative Sudakov form factor reveals a

strong dependence of the width parameter @B on the center-of-mass energy
√
B.

It was also established in Ref. [2] that these soft emissions have essentially no effect on final

state hadron spectra and jets.
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simulations. Soft gluons affect inclusive distributions but not observable hadron spectra.
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