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et al. 2012]. In [Elmoataz et al. 2008] a generalization of the Laplacian-
based approaches was proposed. Using graph-oriented operators
they introduced ?-Laplace flows for mesh fairing, including the
1-Laplace flow, which is a TV-flow, the gradient flow minimizing
the TV energy.
Various methods have been proposed to minimize numerically

TV and a !2 square fidelity term (�)+ (D) +_‖ 5 −D‖22, often referred
to as the ROF model [Rudin et al. 1992]), see for instance [Cham-
bolle 2004; Chambolle and Pock 2011]. For implementing a TV-flow,

one should note that the term −div( ∇D
|∇D |

) is valid for the gradient

estimation of the energy only for non-vanishing gradients of D. Two
common approaches are adopted to overcome this. One is to use a

regularized TV model �)+ −Y :=
∫
Ω

√
|∇D (G) |2 + Y23G . In this case,

one does not obtain singularities at zero gradients and a straight-
forward explicit method can be used. Drawbacks of this approach
are that an additional Y parameter is introduced and that the flow is
smoother (somewhat less edge preserving). Moreover, the evolution
time step is highly restrictive, proportional to Y. Alternatively, one
can approximate the gradient descent process as a series of proximal
TV minimizations and use non-smooth solvers to obtain fully-edge
preserving solutions, e.g. by [Chambolle 2004] or [Chambolle and
Pock 2011]. This yields more faithful results. These methods can be
regarded as semi-implicit methods, which are unconditionally sta-
ble (with respect to the time step parameter, as opposed to explicit
methods).

In our workwe adapt two such processes for geometry processing:
The first is the shape flow introduced in [Kazhdan et al. 2012], which
proposed a gradient descent semi-implicit flow (see [Parikh et al.
2014] for semi-implicit approaches). It is adapted by changing their
proposed gradient direction to conformwith our setting. The second
is the iterative re-weighted L1 minimization scheme, introduced in
[Bronstein et al. 2016], which is adapted by using a vectorial version
of it, and again, selecting our operator of choice to replace their
gradient direction. The shape deformation problem is classically
solved as a constrained energy-minimization problem, for instance
[Botsch and Sorkine 2007; Sorkine and Alexa 2007], which we also
explore in our work.
Another approach which relates to our method is the family of

shape processing techniques which process the displacement fields
over a smooth version of the surface. This is mainly used for shape
smoothing, exaggeration and also for detail transfer, for instance
[Cignoni et al. 2005; Digne 2012; Sorkine and Botsch 2009]. Recently,
[Yifan et al. 2021] leveraged two separate neural networks for the
over-smoothed shape and for the displacement.

Our most significant contribution is to the theory of spectral TV.
Let us recap significant landmarks of this domain for the Euclidean
setting. Spectral TV was introduced in [Gilboa 2013, 2014b], facil-
itating nonlinear edge-preserving image filtering. Essentially, the
idea is to decompose a signal into nonlinear spectral elements re-
lated to eigenfunctions of the total-variation subdifferential. These
nonlinear eigenfunctions raise important theoretical aspect - as
their properties enable an understanding of the behaviour of both
TV regularization, and Spectral Total Variation processing. The
method is based on evolving gradient descent with respect to the
TV functional, also known as the TV-flow [Andreu et al. 2001a].

The spectral elements decay linearly in this flow. Different decay
rates correspond to different scales, where in the case of a single
eigenfunction the rate is exactly the eigenvalue. Theoretical under-
pinning was performed for the spatially discrete case in [Burger et al.
2016], which also extended the concepts of spectral TV to decom-
positions based on general convex absolutely one-homogeneous
functionals. Decompositions based on minimizations with the Eu-
clidean norm, as well as with inverse-scale-space flows [Burger et al.
2006] were also proposed. The space-continuous setting was later
analyzed in [Bungert et al. 2019]. For the one-dimensional TV set-
ting, it was shown that the spectral elements are orthogonal to each
other. Various applications were suggested for image enhancement,
manipulation and fusion [Benning et al. 2017; Hait and Gilboa 2019].
A common thread related to gradient flows of one-homogeneous
functionals is that they are based on zero-homogeneous operators.
Note that other homogeneities are also possible, see for instance
[Bungert and Burger 2020; Cohen and Gilboa 2020].

While in non-Euclidean domains the theory of TV eigenfunctions
and spectral TV is not as developed as in the Euclidean case, other
aspects of TV on non-Euclidean domains are highly researched. A
TV framework on manifolds was defined in [Ben-Artzi and LeFloch
2007]. This research was in the context of nonlinear hyperbolic
conservation laws on Riemannian manifolds. The authors prove
bounds and stability of the minimizing flow. Another example is
anisotropic TV, which is typically applied for image processing (see
[Grasmair and Lenzen 2010]), and can be analyzed as a functional
on a non-Euclidean domain - as shown in [Biton and Gilboa 2022],
which conducted experiments with spectral TV as well. In [Fumero
et al. 2020] experiments with geodesically convex sets3 were con-
ducted. In their experiments, geodesically convex sets exhibited a
linear decay throughout the minimizing flow. Theoretical explana-
tions of this phenomenon were left as opened research questions.
In the following we lay theoretical foundations for these experi-
mental results, validated by our proposed spectral nonlinear and
non-Euclidean framework.

3 PRELIMINARIES

In this work, the processed shape is assumed to be a 2D manifold
" ⊂ R3. We assume" is smooth, with a smooth parameterization
4 ( (l1, l2) = (G (l1, l2), ~ (l1, l2), I (l1, l2)), l1, l2 ∈ Ω, i.e.

( : Ω ⊂ R2 → ". (2)

Namely, ( is differentiable and invertible. In the following we outline
important well-known properties of this setting, which we use in
our work. A celebrated resource for these properties is [Do Carmo
2016].
Let 5 : " → R, and D = 5 ◦ ( (l1, l2) i.e. D : Ω → R. Let )@"

be the plane tangent to " at point ( (l1, l2) = @ ∈ " . It can be

shown that m(
ml1

, m(
ml2

∈ R3, denoted (l1 , (l2 , span )@" at point

@, assuming they are linearly independent. A field � on" assigns

3Geodesically convex sets are subsets of a manifold in which any two points have the
geodesics between them contained in the set. Sometimes, it is further assumed that
there is a unique geodesic between two such points.
4" locally behaves like R2 . See for instance smooth manifold as "coordinate system"
defined in Thm. 5-2 of [Spivak 2018]. See also local diffeomorphism for instance in [Lee
2013].
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each @ with a vector in )@ , i.e. � : " → ∪()@)@∈" . Let [C1, C2] ⊂ R
a connected interval. We denote a differentiable parametric curve
(l1 (C), l2 (C)), C ∈ [C1, C2] by W̃ (C) : [C1, C2] → Ω, and its mapped
curve by W = ( (W̃ (C)) ⊂ " , i.e. W is a differentiable parametric curve

which maps W : [C1, C2] → " . We write
3W
3C

as WC , often interpreted
as the velocity at time C . Using the chain rule, WC can be calculated

as WC = (l1
ml1
mC + (l2

ml2
mC = �W̃C where � (l1, l2) is the Jacobian

matrix with columns ((l1 , (l2 ). For a vector 0̃ originating from a
point l1, l2, similarly to the velocity vectors W̃C , 0̃ is mapped to"
as

0(@) = � (l1, l2)0̃, (3)

where @ = ( (l1, l2). Note that 0(@) ∈ )@ . The induced inner prod-

uct on Ω is 〈0̃, 1̃〉6 = (� 0̃)) (�1̃) = 0̃) (�) � )1̃ . Hence, when " is

parameterized using (Ω, (), it is equipped with the metric 6 = �) � :

6(l1, l2) =

(
()l1

(l1 ()l1
(l2

()l2
(l1 ()l2

(l2

)
. (4)

(l1 , (l2 are assumed to be linearly independent, thus 6 is posi-
tive definite (and invertible). The vector magnitude can now be

calculated using 0̃, 6 as | |0 | |2 = | |0̃ | |6 := | |� 0̃ | |2 =

√
〈0̃, 0̃〉6 . As a

consequence, the length of W is !(W) =
∫ 3

2
| |WC | |23C =

∫ 3

2
| |W̃C | |63C .

The normal to W (C), denoted =(C), is defined as the normalized in-
tersection of two planes: perpendicular to WC (C), and tangent to"
on @ = W (C).

Let� = ( (�̃) ⊂ " with �̃ ⊂ Ω. The perimeter of� is the length of

its boundary m� . Let W� be a parameterized curve mapping C ∈ [2, 3)

to the whole of m� , then

?4A (�) =

∫
m�

3; =

∫ 3

2
| |W̃�C | |63C = !(W� ), (5)

where the first equality expresses integration on the boundary re-

gardless of the choice of parameterization, and W� = ( (W̃� ). The
area of � is

|� | =

∫
�
3" =

∫
�̃
30, (6)

where 30 =

√
|6|3l13l2 is often referred to as an area element, and

the first equality expresses integration on the manifold, regardless
of the choice of the parameterization of ( with respect to Ω.

Let two functions 51, 52 be defined on the manifold" , with their
corresponding representations in Ω, D1, D2, respectively, defined in
a similar manner to D, 5 above. Throughout this work we consider
functions to lie in a Hilbert space, commonly denoted as Γ!2 (")

(see for instance [Güneysu and Pallara 2015]), in which the inner
product between two such functions is∫

"
51 523" =

∫
Ω

D1D230. (7)

Followingly, a gradient operator∇6 which satisfies 〈∇6D (l1, l2), F̃〉6 =

lim
ℎ→0

5 (@+ℎF )−5 (@)
ℎ

, ∀F = �F̃ ∈ )@ , with | |F | |2 = | |F̃ | |6 = 1 is ob-

tained. The divergence operator ∇6 · is then given by the adjoint of
∇6 , i.e. it satisfies,∫

Ω

∇6 · �̃D 30 =

∫
Ω

〈�̃ ,∇6D〉6 30. (8)

Finally, we can define the divergence theorem on manifolds: Let
� ⊂ " be a compact set with a smooth boundary m� and a boundary

normal =� . Then, � may be treated as a manifold in its own right.
Let � be a vector field on � (� is compactly supported), then∫

�
∇ · � 3" =

∫
m�

�)=� 3; . (9)

We can express (9) also in the parameterization domain5:∫
�̃
∇6 · �̃ 30 =

∫ C2

C1

〈�̃ , =̃� 〉6 | |W̃
�
C | |6 3C, (10)

where W̃�C is defined as in Eq. (5), as a smooth parametric curve along

m�̃ , i.e. W� = ( (W̃� ) is along m� .
The P-Laplace-Beltrami is defined as

Δ6,P (D) := ∇6 · ( |∇6D |
P−2∇6D). (11)

For P = 2, Δ6,P (D) coincides with the Laplace-Beltrami operator,
yielding a diffusion process on surfaces by,

mD

mC
= Δ6,2 (D), D (0) = 5 . (12)

Other special cases we will discuss are P = 3, and P = 1.

4 PARAMETRIC SETTING FORMULATION

In this section we present in detail the fundamentals of total varia-
tion on parametric surfaces. These serve our theoretical investiga-
tions and numerical demonstrations, presented later.
We analyze functions on surfaces in the setting of Sec. 3. Let

" be a smooth manifold given as a differentiable and invertible
parametric surface ( (Ω), Ω ⊂ R2 with domain variablesl1, l2 ∈ Ω.
The Jacobian � maps vectors from Ω to " , inducing the metric 6,
see Eqs. (2), (4). We assume to have a function D : Ω → R, and a
field I : Ω → R2. We assume that I is differentiable with compact
support. Note that D is not necessarily continuous. We examine the
following non-Euclidean TV functional,

#�)+ (D) := sup
I

∫
Ω

D∇6 · I 30 B.C . | |I | |6 ≤ 1∀l1, l2 ∈ Ω. (13)

This is a special case of TV on Riemannian manifolds, reduced to our
parametric setting of two-dimensional surfaces (compatible with
mesh processing). For the general case, see [Ben-Artzi and LeFloch
2007; Miranda Jr 2003].

#�)+ (D) has two notable special cases: The Euclidean metric -
which is obtained for a planar " , and the non-Euclidean integral
formulation

∫
Ω
| |∇6D | |630 - which is obtained for a differentiable

function D. In this paper our focus is on non-Euclidean metrics, and
non-continuous functions (unless otherwise noted).
Usually, a Neumann boundary condition is assumed, achieving

invariance to shift by a scalar,

#�)+ (D + U) = #�)+ (D), ∀U ∈ R. (14)

Note that if " is closed, then the boundary is empty - hence the
Neumann boundary condition holds trivially. Another commonly
used property is that #�)+ is absolutely one-homogeneous, i.e.

#�)+ (UD) = |U |#�)+ (D), ∀U ∈ R. (15)

5This is usually stated in more general setting, for instance see proposition 4.9 in [Gallot
et al. 1990]. For usage example see proof of Thm. 1 in [Fumero et al. 2020].
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If a field I admits the supremum of #�)+ (D), Eq. (13), then the
field B86=(U)I admits #�)+ (UD). For an in-depth derivation and
generalization of basic properties such as the above, see [Miranda Jr
2003], Section 3.

Being absolutely one-homogeneous, we know that the subdiffer-
ential of #�)+ , as stated for instance in [Burger et al. 2016], is the
following set6:

m#�)+ (D) =

{? : #�)+ (E) ≥

∫
Ω

? E 30 ∀E, #�)+ (D) =

∫
Ω

? D 30},
(16)

where E is assumed to have the same Neumann conditions as D. By
Eqs. (16), (13) we have

∇6 · I ∈ m#�)+ (D) ⇒




#�)+ (D) =

∫
Ω

D∇6 · I 30. (17)

#�)+ (E) ≥

∫
Ω

E∇6 · I 30., (18)

and the converse∫
Ω

D∇6 · I 30 = #�)+ (D) ⇒ ∇6 · I ∈ m#�)+ (D) . (19)

The #�)+ minimizing flow, performed on a function 5 : Ω → R

, is defined as

DC = −? (C), ? (C) ∈ m#�)+ (D (C), D (0) = 5 , C ≥ 0, (20)

where DC =
mD
mC . Recently, [Bungert and Burger 2020] proved that

eigenfunctions are exposed upon decay by such flows as asymptotic
solutions (just before extinction). This enables us to reveal eigen-
functions numerically, by simulating Eq. (20), as done in Figs. 3, 4,
5.

4.1 Indicator Functions

Indicator functions are non-continuous functions which have an
important role in total variation analysis. In our non-Euclidean
setting we analyze the indicator function of a subset � ⊂ " ,

j� (@) =

{
1 @ ⊂ �

0 @ ⊂ "\�,
(21)

for which we construct

j̃� = j� ◦ (, (22)

i.e. j̃� is the indicator of �̃ ⊂ Ω where

�̃ = { (−1 (@) | @ ∈ � }. (23)

For convenience, let us define the #�)+ of a set as the #�)+ of
its indicator function #�)+ (�) := #�)+ ( j̃� ), i.e.

#�)+ (�) := sup
I

∫
�̃
∇6 · I 30 B.C . | |I | |6 ≤ 1∀l1, l2 ∈ Ω. (24)

In the following we assume the setting in which the divergence Thm.
on manifolds (10) holds, i.e.: � is a connected set with a smooth
boundary m� . The boundary has normals =� (perpendicular to m�

6The deduced subdifferential needs a product space. We consider the definition of Eq.
(7).

Fig. 3. " is a surface-revolution of a part of a translated sinc curve, inducing

a non-Euclidean metric. 5 is initialized as an indicator function of a "sleeve

set". Upper row: linear diffusion. Bo�om row:#�)+ minimizing flow. Unlike

linear diffusion, the function remains piecewise constant throughout the

flow - dividing the surface" to subsets. Iter 50: New boundaries, of small

perimeters emerge; iter 100: Initial boundaries subside; iter 150: The sets

merge so that only the minimal perimeter remains - which is numerically

shown to be an eigenfunction (by Thm. 2.3 in [Bungert and Burger 2020]).

When an eigenfunction indicates a set (as is the case here), we call it an

eigenset. In the Euclidean case - the eigensets’ shape and behaviour have

well studied properties [Andreu et al. 2001b; Belle�ini et al. 2002]. In contrast,

eigensets of the non-Euclidean case are less understood . We introduce novel

theoretical properties of the eigensets in non-Euclidean domains.

.

and tangent to") with a corresponding =̃� s.t. =� = � =̃� , where �
is the Jacobian from Sec. 3. In addition, we assume a parameterized

curve W� : C ∈ [C1, C2) → m� for which we construct W̃� = (−1 ◦ W� ,

a parameterized curve along m�̃7.
Let a field I that is normal to the boundary of � on (almost all)

boundary points, and of norm less than or equal to one everywhere
on" , i.e.

I = =̃� 5 >A 0.4. l1, l2 ∈ m�̃, | |I | |6 ≤ 1∀l1, l2 ∈ Ω, (25)

where 0.4. stands for "almost every". Then I admits the supremum
of Eq. (24) for #�)+ (�). Such a z exists if the boundary of � is
differentiable almost everywhere. This condition is satisfied by the
assumption of a smooth boundary.

Last property but not least, we have that

#�)+ (�) = ?4A (�). (26)

For a proof and further details see Sec. B in the Appendix.

5 THEORETICAL FINDINGS

Here we generalize the theory from the Euclidean setting to closed
non-Euclidean manifolds8 of the parametric surface setting (Sec. 4).
Ultimately a new generalization of convexity is derived, as we prove
properties of the eigenfunctions of the sub-gradient. The theory is
demonstrated numerically as well.

7To understand how ( maps boundaries from one domain to another refer to [Lee
2013], Thm. 2.18.
8Note that closed manifolds induce a different boundary condition than the non-closed
case. The treatment of both cases is similar - for brevity we show the closed case only.
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criterion on the stable modes of the flow. The influence of the lo-
cally minimal perimeter criterion can also be seen across our shape
processing experiments which follow, most notably inf Figs. 6, 12,
13, 14, 20.

6 SPECTRAL DECOMPOSITIONS

Here we show straightforward extensions of some of the observa-
tions done in [Burger et al. 2016] to our settings. Let - be a space
of functions on a surface" equipped with a metric 6, as described
in Eqs. (2), (4). Let ? : - → - be a zero-homogeneous operator, i.e.

? (U 5 ) = sign(U)? (5 ), U ∈ R, 5 ∈ -, (48)

with ? (0) = 0. We examine the following flow:

DC = −? (D (C)), D (0) = 5 ∈ -, C ≥ 0, (49)

where DC =
mD
mC . We assume the flow exists and that the solution is

unique. Unlike [Burger et al. 2016], here ? maps functions on non-
Euclidean domains. Nevertheless, the time domain, denoted by C ,
is Euclidean. Note that elements in m#�)+ are zero-homogeneous,
thus, #�)+ flow (subgradient descent of the energy) is a zero-
homogeneous flow. We also assume the second time-derivative of
D exists in the distributional sense almost everywhere and define
q : C → - as

q (C) = C · DCC . (50)

Letk be an eigenfunction with respect to ? with a positive eigen-
value, i.e. ∃_ ∈ (0,Λ < ∞) : ? (k ) = _k . Let 5 = k , then the solution
of Eq. (49) is

D (0) = k ⇒ D (C) =

{
(1 − _C)k C ≤ 1

_

0 C > 1
_

. (51)

This can be verified by having, for C < 1
_
, the relation

? (D (C)) = ? ((1 − _C)k ) = ? (k ) = _k = −DC , (52)

where the second equality uses 0-homogeneity of ? , the third equal-
ity uses the eigenfunction property, and the last equality is an eval-

uation of DC by (51). For C =
1
_
we have a steady state since ? (0) = 0.

By uniqueness of the solution we are done.
We note that since we are examining smoothing processes, ? in

general is a positive semidefinite operator, 〈5 , ? (5 )〉 ≥ 0, ∀5 ∈ - .
Thus the eigenvalues are positive. In the case of negative eigenvalues,
the flow diverges (but for a finite stopping time can still have a
solution).
Thus, for eigenfunctions of positive eigenvalues we get q (C) =

X (C − 1
_
) 5 , i.e. q ’s energy is concentrated in a single scale (“fre-

quency”) which corresponds to the eigenvalue of 5 , _ =
1
C . For a

general 5 ∈ - , this motivates the interpretation of q as a spectral
transform of 5 , where the spectral components are positive eigen-
functions of ? , in a similar manner to [Bungert et al. 2019; Burger
et al. 2016; Gilboa 2014b].
We can compute the reconstruction formula, for a general stop-

ping time ) , using integration by parts (and assuming DC (0) is

bounded), by
∫ )

0
q (C) 3C = CDC |

)
0 −

∫ )

0
DC 3C = )DC () ) − D () ) + 5 =

−)? (D () )) −D () ) + 5 . Denoting the residual ' = )? (D (() )) +D () ),

the following reconstruction identity holds 5 =

∫ )

0
q (C) 3C +'. This

gives rise to a filtered reconstruction via a filter � : C → R as
follows:

5 5 8;C4A43 =

∫ )

0
� (C)q (C) 3C + '. (53)

An important special case is the operator ? ∈ m#�)+ , which is
zero-homogeneous. Hence a #�)+ -minimizing flow can be used to
filter signals by (53). Moreover, in the case of an initialization with
a single eigenfunction we expect a linear decay. In Figs. 5, 6 we use
these properties to demonstrate some of our theoretical findings
from Sec. 5. In the following we demonstrate how this can be carried
over to shape processing.

7 SHAPE PROCESSING

We suggest three methods for nonlinear filtering of shapes, in the
framework of Sec. 6. Themethods differ by the choice of the operator
? of the respective flow. Each method is inspired by a different
flow: "1 by the Heat Flow, "2 by cMCF and "3 by MCF. "3
uses ? ∈ m#�)+ , hence theory of Sec. 5 applies. "1 and "2 use
different yet related operators, and theory regarding these is left
as future work. Nevertheless - in all three methods we attain good
feature control via manipulation of the spectral components.Wewill
also demonstrate how the choice of different operators ? induces
different qualities.

So far, we processed a function 5 on a 2D manifold" embedded
in 3D, via Eqs. (49), (50), (51), (53). Here we wish to process the
manifold itself - and for this purpose we will choose a function
5 that describes " . In the setting of parameterized surfaces, the
surface function may be the function of choice, i.e. 5 = ( , a vecto-
rial function with three channels as the three coordinate functions
G0 (l1, l2), ~0 (l1, l2), I0 (l1, l2). Note that ( also induces the in-
trinsic metric 6. This choice is widely used for shape flows, thus it
enables a comparison between our framework and the classical ones.
Other representations can be used, see for example Fig. 7. Denote
the evolving shape at time C as ( (C), and denote 2 (C) as any evolving
coordinate function of ( (C), that is 2 (C) may assume G (C), ~ (C), or
I (C).

7.1 Modifying flows for nonlinear spectral processing

Our framework requires a zero-homogeneous flow evolving on a
fixed metric, which is required to induce spectral linear decay of the
eigenfunctions. Denote the metric induced by the initial shape 60.
It is fixed throughout the flow. Denote the evolving shape’s metric
6C , which changes throughout the flow, i.e. it is not fixed.

Examining Heat Flow, MCF and cMCF we find that none of these
flows is zero-homogeneous, andHeat Flow is the only one performed
on a fixed metric. Hence, adaptations of these flows are required.

7.2 Naive method: Unpaired Coordinate Spectral TV

The naive approach utilizes a modification of Heat Flow for our
framework. Heat Flow processes each coordinate function inde-
pendently via Eq. (12), utilizing the Laplace-Beltrami on the fixed
metric 60 throughout the flow. Thus it satisfies a fixed metric, but
it is not zero-homogeneous, and a modification is required. By re-
placing the Laplace-Beltrami with the 1-Laplace-Beltrami of Eq.
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Fig. 7. Handling real world shapes, demonstrated on scan of the famous

archeological statue "Bust of �een Nefertity". In this example, geometric

details are captured as a function that represents perturbation from an

underlying smooth shape (further details in Sec. 7.5). In color we see these

geometric details experiencing a #�)+ minimizing flow. To obtain the

result of Fig. 2, we follow a procedure similar to the one presented in Fig. 6:

Spectral representations are obtained from the flow and used for filtering.

Followingly the original geometrical details are replaced by their filtered

versions, which results with the final filtered shapes.

flow inherits cMCF’s limb-head smoothing capabilities (Fig. 10),
which we then use for shape filtering. The metric of cMCF is 6̃C =√
|6−10 6C |60, is not fixed. The operator driving the flow, the confor-

malized Laplace-Beltrami,

√
|60 |
|6C |

∇60 · ∇60 , depends on the evolving

shape’s metric 6C . To achieve a fixed metric, we re-interpret |6C | as
an operator on the fixed metric 60. This is valid since the diffused
shape defines both the diffused function as well as the evolving
metric. This affects homogeneity, as shown below. We define the
conformalized P-Laplace as,

Δ̃6,P (2) :=

√
|60 |

|6C |
∇60 · ( |∇602 |

P−2∇602) . (55)

By Eq. (4) we have that |6C | is absolutely 4-homogeneous, hence Δ̃6,P

isP−3 homogeneous, Δ̃6,P (U2) =

√
|60 |

|U |4 |6C |
∇60 ·( |U |

P−2 |∇602 |
P−2)U∇602

=
U

|U |4−P
Δ̃6,P (2) . Thus we choose Δ̃6,3 as a zero-homogeneous mod-

ification of the conformalized Laplace. Once again inter-correlations
are accounted for, as in [Elmoataz et al. 2008], yielding the operator,

−?"2 (2) :=

√
|60 |

|6C |
∇60 ·

©­
«
√ ∑

2̃=G,~,I

|∇60 2̃ |
2∇602

ª®
¬

(56)

The flow is followed by nonlinear spectral filtering, Eq. (53). Editing
extremities, a capability inherited from our conformal 3-Laplace
flow, is demonstrated in Fig. 11, where extremities are in the form
of human limbs and head.

7.5 Method 3 (M3): Directional Shape TV

Mesh TV smoothing typically preserve pointy surface points, e.g.
tip of chin [Fumero et al. 2020] or ears [Elmoataz et al. 2008]. Here

Fig. 8. A real-world 3D scan of a Meteorite10. In this example, the shape is

described by its coordinate functions. Unlike linear shape processing, the

nonlinear case requires special a�ention to deal with the correlation between

the -,. and / coordinate functions. In Method 1 (M1) such considerations

are accounted for. From top le�, counter clockwise: 1) original model; 2) M1

low-pass filter (LPF); 3) Naive method low-pass filtering. ignoring the inter-

coordinate correlation, this method has an axis-squaring effect. Even such

harsh filtering with the naive method dose not yet fully smooth out details,

suggesting lack of feature control. Contrary, M1 smooths out details without

distorting underlying structure, as expected from a smoothing procesdure;

4) Details obtained via"1 high-pass filter (HPF) are added to the model

a�er squaring it with the naive method LPF

we propose a method that preserves edges, e.g. muscle contour,
similarly to TV processing of images. While M1 and M2 utilized
modifications of Heat Flow and cMCF, M3 draws inspiration from
MCF.

MCF already has a thoroughly researched fixed-metric zero homo-
geneous modification: The TV flow as applied to gray-scale images
[Kimmel et al. 2000]. For a surface represented as ( = (G,~, 5 (G,~)),
this modification entails constraining the evolved shape to be of
the form ( (C) = (G,~, 5 (G,~, C)) . This is enforced by constraining
each point on the surface to evolve in direction Î (perpendicular to
the G,~ plane). We note that unconstrained MCF would necessarily
violate this form of ( (C), as it theoretically converges to a singular
point.

10Edmore Meteorite 3D scan, courtesy of Prof. Jeremy Davis, Central Michigan Univer-
sity, Department of Art and Design
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Fig. 18. Representations that enbale good feature separating filters are informative, hence may play a role in other tasks. Here we demonstrate an initial

a�empt at using"2’s spectral representation for co-segmentation of the Michael models in various poses: Each point (vertex) on each pose (mesh) is assigned

the representation q (C ) |@∈" . For co-segmentation we partitioned representation space using all representations from all poses - yielding segments that are

shared across poses. Space partitioning was done via the k-means algorithm, using earth-movers distance instead of Euclidean distance. Earth-movers is a

more appropriate measure since it is be�er at quantifying perturbations along the C dimension.

9.2 Flow-induced spectral representation considerations

Our filtering framework is flow-based, where spectral representa-
tions are manifested as linear decaying components. Shape analy-
sis is performed along the time domain. In contrast, the Laplace-
Beltrami eigenfunctions are acquired by solving an eigenvalue prob-
lem on the non-Euclidean domain. One advantage of the flow-based
framework is computational: The numerical simulation of a shape
flow is often computationally cheaper than a numerical solution to
an eigenvalue problem performed on the shape domain (e.g. solving
the SVD of a discrete Laplace-Beltrami operator) - as demonstrated
in Fig. 12. This results with better filtering complexity. This is op-
posed to the Euclidean case - where eigenvalue decomposition of
the Laplacian is not needed, since it is fixed and known (Fourier
basis). Simulating a flow requires discrete time steps, resulting with
a trade-off between computational complexity and simulation ac-
curacy, controlled by the time step size. This is true for Euclidean
and non-Euclidean settings alike. To measure the accuracy of the
flow, we can test the reconstruction error of an all pass filter, i.e.
� (C) = 1∀C , as demonstrated in Fig. 16. Remark: Our semi-implicit
implementation of the flows exhibits stability for large time-steps,
even when they result with inaccuracies. This is attributed to the
time-steps of both the filtering flows and the deformation flows
being approximated as solutions to stable L2 minimization problems
(similar stability may be found for instance in [Kazhdan et al. 2012]).

Another consideration arises when comparing two representa-
tions, q1 (C), q2 (C). The usual !2 distance may not be compatible on

time domains, and even more-so on discretized time domains. This
is since !2 does not express well the difference between small and
large shifts in time. For example, consider an eigenfunction - which

was shown to have a representation q (C) = X (C − 1
_
), where _ is the

eigenvalue. Thus the !2 measure will not be able to discriminate
between eigenfunctions with similar eigenvalues to eigenfunctions
with largely different eigenvalues. Thus appropriate distance mea-
sure must differentiate small from large time perturbations. One
such measure is the earth movers’ distance. An example using this
distance on q is portrayed in Fig. 18, where co-segmentation takes
place.

9.3 Spectral image TV and shape spectral TV relation

Our shape spectral )+ methods require a zero-homogeneous flow
performed on a fixed metric. Considering the Beltrami and TV
flow equivalence presented in [Kimmel et al. 1998] (see a brief
reminder of this equivalence in the appendix, Sec. E), we have that
applying spectral TV to images is a form of shape spectral TV. Let
us have a closer look at this statement: To transition from MCF to
the equivalent TV flow, the flow was rephrased on a fixed metric
(the Euclidean pixel grid), which was absorbed as a nonlinearity of
the operator, making it zero-homogeneous. Thus all requirements
of the zero-homogeneous spectral framework were met.

With that said, this framework is more restrictive than our general
framework in 3 ways: The operator suggested is one of a kind, the
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shape has to be parameterized as an image function, and the fixed
metric is a Euclidean domain (the pixel-grid).

In �)+ the latter constraint is not required. As shown in [Biton
and Gilboa 2022], �)+ can be re-interpreted using a generalization
of the gradient , ∇� 5 = �(G)∇5 . This gradient generalization can
be obtained by considering the pixel grid as the Ω domain in Eq. (2),
and A as the metric 6 from Eq. (4), induced by some unspecified" .
While other aspects of �)+ do not coincide with the differential
geometry framework we use here, it is certainly related to our work.
Interestingly, in �)+ the importance of parameterization domain is
greater than in our framework, as the signal lies in Ω, and gradients
are on Ω as well, mapped from an unspecified non Euclidean domain.
In contrast, our signal lies on an explicit manifold" .
"3 generalizes both spectral)+ and �)+ in the following sense:

Considering the form ( = (G,~, 5 (G,~)), choosing (̂ = (G,~, 0), we

have that 3̂ = Î, and U |( − (̂ | = (0, 0, 5 (G,~)). Now consider two

options - option 1: (̂ induces 6, resulting with a Euclidean flow
of an image function. Option 2: ( induces 6, resulting with a non
Euclidean flow of an image function on an adapted metric. This is a
form of �)+ , but with a specified non-Euclidean surface domain.
See example in Fig. 17.

9.4 Future Ideas

Our flow-based spectral framework can easily be adapted to a wide
collection of operators that assume the required homogeneity and
a fixed metric. Inevitably - neural-networks come to mind, where
homogeneity can be taken care of using normalization layers.

Our new notion of non-Euclidean convexity, the locally minimal
perimeter, might have an appropriate generalization to graphs -
which are also non-Euclidean. This probably involves extending
our theory from parametric surfaces to Riemannian manifolds of
general dimensions.
The representations we use for filtering may be used for other

tasks, such as classification and segmentation - see preliminary
result in Fig. 18.

Additonal key aspects from the Euclidean case may be generalized
to our parametric surface setting, e.g. curvature bounds of eigensets,
and analysis of vectorial functions.

10 SUMMARY

We presented new nonlinear spectral theoretical analysis for sur-
faces, by generalizing nonlinear spectral theory of image processing.
Based on our analysis, we proposed a general methodology for shape
analysis and processing via nonlinear spectral filtering.
A key finding is our introduction of locally minimal perimeter

sets, a novel generalization of conex sets to manifolds. It is derived
by generalizing properties of #�)+ eigenfunctions. Our analysis
is supported by numerical examples of minimizing flows, where
numerical validation of eigenfunctions is performed by examining
the decay near extinction, following the theory of [Bungert and
Burger 2020].

For shape nonlinear filtering our methods extract spectral repre-
sentations from smoothing flows which satisfy two requirements:
zero-homogeneity and a fixed metric. We choose to process the

shape in its embedding space, providing unmediated nonlinear spec-
tral representations, yielding good feature control. To showcase the
general concept, three methods are proposed, where all three are
based on the same mechanism, described in Eqs. (50), (53). Each
method holds clear distinct properties induced by its flow, allowing
various shape manipulations via spectral filtering. While possess-
ing visibly distinct properties, all three methods demonstrate good
smoothing and detail enhancement capabilities. Robustness to pose
variations is demonstrated as well. With respect to processing time,
we note that these methods are fairly fast, as they do not require
solving an eigen-problem explicitly. Additionally, we present a Total-
Variation approach for addressing the shape deformation problem.
Our experiments show, that the deformation using our method is
concentrated on plausible segment boundaries. Moreover - we have
shown for several numerical cases, that these boundaries relate to
our theoretical findings. 12
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A COMPLEMENTARY EXPERIMENTS

Here we add experiments for completeness. Fig. 20 bridges a gap
beweeen Figs. 3 and 6. Fig. 21 shows shape exaggeration similar
to Fig. 12 on additional poses while not using smoothing. Fig. 19
extends the method compariso performed for the Snail model in Fig.
15 to three other models.

B SOME PROOFS REGARDING SEC. 4.1

Claim. Let a field I that is normal to the boundary of� on (almost

all) boundary points, and of norm less than or equal to one everywhere
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#�)+ (�) = sup
I

∫ C2

C1

〈I, =̃� 〉6 | |W̃
�
C | |6 3C B.C . | |I | |6 ≤ 1∀l1, l2 ∈ Ω.

(66)
By Eq. (63) we can obtain a supremum by assigning I = =̃� ∀l1, l2 ∈

m�̃ and have

#�)+ (�) =

∫ C2

C1

| |=̃� | |26 | |W̃
�
C | |6 3C =

∫ C2

C1

| |W̃�C | |6 3C = ?4A (�),

(67)
where the second equality uses | |=̃� | |6 = 1∀l1, l2, and the last
equality comes from Def. (5). �

C SLEEVE SETS AS EIGENSETS ON THE TORUS

Here we show that sleeve sets of the torus are eigensets, considering
" to be a torus with big and small radiis ', A .

C.1 Torus preliminaries

We choose its parametric formulation ( as follows: ( (l1, l2) =

((' + A2>B (l1))2>B (l2), (' + A2>B (l1))B8=(l2), A B8=(l1))
) , where

l1, l2 ∈ Ω andΩ = [−c, c)×[−c, c), inducing ametric6(l1, l2) =(
(' + A 2>B (l1))

2 0
0 A2

)
, resulting with

√
|6| = (' + A 2>B (l1)) A . (68)

Let I be a field on the torus, then its squared norm function is

| |I | |6 =

√
(' + A 2>B (l1))

2 I [1] + A2 I [2], (69)

where I [1], I [2] are components of the field. Remembering the
divergence formula

∇6 · �̃ =
1√
|6|

∇l1,l2 · (
√
|6 |�̃ ), (70)

(see for instance [Do Carmo 2016]) we have for the torus:

∇6 · I =
1

(' + A 2>B (l1)) ✄A
∇l1,l2 ·

[
(' + A 2>B (l1)) ✄AI

]
(71)

∇6 · I =
m

ml1
I [1] +

−A B8=(l1)

' + A 2>B (l1)
I [1] +

m

ml2
I [2] . (72)

The sleeve set of angle-length ; , and center at l2 = 20 is denoted in

parameterization domain as �̃ , and defined as follows:

�̃ = {l1, l2 : |l2 − 20 | ≤
;

2
}. (73)

For convenience, W.T.L.O.G. we consider the sleeve set to have
center at l2 = 0, i.e.

�̃ = {l1, l2 : |l2 | ≤
;

2
}, (74)

resulting with

m�̃ = {l1, l2 : |l2 | =
;

2
}. (75)

C.2 Finding a field of required properties

The first property we are looking for is orthogonality to the bound-
ary, on all boundary points. Since 6 is diagonal, we have that (
preserves angles - hence orthogonality may be tested in parameteri-
zation domain. Furthermore, we need the field to be of unit norm on
the boundary. By (75) we have that I is orthogonal to the boundary

and of unit norm on the boundary if I (l1, l2 =
;
2 ) [1] =

1
'+A2>B (l1 )

,

I (l1, l2 =
−;
2 ) [1] = − 1

'+A2>B (l1 )
, and I (l1, |l2 =

;
2 ) [2] = 0∀l1.

Let Θ(l2) =

{
l2 −

;
2 l2 ∈ [0, c)]

l2 +
;
2 l2 ∈ (−c, 0)

. The choice

I =

(
2
;
l2

' + A2>B (l1)
, UΘ(l2)

))
, (76)

satisfies above properties. Another required property is a constant
divergence inside � . Let us show that this choice satisfies that as
well, except for a zero-measure set of points: Plugging to (72) we
have

∇6 ·I =

✘✘✘✘✘✘✘✘✘
−
2

;
l2

−A B8=(l1)

(' + A 2>B (l1))
2
+
✘✘✘✘✘✘✘✘✘✘✘
−A B8=(l1)

' + A 2>B (l1)

2
;
l2

' + A2>B (l1)
+U

mΘ(l2)

ml2
,

(77)

where
mΘ(l2 )
ml2

= 1∀l2 ≠ 0, c , thus

∇6 · I = U ∀l2 ≠ 0, c . (78)

C.3 Demonstrating eigensets

To prove an eigenset, we need to construct a field b , that satisfies
the eigenfunction properties (5.1) for ak as in (27). In the current
casek is defined for a sleeve set � on a torus.

First we note, that the appropriate field I of (76) can be similarly
defined for the complement set - which is a sleeve set as well, but
with its center at l2 = c . It turns out, that the fields for center at
either l2 = c , or at l2 = 0, are of the same form, up to a sign factor.

Thus we define b to admit (76) for �̃ inside �̃ , and the minus of (76)

for Ω\�̃ , i.e.

b =




(
2
; l2

'+A2>B (l1 )
, U1Θ(l2)

))
l1, l2 ∈ �̃(

2
; l2

'+A2>B (l1 )
, U2Θ(l2)

))
l1, l2 ∈ Ω\�̃

, (79)

which has ∇6 · b =

{
U1 l1, l2 ∈ �̃

U2 l1, l2 ∈ Ω\�̃
, and is unit-orthogonal to

the boundary, i.e. I = =̃� ∀l1, l2 ∈ m�̃ . If we set U1 = 1, U2 = V ,
where V is as in (28), then indeedwe have the eigenfunction property
k = _∇6 · b .

By (5.1) it is left to show that ∇6 · b ∈ m#�)+ (k ). To show this,

it is sufficient, by Eq. (19), to show that
∫
Ω
∇6 · bk 30 = #�)+ (k ).

Let us begin: By one-homogeneity of the #�)+ - we have that
#�)+ (k ) = (1 + V)#�)+ (�).

Since b = =̃�∀l1, l2 ∈ m�̃ , we have by Eq. (63) that #�)+ (�) =∫
Ω
∇6 · b j̃

� 30.
Thus by the definition ofk (27), we have∫
Ω
∇6 · bk 30 =∫

Ω
∇6 · b ( j̃

� − V j̃"\� ) 30 =
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∫
Ω
∇6 · b ( j̃

� − V (1 − j̃� )) 30 =

(1 + V)
∫
Ω
∇6 · b j̃

� 30 − V
∫
Ω
∇6 · b 30 =

(1 + V)
∫
Ω
∇6 · b j̃

� 30 −✘✘✘✘✘
_V

∫
Ω
k 30 =

(1 + V)
∫
Ω
∇6 · b j̃

� 30,
where the last cancellation uses the Neumann boundary condition

assumption. Thus we have
∫
Ω
∇6 · bk 30 = (1 + V)

∫
Ω
∇6 · b j̃

� 30 =

(1 + V)#�)+ (�) = #�)+ (k ). By Eq. (19) we know that this is
sufficient for b ∈ m#�)+ (k ).

D SHAPE DEFORMATION DETAILS

First, let us consider for simplicity the scalar constrained #�)+

flow: Consider a manifold" and a function 5 (@) on the manifold.
Let us perform a total variation minimzing flow, initialized with
5 . The evolving function is constrained throughout the flow, i.e.
denoteD (@, C) as the function at time C of the flow, and the constrains
{D (@8 , C) = 2 (@8 ), @8 ∈ "}=8=1. Denote D (@) := D (@, C = ∞).
Similarly, we may assume a surface" , with G as its coordinate

functions. The shape deformation problem requires to find some new
surface with coordinates G ′, which preserves the natural structure
of G , under the constraints that some points are pre-determined.
To this end we define the deformation field of a proposed G ′ as
D = G ′−G (fromwhich G ′ is reconstructed as G ′ = G+D). We perform
constrained total-variation minimization on D , where each nonzero
constraint in {2 (@8 )}

=
8=1 is translated to a point G ′ (@8 ) ≠ G (@8 ). For

the minimization process, we adapt a vectorial version of the process
introduced by [Bronstein et al. 2016], where we use ?"1 of (54) as
the sub-differential. See Figs. 15, 13, 19 for the results.

E SHAPE FLOWS AND THEIR EQUIVALENCE SETS

This section serves as a reminder of observations on equivalent
flows, namely the equivalence presented in [Kimmel et al. 1998].
Consider the flow equation,

m5

mC
= ? (5 (C)), (80)

where ? is some operator. E.g., choosing ? = Δ6,2 we obtain Eq. (12).
Suppose that" is a manifold of some shape, and we would like to
process this shape via a flow. To do so we can initialize the flow
with the shape’s coordinate function, i.e. 5 (0) = ( . Doing so with Eq.
(12) is a classical shape smoothing flow. During the shape flow, at a
given time C , we have ? (5 (C)) : " → R3 , a field which describes
the velocity of the evolving shape’s points. Recalling the normal

# =
(l1 × (l2

|(l1 × (l2 |
, (81)

a vector ®+ ∈ ? (5 (C)) may be decomposed to its normal and tangen-

tial component as follows: ®+# = 〈 ®+ , ®# 〉 ®#, ®+) = ®+−®+# , yielding
m5
mC =

? (5 )# + ? (5 )) , The normal component accounts for the change of
the shape in time, and the tangential movement is merely a change
of the shape’s parameterization in time. Thus two shape flows are
considered equal if their normal components are equal, and an
equivalence set of shape flows is defined as:

{
m5

mC
= @(5 ) : 〈@(5 ), ®# 〉 = 〈? (5 ), ®# 〉}. (82)

We note that parameterization constraints may cause differences
between two flows from the same equivalence set.

E.1 Beltrami -TV Flow equivalence

In [Kimmel et al. 1998], an equivalence between MCF and the TV-

flow was shown: On one hand they define the Beltrami flow
m5
mC =

� (C )

< ®# (C ),Î>
Î, which is obviously equivalent to MCF, in the sense of

Eq. (82). On the other hand, consider a shape parameterized as an
"image function", i.e. ( = (D, E, 5 (D, E)), where the image is given by
5 (D, E), and D, E are a 2D Euclidean domain discretized as the pixel
grid. In this case they show that plugging Eq. (81) in to the Beltrami
flow is equivalent to the image TV-flow.
Remark: equivalence by Eq. (82) does not account for parame-

terization, which may induce implicit constraints - as is the case
here: During Beltrami flow, the evolving shape’s points are con-
strained to move in the Î direction, thus keeping the parameteriza-
tion ( = (D, E, 5 (D, E)), contrary to MCF, where no such constraint
exists. This is the reason MCF convergenes to a point, while image
TV flow converges to a plane (D, E, 2>=BC).


