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grating. The energy bandwidth is defined in combination with an exit slit. Studies at the soft

X-ray beamline P04 at PETRA III have shown that the vertical exit slit of the monochromator

affects the spatial coherence in the vertical direction [27,28]. Despite this expected effect, it

has been shown that the measured spatial coherence in the dispersion direction is far below the

theoretically predicted value [26,29,30]. So far, gratings have not been considered as a source of

spatial coherence degradation.

In this paper, we present a physical and theoretical description for the significant degradation

of the spatial coherence properties of the photon beam due to the use of grating monochromators

at synchrotron facilities. We present a comprehensive study of the effect of spatial coherence

degradation as a function of grating parameters under different focusing and propagation

conditions. Emphasis has been placed on the spatial coherence degradation effect introduced by

the grating alone, thus assuming a fully coherent incident photon beam generated by a filament

source. The mathematical description and the theoretical analysis of the spatial coherence

degradation are presented in the framework of statistical optics.

The first sections give an overview of the synchrotron radiation pulse structure and the

mathematical description of the undulator radiation, then the basic theory of statistical optics

as applied to the synchrotron source. The effect of the dispersion introduced by the grating

monochromator on the spatial coherence properties of the X-ray radiation is investigated in the

following sections. Individual effects of free-space propagation and focusing of the photon beam

with dispersion are considered, as well as the effects of aberration and photon beam clipping

by the exit slit. An evaluation of the spatial coherence properties of the photon beam and

the energy resolution of the monochromator are given in these sections. The study concludes

with a discussion and summary of the analysis, followed by an explanation of the effect and its

applicability to synchrotron radiation sources.

2. Statistical properties of a synchrotron radiation source

This section describes the mathematical basis of the statistical methods used for synchrotron

radiation (SR) sources. In order to understand the origin of spatial coherence degradation caused

by gratings, it is necessary to consider the pulse structure and statistics of synchrotron radiation

sources. Therefore, this section briefly discusses the pulse structure of synchrotron radiation and

the mathematical description of the X-ray source, followed by the basic theory of coherence in

the framework of statistical optics.

2.1. Pulse structure

In this paper an undulator is considered as the primary source of X-ray radiation. The source has

an intrinsic stochastic structure driven by shot-noise statistics. This means that the fluctuations of

the photon beam density are random in the six dimensional phase space volume containing two

spatial, two angular, time and energy projections [6,14]. These fluctuations follow a Gaussian

distribution. As a result, the produced radiation field has random amplitudes and phases, implying

that the synchrotron radiation process is a Gaussian random process with shot-noise statistics

imprinted in the radiation structure [14]. The latter manifests itself as longitudinal (or spectral)

and transverse individual spikes in the radiation pulse. The presence of individual temporal

spikes in a pulse implies the existence of certain coherent regions in the time domain with a

characteristic coherence time τc. As such, the width of these individual spikes can be roughly

estimated from the simple Fourier transform (FT) theory relations

∆ω∆τ = 2π, (1)

Additionally, it was shown that the SR process is non-stationary and, consequently, non-ergodic

but a quasi-stationary process [14]. In the framework of statistical optics considering quasi-

stationary processes, one can estimate characteristic times of such radiation pulses by considering
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a Wiener-Khinchin theorem [31]. According to the theorem, the coherence time of the processes

with Gaussian spectral density is τc=
√
π/σω , where σω is the rms spectral width and ∆ω =

2
√

2ln(2)σω is the width of the spectrum. The spectral width of the radiation produced by an

undulator is [32–34]
∆ω

ω
=

1

nNu

, (2)

where n is the harmonic number and Nu is the number of undulator periods. The typical number

of periods is about Nu = 102, so that the spectral bandwidth in the soft X-ray range (500 eV

- 4 keV) is about ∆ω ∼ 1016 Hz, and the corresponding coherence time is τc ∼ 10−16 s. The

characteristic duration of the electron bunch can reach values of σt ∼ 30·10−12 s. From this, it can

be seen that on the scale of pulse duration there are N=σt/τc= 105 random intensity fluctuations

or temporal spikes.

Looking at the spectral domain by analogy, one can estimate a coherent spike in the spectrum

∆ωc ∼ 2π/σt. In this case, the value of ∆ωc is about 1011 Hz, so the spectrum also contains

about 105 spikes. This is shown in Fig. 1 along with the Fourier relation. As can be seen from this

analysis, on the scale of the average spectrum, the coherent region (spike width) is∆ωc/ω0 ≈ 10−7

and rapidly disappears as one approaches the typical pulse duration of SR. Typically, today’s

monochromators cannot resolve a single spike, leading to the case of a convenient model for

coherence analysis.

Fig. 1. Characteristic undulator radiation field in the time-frequency domain that has an

intrinstic stochastic structure driven by shot-noise statistics. Gaussian intensity fluctuations

of the undulator radiation in time (a) and spectral domain (b) with characteristic pulse

duration T = 30 · 10−12s and coherence time τc = 1 · 10−16s (a), resulting in a spectral width

of ∆ω/ω ∼ 0.01 and spectral spike width ∆ωc/ω ∼ 10−7 (b). The red profile corresponds

to the ensemble average of a large number of random realizations (blue). The inset shows

the characteristic scale of the autocorrelation function.

2.2. Mathematical description

The mathematical tools of statistical optics are required to analyse the effect of spatial coherence

degradation caused by gratings used in grating monochromators. For simplicity, the description

and theoretical derivations are usually presented in the {r-ω}-domain, which implies a one-to-one

correspondence to the {r-t}-domain via FT relations, where the following FT pair is considered

for the radiation fields E(r, t) and E(r,ω)

E(r, t) = 1

2π

∫ ∞

−∞
E(r,ω)e−iωtdω, (3)

E(r,ω) =
∫ ∞

−∞
E(r, t)eiωtdt. (4)
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Statistical processes such as undulator radiation are treated with the concept of the statistical

ensemble [31], which averages over an ensemble or many realizations of the process under

consideration. In this context, the averaging is performed over the distributions of the electron

bunches [14].

The radiation field Ek⊥(r,ω) of the kth electron can be written as a function of the deflection

angle ηk, the offset from the undulator axis lk and the offset from the electron beam energy γk

(energy spread) as [6,14]

Ek⊥ = f (r,ω, ηk, lk, γk) (5)

where r={x, y} is the point of observation. The radiation field Ek⊥ considered in Eq. (5) is

distributed in the transverse plane perpendicular to the electron and photon beam propagation

direction at a certain distance z from the undulator center (in the far zone, considering the paraxial

approximation). The total radiation field is the sum of all individual electron contributions as

given by

E⊥(r,ω) =
Ne∑

k=1

Ek⊥(r,ω, ηk, lk, γk), (6)

where Ne is the number of electrons in the beam. The parameters ηk and lk are random variables

and within the range of the electron beam divergence and size distributions. Another important

random parameter tk, the arrival time of the kth electron at the undulator entrance, must also be

taken into account, as it greatly simplifies our model and the corresponding calculations when

analysing spatial coherence. According to the Fourier transform in the {ω, t} domain in Eq. (4),

applying a shift theorem to the field E(r, t − tk) delayed by the time tk, there is an additional factor

eiωtk implying the transition from the {r, t} to the {r,ω}-domain.

The total radiation field E(r,ω) that accounts for all possible random shifts within the electron

bunch is the sum of the partial contributions as given by [14]

E(r,ω) =
Ne∑

k=1

Ek⊥(r,ω, ηk, lk, γk)eiωtk , (7)

where tk is in the range of the electron bunch duration σt. It is also assumed that the random

arrival times tk are independent of the random transverse shifts lk and ηk, which is the case

at synchrotron facilities. In general ηk={ηx, ηy}k, lk={lx, ly}k, γk and tk are random variables

following a Gaussian distribution.

The ensemble average of a function E(a), where a is a random variable is defined as

<E(a)>=
∫

E(a)f (a)da. (8)

The function f (a) is the probability distribution of a. The independence of the random variables

allows to write the ensemble average <E(r,ω)> as the convolution of the single electron radiation

with the probability density distributions of the electron beam, over offsets fl, deflection angles

fη , the electron beam energy fγ and the longitudinal bunch profile ft

<E(r,ω)>=
∫

E⊥(r,ω, η, l, γ)eiωtfη(η)fl(l)fγ(γ)ft(t)dηdldγdt. (9)

As a result, undulator radiation can be described mathematically in terms of statistical optics

by averaging over the entire volume of the phase space of random parameters [35,36].
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2.3. Spatial coherence

The second-order coherence theory is the fundamental theory of optical coherence. It describes

the correlation of electric field amplitudes [31,37,38]. The second-order correlation is described

by the mutual coherence function (MCF), defined as [31]

Γt(r1, r2, t1, t2) = <E∗(r1, t1)E(r2, t2)>t. (10)

The MCF describes correlations between two electric field values E(r1, t1) and E(r2, t2) at

different points in space r1 and r2 and times t1 and t2. The brackets < · · · > denote the time

average. If the statistical process is stationary, quasi-stationary or ergodic, then the MCF can be

written as a function that depends only on the time difference τ = t2 − t1:

Γt(r1, r2, τ) = <E∗(r1, t)E(r2, t + τ)>. (11)

In our {r-ω}-domain under consideration, the second order correlation function Γω(r1, r2,ω1,ω2)
can be written as follows

Γω(r1, r2,ω1,ω2) = <E∗(r1,ω1)E(r2,ω2)>, (12)

where functions Γt(r1, r2, t1, t2) and Γω(r1, r2,ω1,ω2) form a Fourier pair

Γt(r1, r2, t1, t2) =
1

4π2

∫ ∞

−∞
Γω(r1, r2,ω1,ω2)eiω1t1e−iω2t2dω1dω2. (13)

Taking into account the properties of synchrotron radiation described above, the second-order

correlation function in the {r-ω}-domain can be split in the product of a spectral and a spatial

factors [14]

Γω(r1, r2,ω1,ω2) = Gω(ω1 − ω2)G⊥(r1, r2), (14)

where Gω(ω1 − ω2) is the spectral correlation function which can be approximated by Dirac

δ-function δ(ω1 − ω2) [31], and G⊥(r1, r2,ω1) is the cross-spectral density function (CSD) [31],

which describes spatial correlations. From now on we will be concerned with the calculation of

the cross-spectral density G⊥(r1, r2), where the frequency argument of the function is omitted

and the quasi-monochromatic approximation is considered. Using the mathematical description

of the undulator source presented in section 2.2, the CSD function [14] is given by

G⊥(r1, r2) =
1

2π

∫ ∞

−∞
d∆ω E∗(r1,∆ω)E(r2,∆ω). (15)

The fact that each monochromator has an intrinsically limited resolving power was taken into

account in the derivation of Eq. (15) [14]. It is necessary to introduce a quantity for G⊥(r1, r2)
that represents its efficiency. This quantity is the degree of transverse coherence (DoTC) ζ , which

characterises the spatial coherence of synchrotron radiation by a single number [14,31] and is

described by

ζ =

∫ ∞
−∞

∫ ∞
−∞ dr1dr2 |G⊥(r1, r2)|2
���
∫ ∞
−∞ dr G⊥(r, r)

���
2

. (16)

3. Grating dispersion and spatial coherence degradation

The spatial coherence properties of the photon beam after interaction with a grating are described

in detail in this section. The assumptions and simplifications of the previous sections are adopted.

The most important simplification is the factorisation of the spatial and spectral components of

the incident field amplitude. In addition, a fully coherent incident photon beam with a Gaussian
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spatial distribution is assumed. The influence of grating dispersion on spatial coherence is studied

both for free space propagation and for focusing. The influence of aberrations in the focusing

of the photon beam together with the grating dispersion is analysed in the following part. The

variation of the spatial coherence properties of the photon beam as a function of the energy

resolution of the grating monochromator is analysed in the last section.

3.1. Free-space propagation

It has been shown that undulator radiation follows the same Gaussian random statistics as thermal

light [14]. However, unlike thermal sources, which are completely incoherent, undulator sources

are partially coherent, with a coherent spot size equal to the single-electron diffraction size.

From the sections 2.2 (Eq. (9)) and 2.3 (Eq. (10)) it can be seen that the partial coherence of the

undulator source is determined by the randomly distributed parameters η, l, γ of the electron

beam.

The analysis presented here is limited to the effects associated with the grating. Effects

associated with the random spatial and angular distribution of the electron beam are not

considered, which assumes complete spatial coherence of the photon beam incident on the

grating. As such, the photon beam incident on the grating with a given carrier frequency ω0 can

be written as

Ei(r, t) = Ei(t)Ei(r)e−iω0t, (17)

where we assumed that the temporal E(t) and the spatial E(r) components of the incident field

amplitude Ei(r, t) can be separated.

In the following, only the one-dimensional spatial case is considered, in which the incident

photon beam has the geometry shown in Fig. 2(a).

Ei(x, t) = Ei(t)Ei(x)e−iω0t. (18)

Fig. 2. (a) Schematic of a plane grating. A photon beam with a frequency offset ∆ω (red)

from the carrier frequency ω0 (blue) exhibits an additional phase term, which depends on

the specifications of the grating. (b) Schematic of a VLS grating. The polychromatic photon

beam from the source is spectrally separated and focused by the VLS grating to the focal

plane f at the ES position. To calculate defocus aberrations, the ES is placed out of focus at

position a. Please note that all distances and angles in (a) and (b) are exaggerated. The spatial

characteristics are considered in the x-plane, which is perpendicular to the propagation.

The electric field amplitude in the corresponding {x,ω} domain according to Eq. (4) has the

form

Ei(x,∆ω) =
∫ ∞

−∞
dt Ei(t)Ei(x)e−iω0teiωt

= Ei(∆ω)Ei(x), (19)

where ∆ω = ω − ω0.
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An incident electric field with Gaussian spatial and spectral distributions, characterised by

their rms widths σx0
and σω respectively, has been considered for the following calculations.

The Gaussian distributions are described by

Ei(x) = exp

[
− x2

2σ2
x0

]
, (20)

|Ei(∆ω)|2 = exp

[
− ∆ω

2

2σ2
ω

]
. (21)

Note that in Eq. (20) the amplitude of the incident electric field and in Eq. (21) the intensity of

the field spectrum are considered.

In the following, the Gaussian distributions described in Eqs. (20) and (21) are used to simplify

the functional form of the CSD function. In this case, Ei(∆ω) can be considered as the ensemble

average of the spectrum. The use of simple amplitude forms is sufficient for a quantitative

analysis of the problem. According to Eq. (15), upon using the following definitions

x1 = x̄ +
∆x

2

x2 = x̄ − ∆x

2

(22)

the CSD of the electric field between points x1 and x2 can be defined in full generality (see

Supplement 1) by

G⊥(x̄,∆x) = 1

2π

∫ ∞

−∞
d∆ω E∗

(
x̄ +
∆x

2
,∆ω

)
E

(
x̄ − ∆x

2
,∆ω

)
. (23)

The DoTC is accordingly described by

ζ =

∫ ∞
−∞

∫ ∞
−∞ dx̄ d∆x |G⊥(x̄,∆x)|2

���
∫ ∞
−∞ dx̄ G⊥(x̄,∆x = 0)

���
2

. (24)

As already mentioned, we assume full spatial coherence of the beam incident on the grating,

which can be seen by the substitution of Ei(x,∆ω) = Ei(x)Ei(∆ω) in Eq. (23) and Eq. (24)

G⊥(x̄,∆x) = 1

2π

∫ ∞

−∞
d∆ω exp

[
−
(x̄ + ∆x

2
)2

2σ2
x0

]
exp

[
−
(x̄ − ∆x

2
)2

2σ2
x0

]
exp

[
− ∆ω

2

2σ2
ω

]
, (25)

ζ =

∫ ∞
−∞

∫ ∞
−∞ dx1dx2 |Gi⊥(x̄,∆x)|2

���
∫ ∞
−∞ dx Gi⊥(x̄,∆x = 0)

���
2
= 1 . (26)

The CSD in Eq. (25) is obtained by integrating over all individual frequencies within the

incident energy bandwidth. It shows that the photon beam incident on the grating, which is

characterised by Gaussian spatial and spectral distributions, has a degree of transverse coherence

ζ = 1 and is therefore fully spatially coherent.

An electric field incident on the grating with an energy offset ~∆ω from the resonant energy

~ω0 results in an angular increment, as shown in Fig. 2(a). As a result, it acquires an additional
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phase term in the {x,∆ω} domain (see Supplement 1),

Eg(x,∆ω) = E(x,∆ω)eip∆ωx, (27)

where p=∆kx/∆ω is the dispersion parameter of the grating. The photon beam directly after the

grating according to Eq. (27) is described by

Eg(x,∆ω) = exp

[
− x2

2σ2
x

]
Ei(∆ω)eip∆ωx, (28)

where the photon beam width σx =
θD

θI
σx0

is corrected for the "astigmatism" factor due to the

difference in exit and entrance angles. In Eq. (28), the diffracted electric field of each individual

frequency ∆ω contains a phase term with a certain tilt proportional to ∆ω and p, with the

exception of the carrier (resonant) frequency ω0. The tilt implies that the spatial and frequency

components of the electric field are coupled. The amplitude and phase distribution of the spatial

part of the electric field directly after the grating is shown in Fig. 3(a) for three different energies.

It shows that the photon beams strongly overlap spatially. However, the phase profiles of the

individual photon beams are tilted with respect to the carrier (resonant) frequency (ω0).

Fig. 3. (a) Amplitude and phase distributions of the spatial part of the photon beam directly

after the grating for three different frequencies (energies). The blue line corresponds to the

phase distribution of the central frequency ω0 (e.g., 1200 eV), the red line for the frequency

offset ∆ω/ω0 = +1·10−5 (1200.01 eV) and the yellow line for the frequency offset ∆ω/ω0

= +2·10−5 (1200.02 eV). The black dashed line corresponds to the amplitude distribution of

the photon beam including all three frequencies. The horizontal x̂-axis is normalized to the

size of the beam σx. (b) DoTC of the photon beam direcly after the grating as a function of

the normalised dispersion parameter p̂ (see Eq. (30)).

Substitution of Eq. (28) into Eq. (23) gives the expression for the CSD of the photon beam

after the grating

Gg⊥(x̄,∆x) = 1
√

2π
σω exp

[
−σ

2
ωp2(∆x)2

2

]
exp

[
− x̄2
+ (∆x)2/4
σ2

x

]
. (29)

Further Substitution of the expression (Eq. (29)) into Eq. (24) gives the DoTC

ζg =
1

√
1 + 2p2σ2

ωσ
2
x

=

1
√

1 + p̂2
, (30)

where p̂ =
√

2σωσxp is the normalised dispersion parameter. Equation (30) shows that the degree

of transverse coherence is unity (full spatial coherence) for a monochromatic beam σω = 0. The
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degree of transverse coherence as a function of the normalised dispersion parameter is shown in

Fig. 3(b). It can be seen that with increasing p̂, the spatial coherence of the photon beam decreases

significantly. The increase of p̂ can be caused either by an increase of the incident energy

bandwidth ~σω , the photon beam footprint on the grating σx/θD, or the dispersion parameter p.

Replacing the dispersion parameter p by the grating parameters (see Supplement 1), the degree

of transverse coherence of the photon beam directly after the grating (assuming diffraction in the

first order) is described by

ζg =
1

√
1 +

2λ2σ2
ω
σ2

x

d2c2θ2
D

, (31)

where d is the groove spacing of the grating, c is the speed of light and λ is the wavelength

corresponding to the carrier (resonant) frequency ω0.

In the framework of Gaussian-Schell Model (GSM) [31,39] the CSD function GGSM is defined

as follows

GGSM(x̄,∆x) =
√

G⊥(x̄ + ∆x/2, 0)
√

G⊥(x̄ − ∆x/2, 0)exp

(
− (∆x)2

L2
g

)
. (32)

By comparing Eq. (29) and Eq. (32) one can estimate the spatial coherence length of the

diffracted field immidiately after the grating in the framework of GSM

Lg =
1

σωp
. (33)

In Eq. (33) it can be seen that the spatial coherence length depends only on the incoming

bandwidth σω and the grating parameter p.

In the following, the propagation of the diffracted electric field after the grating and its spatial

coherence properties will be discussed. In this case, a slowly varying envelope of the field with

respect to the frequency is assumed, as described by E(x, z,∆ω) = Eg(x, z0,∆ω) exp(−iωz/c).
The propagation of the diffracted field Eg(x′,∆ω) in free-space up to a distance z is given by the

propagator

Pz(x − x′) =
√

iω0

2πcz
exp

[
iω0(x − x′)2

2cz

]
, (34)

and is defined as

Ez(x,∆ω) =
∫ ∞

−∞
Eg(x′,∆ω)Pz(x − x′)dx′

= E0exp

[
ix2/σx − p2

∆ω2σxẑ + 2xp∆ωσx

2(ẑ − iσx)

] (35)

where E0 contains all non-essential pre-integral factors, and ẑ is defined as

ẑ =
cz

ω0σx

. (36)

In Eq. (35) a narrow bandwidth ∆ω around ω0 is assumed. This assumption is valid until

∆ωx2/(cz) ≪ 1, otherwise we cannot consider the frequency ω = ω0 fixed anymore. Substitution
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of the propagator (Eq. (35)) into Eq. (23) gives CSD function

Gz⊥(x̄,∆x) = Gz0
exp

[
iẑx̄∆x/σx − x̄2/̃p − (∆x/2)2

ẑ2
+ σ2

x /̃p

]
, (37)

where the new parameter p̃ is defined as

p̃ = 1 + 2p2σ2
xσ

2
ω = 1 + p̂2. (38)

Interestingly, substitution of CSD (Eq. (37)) into Eq. (24) gives exactly the same expression as

in Eq. (30) for DoTC directly after the grating ζz = ζg. This means that the degree of transverse

coherence of the photon beam is preserved as it propagates in free-space after diffraction by the

grating. However the coherence length of the beam now depending on the distance z from the

grating and can be estimated from Eq. (37) in the framework of Gaussian-Schell Model [31,39]

Lz = Lg

√
ẑ2/σ2

x + 2ẑ2/L2
g + 1. (39)

For z → 0, the coherence length is equal to the coherence length immediately behind the

grating Lz = Lg.

3.2. Influence of focusing

For efficient monochromization, the photon beam diffracted by the grating is focused into the

plane of the exit slit aperture. Focusing can be achieved by using an additional focusing element

after a plane grating or by using a self-focusing grating such as a Variable Line Spacing (VLS)

grating (as shown in Fig. 2(b)). The latter is used in the following to describe the spatial coherence

properties of the photon beam upon focusing.

To simplify the mathematical description of a VLS grating, it can be represented by a plane

grating in conjunction with a ’virtual lens’ [40,41]. This is sufficient for a qualitative analysis

of the spatial coherence properties of a VLS grating. The approach simplifies the expressions

for the diffracted field Eg(x′,∆ω) and the CSD Gg⊥(x̄,∆x). The virtual lens is mathematically

described by the following transmission function

Tf (x,ω0) = exp

[
−iω0x2

2cf

]
, (40)

where f is the focal length of the VLS grating. Using a propagator (Eq. (34)), the electric field

Ef (x,∆ω) in the focal plane of the virtual lens is described by

Ef (x,∆ω) =
√

iω0

2πcf

∫ ∞

−∞
Eg(x′,∆ω)exp

[
−iω0x′2

2cf

]
exp

[
iω0(x − x′)2

2cf

]
dx′

=

√
iσx

σf

exp

[
−∆ω2

4σ2
ω

]
exp

[
iω0x2

2cf

]
exp

[
−x2

2σ2
f

]
exp

[−p2
∆ω2σ2

x

2

]
exp

[
p∆ωxσx

σf

]
,

(41)

where the width of the focused monochromatic beam σf is defined by

σf =
fc

ω0σx

. (42)

Note that the expression in Eq. (42) is only valid for 1:1 focusing.

The amplitude and phase distribution of the spatial part of the photon beam at the exit slit

plane is shown in Fig. 4 for three different energies. In contrary to the case of free-space



Research Article Vol. 32, No. 27 / 30 Dec 2024 / Optics Express 47820

Fig. 4. Amplitude and phase distributions of the spatial part of the photon beam at the

exit slit plane for three different frequencies (energies). The blue line corresponds to the

phase and amplitude distribution of the central frequency ω0 (e.g., 1200 eV), the red line for

the frequency offset ∆ω/ω0 = +1·10−5 (1200.01 eV) and the yellow line for the frequency

offset ∆ω/ω0 = +2·10−5 (1200.02 eV). The horizontal x̂-axis is normalized to the size of

the focused monochromatic beam σf .

propagation (see Fig. 3(a)), the phase distribution for the different energies is equal. However, the

amplitude distribution of these photon beams are spectrally seperated. The degree of separation

is determined by the dispersion parameter p.

Substitution of Eq. (41) into Eq. (23) gives the expression for the CSD of the photon beam at

the focal plane

Gf⊥(x̄,∆x) = Gf0exp

[
− ix̄∆x

σfσx

]
exp

(
− [x̄2/̃p + (∆x/2)2]

σ2
f

)
. (43)

Suprisingly, further substitution of the expression (Eq. (43)) into Eq. (24) gives the same

expression as for the degree of transverse coherence directly after the grating (Eq. (30)) and

during propagation ζf = ζz = ζg although the amplitude and phase distributions are different in

both cases. This implies that the degree of spatial coherence of the photon beam does not change

upon propagation or focusing and is hence preserved. Note that the result is the same if a plane

grating is used in conjuction with a focusing mirror instead of a VLS grating. Similar to the

previous calculations, the coherence length of the beam in the focus can be estimated from the

CSD function in Eq. (43)

Lf = Lg

√
σ2

f
/σ2

x + 2σ2
f
/L2

g. (44)

3.3. Defocus aberration

The following section describes the effect of defocus aberration on the spatial coherence properties

of the photon beam after the grating. It is assumed that the defocus aberration has the largest

effect on the beam properties. All other aberrations are neglected for simplicity.

Defocus aberration is implemented by an additional phase factor

Pa(x) = exp

[
iax2

σ2
x

]
. (45)
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Such aberrations can be considered in the out-of-focus plane, as shown in Fig. 2(b). Substitution

of Eq. (45) into Eq. (41) gives the expression for the diffracted electric field with defocus aberration

Ea
f (x,∆ω) =

√
iω0

2πcf

∫ ∞

−∞
Eg(x′,∆ω)exp

[
−iω0x′2

2cf

]
Pa(x′)exp

[
iω0(x − x′)2

2cf

]
dx′

= Ea
0exp

[
−∆ω2

4σ2
ω

]
exp

[
iω0x2

2cf

]
exp

[
1

(1 − 2ia)

(
−x2

2σ2
f

− p2
∆ω2σ2

x

2
+

p∆ωxσx

σf

)]
.

(46)

The CSD function Ga
f⊥(x̄,∆x) in the exit slit plane including defocus aberration is obtained by

substitution of Eq. (46) into Eq. (23)

Ga
f⊥(x̄,∆x) = Ga0

exp

[
−ix̄∆x

σfσx

]
exp

(
2iax̄∆x − x̄2 − (∆x/2)2p̃

σ2
f
(4a2
+ p̃)

)
. (47)

For a → 0, the CSD function Ga
f⊥(x̄,∆x) = Gf⊥(x̄,∆x). The degree of transverse coherence ζa

including defocus aberration is obtained by subtituting Eq. (47) into Eq. (24) which gives the

same expression as in Eq. (30) (ζa
=ζg), which is expected since DoTC does not change upon

focusing or propagation. It confirms that the spatial coherence properties of the photon beam is

preserved upon propagation and focusing which includes defocus aberration. Coherence length

in the case of defocus aberration is obtained from the equation Eq. (47) by the analogy with the

previous calculations

La = Lg

√
σ2

f
/σ2

x + 2σ2
f
/L2

g + 4a2/σ2
x . (48)

For a → 0, the coherence length is equal to the coherence length in the focus La = Lf .

3.4. Exit slit aperture and energy resolution

The exit slit aperture is an integral part of a grating monochromator. It selects a certain spectral

bandwidth of the incident photon beam and thus defines the resolving power of the monochromator.

At the same time, it acts as a spatial filter and affects the spatial coherence properties of the

monochromator. The effect of the exit slit aperture and its size on the spatial coherence properties

of the photon beam is described below. Mathematically, the transmission function of the exit slit

aperture can be approximated by a Gaussian function given by

Ts(x) = exp(− x2

2σ2
s

), (49)

where σs is the root mean square of the slit amplitude function. Note that the exit slit size is the

FWHM of Ts(x). The intensity of the photon beam after the exit slit is defined as

Ies(∆ω) =
����
∫ ∞

−∞
Ef (x,∆ω)Ts(x)dx

����
2

=

2πσfσx

σs

√
σ2

f
/σ2

x + (σ2
f
/σ2

s + 1)2
exp

[
− ∆ω

2

2σ2
res

]
,

(50)

where σres is the energy resolution of the monochromator that include incoming and transmitted

bandwidth

σres =
1

√
1/σ2

ω + 1/σ2
ωs

. (51)
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In Eq. (51), the energy resoultion σωs related to the exit slit aperture (transmitted bandwidth)

is defined as

σωs =
1

√
2σ2

x p2

[ (
1 +
σ2

s

σ2
f

)2
+

σ4
s

σ2
f
σ2

x

] 1
2
[
1 +
σ2

s

σ2
f

(
1 +
σ2

s

σ2
x

) ]− 1
2

. (52)

If the exit slit aperture is fully closed σs → 0, the normalised energy resolution is given by

σωs

ω0

=

1
√

2σ2
x p2ω2

0

=

1
√

2σ2
x

4π2

ω2
0
d2θ2

D

ω2
0

=

1

π
2
√

2σx

θDd

≈ 1

π
∆xf

d

=

1

πNg

,
(53)

where ∆xf ≈ 2
√

2σx/θD (FWHM) is the footprint of the incident photon beam on the grating

and ∆xf /d = Ng is the number of illuminated grooves. In this case, the energy resolution of the

monochromator is only determined by the total number of illuminated grooves. The maximum

energy resolution σres (σs → 0) that can be obtained is described by

σres =
σω√

1 + 2p2σ2
xσ

2
ω

=

1
√

1 + p̂2
=

σω√
p̃

. (54)

The resolving power of the monochromator ω0/σres as a function of σs for different dispersion

parameters p̂ is shown in Fig. 5(a). It can be seen that the resolving power increases as expected

with decreasing σs compared to σf . By increasing the dispersion parameter p̂, the separation of

the individual photon beams of different energies increases, resulting in an increasing resolving

power for a given exit slit aperture size.

Fig. 5. (a) Grating resolving power (ω0/σres, see Eq. (51)) and (b) DoTC (see Eq. (57))

as a function of the ratio of the exit slit size σs and the size of the focused monochromatic

beam σf after the ES for different dispersion parameters p̂. The blue circles show the results

of wave-optical simulations carried out with the Xrt software [42].

According to [38], the CSD function Gs⊥(x1, x2) directly after the exit slit aperture is defined as

Gs⊥(x1, x2) = T∗
s (x1)Ts(x2)Gf⊥(x1, x2), (55)

and in the x̄,∆x-domain by

Gs⊥(x̄,∆x) = σωσx√
2πσf

exp

[
−ix̄∆x

σfσx

]
exp

[
x̄2

(
1

σ2
f
p̃
− 1

σ2
s

)
−
(
∆x

2

)2 (
1

σ2
f

+

1

σ2
s

)]
. (56)
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The DoTC directly after the exit slit is given by

ζes =

√√√
σ2

s /(σ2
f
p̃) + 1

σ2
s /σ2

f
+ 1

. (57)

Figure 5(b) shows the DoTC as a function of the rms exit slit aperture size σs for different

dispersion parameters p̂. It can be seen that the degree of transverse coherence approaches unity

as expected with decreasing σs compared to σf . However, as can be seen from Eq. (57), in

order to obtain 100% of spatial coherence in this case, the exit slit should be completely closed,

which does not make much sense since there is no flux available afterward. On the other hand,

increasing p̂ for a given σs, significantly decreases the DoTC ζes. This is the opposite behaviour

to the effect on the resolving power. As a result, the condition for the highest resolving power

of the monochromator is accompanied by the lowest spatial coherence properties (for instance

compare values for the slit openning of 2σf for the same dispersion parameter p̂, vertical dashed

line Fig. 5(a,b)). Note that the calculations assume 1:1 focusing without defocus aberration. It

should also be noted that σf is the effective size of the focused monochromatic photon beam,

while the total photon beam size at the exit slit plane is proportional to its spectral bandwidth.

To support the theoretical calculations, additional wave-optical simulations were performed

using the Xrt [42] software. The results of the simulations, for the case of p̂=3, are shown in

Fig. 5(b). It can be seen that the results of the wave-optical simulations are in good agreement

with the theoretical calculation. However, slight variations are observed due to different

implementations of the exit slit in the Xrt software (sharp-edged slit) and theoretical calculations

(Gaussian slit). There is no difference between the DoTC obtained from the simulations and the

theoretical calculations when the opening of the ES is larger than the size of the incident beam.

The DoTC from the simulation is determined by the mode decomposition method [7,31]. The

statistical error of the simulations is ≈ 2 % [7].

The effect of the exit slit aperture on the spatial coherence properties of the diffracted photon

beam, including defocus aberration, is described below. Defocus aberration results in a translation

of the focus along the optical axis out of the exit slit plane. Consequently, the size of the photon

beam at the exit slit aperture is increased. The intensity distribution of the photon beam after the

exit slit aperture is, in analogy to Eq. (50), given by

Ia
es(∆ω) =

����
∫ ∞

−∞
Ea

f (x,∆ω)Ts(x)dx

����
2

=

2πσfσ
2
s√

(1 + 4a2)(1/σ2
x + σ

2
f
/σ2

s ) + 4(1 − 2a/σxσs + 1/σ2
s )

exp

[
− ∆ω

2

2σ2
res

]
,

(58)

and the bandpass σωs related to the exit slit aperture size is defined as

σωs =
1

√
2σ2

x p2

[
1 +
σ2

s

σ2
f

(
1 +
σ2

s

σ2
x

) ]− 1
2

×
[ (

1 +
σ2

s

σ2
f

)2
+

σ4
s

σ2
f
σ2

x

+ 4a

(
a + a

σ4
s

σ2
xσ

2
f

− σ4
s

σ3
f
σx

)] 1
2

.

(59)

Note, that the expression in Eq. (59) takes the form of Eq. (52) for (a → 0).

The resolving power for different grating settings is shown in Fig. 6(a). It can be seen that, for

a given exit slit aperture and dispersion parameter p̂, the resolving power decreases significantly

with increasing defocus aberration. The reason for this is the decreasing spatial separation of the
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Fig. 6. (a) Grating resolving power (ω0/σres, see Eq. (51) and Eq. (59)) as a function of the

ratio of the exit slit size σs and the size of the focused monochromatic beam σf after the ES

for different dispersion parameters p̂ and defocus aberrations a. (b) DoTC as a function of

the relation between the exit slit size σs and the size of the focused monochromatic beam σf

after the ES for different dispersion parameters p̂ and defocus aberrations a (see Eq. (60)).

The ES is placed out of focus for the calculations (see Fig. 2(b)).

photon beams of individual energies out of focus illuminating the exit slit aperture. For large exit

slit sizes or small focus sizes, the effect of aberration is less pronounced.

The CSD function of the photon beam directly after the exit slit aperture is defined according

to Eq. (55) and the DoTC according to Eq. (24) which is given by

ζa
es =

√√√
σ2

s /σ2
f
+ p̃ + 4a2

p̃(σ2
s /σ2

f
+ 1) + 4a2

. (60)

The degree of transverse coherence for different grating settings is shown in Fig. 6(b). It can

be seen that the spatial coherence increases with increasing defocus aberration for a given exit

slit aperture size and dispersion parameter p̂. The increased size of the photon beam at the plane

of the exit slit aperture due to defocus aberration leads to a stronger clipping of the photon beam

and thus to a higher degree of transverse coherence as expected. Consequently, the effect of

defocus aberration favours the spatial coherence properties of the photon beam after the exit slit.

At the same time, however, the resolving power is reduced. This is similar to the case without

defocus aberration.

4. Discussion

The mathematical description of the interaction of undulator radiation with a grating and the

spatial coherence degradation caused by dispersion has been described in the previous sections

in the {x,ω} domain. There is a one-to-one correspondence between the {x,ω} and the {x, t}
domains. This means that the effect of spatial coherence degradation can also be described in the
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{x, t} domain. It has been shown that the diffracted field after the grating has an additional phase

factor in the {x,ω} domain (Eqs. (28), (27)). In the {x, t} domain, the diffracted field contains an

additional shift t − px. This electric field is described by

Eg(x, t) = 1

2π

∫ ∞

−∞
Ei(∆ω)Ei(x)eip∆ωxe−iωtd∆ω ≈ Ei(t − px)Ei(x)e−iω0t. (61)

From Eq. (61) it follows that the temporal field now also spatially dependent, which is known

as pulse front tilt phenomenon (PFT) [43–47], i.e., the space and time domains are coupled

(space-frequency coupling in the {x,ω} domain).

Prior to the interaction of the undulator radiation with the grating, we assumed only one spatial

mode, which implies full spatial coherence of the photon beam (see Eq. (26) and Fig. 7). However,

due to the properties of synchrotron undulator radiation, it has a large number of longitudinal

or spectral modes (see Fig. 1), implying low temporal coherence. The number of these modes

can be estimated from the intensity fluctuations of the undulator radiation (roughly equal to the

number of spikes, see Fig. 1). The dispersion effect of the grating leads to a redistribution of

the total number of modes, whereby temporal (or spectral) modes are partially converted into

spatial modes, resulting in the phenomenon of PFT (see Fig. 7). The degree of redistribution is

determined by the dispersion parameter p. In this case the effect of the time delay of a pulse in

the dispersion plane is observed for individual temporal modes of the undulator radiation, while

each individual mode is spatially fully coherent. The result is multiple spatial modes observed in

the dispersion plane for a given bandwidth, statistically causing the decoherence effect.

Fig. 7. Visual representation of the SR pulse intensity in the {r, t}-domain before and after

the interaction with a grating, where normalized dispersion parameter of the pulse with PFT

p̂ = 5.

The statistical analysis presented applies under the assumption that the grating monochromator

is unable to resolve individual spectral spikes. If the grating has specifications high enough to

resolve individual spectral spikes, the redistribution of modes after the grating would result in a

complete conversion of spectral modes into spatial. In this case, only one longitudinal coherence

mode would be present and the photon beam would be fully spatially incoherent.

5. Conclusion

The presented analysis shows that a grating used for grating monochromators significantly affects

the spatial coherence properties of the photon beam. This effect can be attributed to the properties

of synchrotron radiation pulses in combination with the dispersion properties of the grating. It

has been shown that the higher the dispersion parameter p̂ of the grating, the lower the spatial
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coherence of the diffracted field. The dispersion parameter p̂ depends on both the photon energy

and the bandwidth of the incident radiation, as well as the footprint of the beam on the grating,

its line density and the used diffraction order. Strong dispersion can result in substantially

lower values of spatial degree of coherence than those expected in soft X-rays, especially for

diffraction-limited synchrotron sources.

It has been shown that the reduced degree of spatial coherence of the diffracted field after the

grating is maintained upon propagation and focusing. This is due to the fact that as the beam

propagates, only the scales change, not the phase dependencies. In the focal plane, the phase

tilt is cancelled for each individual frequency component, but the individual beams are strongly

spatially separated, which strongly affects the spatial coherence.

The effects of grating dispersion on the spatial coherence and resolution of the monochromator

have been investigated in conjunction with the exit slit aperture. It is shown that the resolving

power of the monochromator and the spatial coherence of the dispersed beam can be significantly

increased by closing the exit slit. However, it has also been shown that for a given exit slit aperture

opening, the degree of spatial coherence is inversely proportional to the resolving power of the

monochromator. This means that after passing through the monochromator a highly dispersed

beam will have the lowest spatial coherence.

Defocus aberration alone cannot affect the spatial coherence of the photon beam. However,

in combination with the monochromator exit slit aperture, it can. The aberration defocuses the

photon beam, resulting in over-illumination of the exit slit aperture for a given exit slit aperture

size. This results in an increase in spatial coherence and a decrease in the resolving power of the

grating.

The presented results can help in mitigating the impact of spatial coherence degradation at

synchrotron beamlines that employ grating monochromators. This can be achieved by selecting

appropriate grating parameters and settings.

It is important to note, as the result of this analysis, one can see that the effect of spatial

coherence degradation is not only associated with the use of grating monochromators, but can

also occur with other dispersive optical elements that could potentially be installed at synchrotron

facilities, both in the soft and hard X-ray range. Indeed, since spatio-temporal or spatio-frequency

coupling and dispersion are inseparable effects, any manifestation of the latter inevitably leads to

a degradation of spatial coherence. Such an effect of spatial coherence degradation, even if less

pronounced, can potentially be observed, for example by using asymmetrically cut crystals [48].

It would be of great interest to investigate the degradation of spatial coherence caused by a

grating for partially coherent X-ray beams at future 4GSRs, which are expected to provide high

spatial coherence of the source. This case goes beyond the ideal model considered in this work

and imposes complications on the functional forms of the spatial correlation functions. It is

expected that the effect of spatial coherence degradation will become even more pronounced

than in the ideal case of a fully spatially coherent source. The analysis of the spatial coherence

degradation of a grating illuminated by a partially spatially coherent beam will be described in a

forthcoming paper.
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