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map Uθ(ρ), which is the adjoint action of Uθ on state ρ,

Uθ(ρxi
) = Uθρxi

U
†
θ

(1)

with Uθ the quantum neural network (QNN) is parame-
terized by a set of trainable parameters θ. Without losing
generality, we consider the most general setup where the
final prediction of the QNN is the expectation value of
an observable O :

ŷ(x) = f̂θ(ρx) = Tr[Uθ(ρx)O]. (2)

During the training, the model learns the hidden data

distribution from the training set in such way that f̂θ
approaches as close as possible to the target function f .
At the end of the training, we expect that Uθ can also
predict the label of the unseen test set.

The key idea behind geometric quantum machine
learning (GQML) is to design models that capture the
meaningful relations in the dataset by incorporating the
architecture with the geometric priors. In the case of ge-
ometric supervised learning, we consider the label sym-
metry of the dataset given as the following definition.

Definition 1 (Invariance) Let us consider a symmetry
group S with a representation R ∶ S → Aut(R) acting on
the classical data space R. We call that a function h has
a label symmetry if and only if h is invariant under S,
i.e.,

h(ρR(g)⋅x) = h(ρx), ∀g ∈ S. (3)

GQML aims to construct a QNN ansatz that guaran-
tees this label symmetry so that the final prediction ŷ(x)
is invariant under the action of any symmetry group el-
ement g ∈ S. Recent papers suggest approaching the
GQML with S-equivariant quantum model [15, 16].

Definition 2 (Equivariant Embedding) We call an
embedding Ψ ∶ R→M with Ψ(x) = ρx to be equivariant

with respect to a symmetry element g, if and only if there
exist a unitary representation Rq(g) such that

ρR(g)⋅x = Rq(g)ρxR†
q(g). (4)

We call Rq(g) the unitary representation of g induced by
the embedding Ψ [16]. The group symmetry emerges nat-
urally in the QNN architecture via the equivariant em-
bedding and can be captured by the equivariant quantum
gates. For simplicity, let us focus on a set of quantum
gates of the form :

UG(θ) = exp(−iθG), G ∈ G (5)

where G is a Hermitian generator and G the generator
set of U .

Definition 3 (Equivariant Gate) A quantum gate
UG(θ) = exp(−iθG) with θ ∈ R is called to be equivari-

ant with respect to S if and only if it commutes with
Rq(g) for all g ∈ S, i.e.,

[UG(θ),Rq(g)] = 0, ∀θ ∈ R,∀g ∈ S (6)

or equivalently,

[G,Rq(g)] = 0, ∀g ∈ S. (7)

There exist different methods proposed to construct the
equivariant gateset [21], such as twirling method, which
is the most common and practical method for a finite
symmetry group.

Similarly, a QNN ansatz is said to be equivariant if
and only if it consists of equivariant quantum gates. By
combining the equivariant embedding and the equivari-
ant QNN ansatz with an equivariant observable O :

Rq(g)OR†
q(g) = O, ∀g ∈ S, (8)

we construct an invariant quantum classifier model
which guarantees this label symmetry.

Lemma 1 (Invariance from equivariance) A quan-
tum learning model which consists of equivariant embed-
ding, equivariant quantum circuit ansatz and invariant
observable with respect to a symmetry group S is invari-
ant with respect to S :

ŷ(R(g) ⋅ x) = Tr[UθρR(g)⋅xU
†
θ
O]

= Tr[UθRq(g)ρxR†
q(g)U†

θ
O]

= Tr[Rq(g)UθρxU
†
θ
OR†

q(g)]
= Tr[R†

q(g)Rq(g)Uθ(ρx)O]
= Tr[Uθ(ρx)O] = ŷ(x), ∀g ∈ S. (9)

The equivariant QNN leads to the trade-off between
the gain of expressibility and the loss of expressibility
by constraining the search space that the model can ex-
plore. In the previous studies, GQML has shown promis-
ing results in various problem setups leveraging the ad-
vantage in terms of complexity, trainability and gener-
alization [15, 21–26]. However, all the tests have been
undertaken in the absence of hardware noise and the im-
pact of noise on EQNN has never been studied before.

B. Noise models

The description of noise effects during quantum gates
operation is based on the open quantum system the-
ory [27, 28]. The Markovian evolution of the density
matrix ρ̂t of the qubits system in a given environment is
described by the following Lindblad equation

d

dt
ρ̂t = −

i

h̵
[Ĥt, ρ̂t] +Lρ̂t, (10)

where

Lρ̂t = ǫ
2∑

k

[L̂kρ̂tL̂†
k −

1

2
{L̂†

kL̂k, ρ̂t}], (11)



3

Ĥt is the time-dependent Hamiltonian realizing a given
gate, and L̂k are the Lindblad operators capturing the
action of the environment.

In this work, we only consider quantum channels act-
ing locally on qubits. Some examples of these channels
are bit flip (BF) channel, depolarizing (DP) channel, and
amplitude damping (AD) channel. One way to define the
action of a noise channel N on the quantum state ρ is
through the Kraus operators K [28]. Then this can be
written as,

N (ρ) =∑
i

KiρK
†
i . (12)

Bit Flip Channel: BF channel with probability p can
be described using two Kraus operators K0 =

√
1 − p I

and K1 =
√
p X. The action of the BF channel on the

single qubit state simply becomes,

N (ρ) = (1 − p)ρ + pXρX. (13)

This can be extended to multi-qubit systems. In the two-
qubit case, the action of the noise channel can be written
as,

N (ρ) = (1 − p0)(1 − p1)ρ
+ p0(1 − p1)(X ⊗ I)ρ(X ⊗ I)
+ (1 − p0)p1(I ⊗X)ρ(I ⊗X)
+ p0p1(X ⊗X)ρ(X ⊗X), (14)

where p0 and p1 are the probability of acting on qubit-0
and qubit-1, respectively. Following this logic, all local
noise channels can be generalized to multi-qubit systems.

Depolarizing Channel: Kraus operators of the DP

channel are K0 =
√
1 − p I, K1 =

√
p/3 X, K2 =

√
p/3 Y ,

K3 =
√
p/3 Z. Single qubit DP channel shrinks the

Bloch sphere from all directions symmetrically. Hence,
any quantum state moves towards the maximally mixed
state under the action DP channel.

Pauli Channel: Both BF and DP channel are special
cases of Pauli channels. Kraus operators of the Pauli

channel are K0 =
√
1 − px − py − pz I, K1 =

√
px/3 X,

K2 =
√
py/3 Y , K3 =

√
pz/3 Z. One can recover the BF

channel by setting py = pz = 0 and the DP channel by
setting px = py = pz = p.

Amplitude Damping Channel: The picture changes
significantly under AD channel. Kraus operators of the
AD channel can be written as,

K0 = [1 0
0
√
1 − γ

] , K1 = [0
√
γ

0 0
] , (15)

with γ the amplitude damping probability.

The action of single qubit AD channel shrinks the Bloch
sphere towards the ground state (∣0⟩), creating an asym-
metry on the Hilbert space along the z-direction. An-
other common way of describing the noise channels is
through the Pauli transfer matrix (PTM) formalism [29].
This simplifies some computations and is used in this
work. Please refer to Appendix A 2 for more details on
the PTM formalism.

Having these definitions, we can now describe the ac-
tion of noise on the quantum circuit. Let us consider
a quantum system with initial state ρ0 and at every
layer the circuit acts with the unitary Ui, such that

ρi = Ui (ρi−1) = Uiρi−1U
†
i . Then, the quantum state, after

layer d becomes,

ρd = N ○ Ud ○ ⋯ ○N ○ U2 ○N ○ U1(ρ0). (16)

This can be visualized in the circuit picture as in Fig. 1,
where Λ is the local action of noise channel N . On the
real hardware, the action of Λ is different for all qubits,
but for simplicity, we assume that they are the same for
simulations.

ρ U1

Λ

Λ

Λ

Λ

Λ

U2

Λ

Λ

Λ

Λ

Λ

· · · Ud

Λ

Λ

Λ

Λ

Λ

Fig. 1. Drawing of the local noise model. A circuit with input
ρ and layers Ui, where the local Λ representing the action of
noise are applied after each layer.

An extended description of the noise channels can be
found in Appendix A.

C. Concentration of measure

Variational algorithms may experience an exponential
concentration of measure mainly due to the fact that the
quantum state living in the 2n-dimensional Hilbert space.
The term concentration of measure refers to the obser-
vation that in many high-dimensional spaces, continuous
functions are almost everywhere close to their mean [30].
As defined in Definition 4, the exponential concentration
is commonly referred to as barren plateaus (BPs) in the
QML literature. It was shown on different occasions that
BPs may exist due to excessive expressivity of the cir-
cuit [31], highly entangled input state (e.g. volume law
entanglement) [32], global observables [33] and hardware
noise [34]. We refer the readers to recent work by Ragone
et al. [5], which offers a unified picture of these causes.
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Definition 4 (Exponential concentration)
Consider the random variable X. X is said to be
deterministically exponentially concentrated in the num-
ber of qubits n around a certain fixed value α for some
b > 1 if

∣X − α∣ ≤ β ∈ O(1/bn). (17)

EQNNs can avoid BPs1 by incorporating inductive bi-
ases into the ansatz design. This follows the fact that
the existence of BPs in the case where the ansatz admits
a Lie algebra g, such that dim(g) ∈ O(exp(n)). Conse-
quently, certain EQNNs can be constructed in a polyno-
mial subspace of the Hilbert space such that they admit
dim(g) ∈ O(poly(n)) and allow BP-free parametrized cir-
cuit designs [5]. This framework can ensure BP-free mod-
els unless there is no hardware noise present. Inevitably,
EQNNs will experience noise-induced BPs [34]. This will
be an important point when discussing the performance
of EQNNs in the presence of noise.

III. EQUIVARIANCE UNDER NOISE

Writing down analytical expressions for noisy quantum
circuits is a difficult task in general. The expressions
are unique to each circuit and noise model, resulting in
complicated equations with just a few layers of gates.
Nonetheless, this offers a good understanding of the be-
havior of the model in simple settings. To be able to do
this, we construct a toy model. This allows us to build
a theoretical understanding and give us an intuition of
what to expect from numerical results.

A. Toy model

Let us consider the following circuit, where the one-
dimensional input data x ∈ R is encoded using the RY

rotation gate. Then, we will apply an identity gate that
we decompose into the form UU †, d times. This for-
mulation will allow us to incorporate the effects of gate
decompositions on the behavior of the circuit. When de-
signing algorithms in the NISQ era, we should keep in
mind that we only have access to a limited set of native
gates on hardware. The noise channel Λ will be applied
between each U and U † gates as described in Fig. 2.

1 Here, the term avoiding barren plateaus, is used in the context

of barren plateaus, where the concentration of measure is caused

by the expressivity of the ansatz. This doesn’t hold for all cases,

e.g. global observables, noise-induced BPs etc.

|ψ〉 RY (x) U Λ U† U · · · Λ U †

Fig. 2. One qubit toy model under noise with identity gates
decomposed into unitaries U and U†, d times, i.e., I = (UU†)d.

We assume a dataset with the Z2 = {e, σ} symmetry,
such that R(e) ⋅ x = x and R(σ) ⋅ x = −x. Then, one can
use any rotation gate RG, such that the twirl with the
representation Rq(σ) is Rq(σ)GR†

q(σ) = −G. Then, one
can use the RY rotation gate to encode this symmetry
simply due to the fact that XYX = −Y and similarly
ZY Z = −Y . This means we have the freedom of choosing
either X or Z as the representation Rq(σ). The choice
of representation is going to put a constraint also on the
input state. For this walk-through, let’s choose the input
state ∣ψ⟩ = ∣+⟩, Rq(σ) = X, U = RY (θ) and the choice of
representation requires us to have the observable O =X.
Here, we refer the reader to Refs. [15, 16, 21] for more
details on constructing EQNNs.

Having defined our complete model, we can now choose
a noise model and express the model outputs analytically.
We refer the reader to Appendix B for step-by-step cal-
culations in this section. First, we consider the Pauli
channel. Then, the output of the model can be written
as,

ŷ(x) = 1

4
((fdx + fdz ) cos(x) + (fdx − fdy ) cos(x + 2θ)), (18)

where fi is the Pauli fidelity of the Pauli σi (e.g.
fx = 1 − 2(py + pz) according to the definition in Sec-
tion II B, refer to Appendix A for more details.). The first
term of the equation gives us the noiseless outcome that is
suppressed exponentially in the number of layers around
zero (i.e. {∣fx∣, ∣fy ∣, ∣fz ∣} ≤ 1). This result is also known
as noise-induced barren plateaus [34]. The second term
of the equation constitutes the motivation of this work.
We see that this term breaks the equivariance for some
values. First and foremost, we see that the symmetry
breaking term has an exponentially vanishing amplitude.
Then, this term becomes even smaller when fx ≃ fy,
which is, in fact, the case on hardware. These two re-
sults combined indicate that the noise-induced symmetry
breaking should not hinder the equivariance under Pauli
channels. Last but not least, the value of θ also plays
a role in the amount of symmetry breaking. It may, in
fact, make the symmetry breaking zero regardless of the
values of fx and fy. This is a natural result, as there
will be decompositions which improve robustness against
noise. However, such decompositions of gates may not be
available on hardware, and one should keep this in mind
during the transpilation process.

Now, let’s consider the non-unital AD channel with the
probability γ. Then, the outcome of the circuit can be
written as,
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ŷ(x) = 1

4
((1 − γ)d/2 + (1 − γ)d) cos(x)

+
1

4
((1 − γ)d/2 − (1 − γ)d) cos(x + 2θ)

+
1

2
Λ
(d)
AD(4,1)

sin(θ). (19)

The term ΛAD(4,1)
refers to the only off-diagonal entry

in the Pauli Transfer Matrix (PTM) of the AD channel.
The upper index (d) denotes the dth power of this matrix.
We refer the reader to Appendix A2 and B for the details.
We can write this term explicitly as,

Λ
(d)
AD(4,1)

≃ dγ −
d(d − 1)

2
γ2. (20)

Here, we skip writing the remaining terms as their con-
tribution will be negligible as long as we consider shallow
circuits. Going back to the full expression for ŷ(x), we
immediately see that the AD channel results in a more
complicated form. Nonetheless, it is easy to see the impli-
cations of each term one by one and this will give us the
necessary intuition for the remaining part of this work.

The first and second terms jointly result in the expo-
nential concentration induced by the AD channel. This
can be easily seen by setting θ = 0. The concentration
happens around the third term, which shifts with the
addition of each layer. This shift behaves approximately
linear for practically relevant depths and noise levels2,
e.g. O(γd). The second term is the one responsible for

symmetry breaking. The term ((1− γ)d/2 − (1− γ)d) be-

haves similar to the Λ
(d)
AD(4,1)

term, e.g. is approximately
linear for relevant values of the parameters. Furthermore,
it is upper bounded by O(γd), and thus, the symmetry
breaks approximately linearly in the number of layers d
or noise strength γ under the AD channel.

One final important setting to consider is the combi-
nation of the Pauli channel with the AD channel. It is
straightforward to compose this effective channel using
the PTM picture. We obtain the noisy prediction as,

ŷ(x) = 1

4
(fdx(1 − γ)d/2 + fdz (1 − γ)d) cos(x)

+
1

4
(fdx(1 − γ)d/2 − fdz (1 − γ)d) cos(x + 2θ)

+
1

2
Λ
(d)
P+AD(4,1)

sin(θ), (21)

and the term Λ
(d)
P+AD(4,1)

reads,

2 Current superconducting hardware has γ ≃ 10
−2 and CNOT

depth of 10 − 20. The values are approximate and vary from

device to device.

Λ
(d)
P+AD ≃ ( d

∑
k=1

fkz )γ − ( d

∑
k=1

(k − 1) × fkz )γ2. (22)

This term determines the shift of the mean. We see
that it behaves the same except it is this time modulated
with the Pauli fidelity fz at every layer. Similarly, the
amplitude of symmetry breaking depends on the second
term as follows,

ŷ(x) − ŷ(−x) =
− (fdx(1 − γ)d/2 − fdz (1 − γ)d) sin(θ) sin(x)/2 (23)

This means the symmetry breaking is also modulated
with the Pauli fidelity fx and fz in each layer. Notice
that we can recover the term for pure AD channel if we
set fx = fz = 1. Overall, the behavior of the term doesn’t
change, and it grows approximately linear in AD channel
noise strength γ with minor contributions from the Pauli
channel. This statement can also be generalized to multi-
qubit systems. Following the structure of Eq. 14, we see
that the addition of local noise channels on other qubits
has negligible effects as these terms appear as multiplica-
tive terms. Hence, we conjecture that a generic EQNN
model experiences symmetry breaking dominantly under
the AD channel, and the amount grows linearly in noise
strength γ and depth d.

In Section IV, we perform numerical experiments to
confirm the implications of the toy model and present
evidence directly from hardware runs. For this purpose,
we continue by introducing metrics that can be computed
using the simulation and hardware data such that we can
decouple the symmetry breaking terms from the rest of
the terms in the model outputs.

B. Quantifying symmetry breaking

Preserving symmetries and quantifying the amount of
symmetry are paramount for the success of tasks such
as state preparation and time evolution of quantum sys-
tems in the presence of hardware noise. In fact, there is
a growing literature that studies these aspects [18, 19].
Although this may look like a very similar problem in
GQML, there is a fundamental difference. In the former,
the state belongs to a subspace that is governed by the
symmetry of the corresponding system, while in the lat-
ter, what matters is the relative positions of the symmet-
ric inputs in the subspace that is governed by the label
symmetry. Furthermore, in tasks such as binary clas-
sification, the continuous output of a model is mapped
to a binary decision based on a threshold. This means
that small deviations in the expectation value may not
change the binary decision. Overall, these points relax
the conditions to preserve the symmetry in the context
of GQML. Ragone et al. [5] recently introduced g-purity,
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which can be used to measure the symmetry breaking in
GQML, but g-purity is expensive to compute and doesn’t
account for the binary decisions. Thus, there is a need
to define metrics that can capture all of these aspects.

We start by defining a metric that can use the contin-
uous outputs of a model (i.e. ŷi for input xi

3). For
this purpose, we have to make a choice of the sym-
metry group. In this paper, we focus on the discrete
Z2 = {e, σ} symmetry, such that R(e) ⋅ (xi) = (xi) and
R(σ) ⋅ (xi) = (xj), where R is the representation of the
symmetry group element in the data space R. Then, the
equivariance implies ŷi = ŷj . We define accordingly Z2

symmetry generalized McNemar-Bowker (MB) test [35]
as follows,

Definition 5 (Z2 generalized MB test) Consider
the Z2 = {e, σ} symmetry, such that R(e) ⋅ (xi) = (xi)
and R(σ) ⋅ (xi) = (xj). Then, the normalized McNemar-
Bowker (MB) test [35] of a model with predictions ŷi for
input xi over M samples can be defined as,

χ2 =
1

M

M

∑
i=1

(ŷi − ŷj)2
ŷi + ŷj

(24)

This definition can be further extended to the binary
predictions. For this purpose, we define the threshold
function τ , which is a step function that has the transi-
tion point t. A naïve choice for the value of t is the center
point of the two binary class predictions (e.g. t = 0.5 if
the classes are defined as 0 and 1, t = 0 if the classes
are defined as -1 and 1). However, as we illustrated ear-
lier, the predictions of a model may shift towards a value
under hardware noise, and thus, the central and fixed t
value becomes a bad choice. Furthermore, this value is
often optimized by following the area under the curve
of the receiver operation characteristics of a model [36].
Unsuitably, this makes the choice data-dependent. With
these points in mind, we choose the threshold t such that
it is the median of the continuous outputs of a model for
the inputs from the training set. This allows us to update
the value and account for the shift in the center of the
expectation values. Then, we can use the binary predic-
tions τ(ŷi) to compute χ2. We will refer to this value as
label misassignment (LM), as it counts the amount of the
predictions that have a different prediction than their Z2

counterparts.

Definition 6 (Label Misassignment (LM))
Consider the Z2 = {e, σ} symmetry, such that
R(e) ⋅ (xi) = (xi) and R(σ) ⋅ (xi) = (xj). Let us
take a model returning binary predictions τ(ŷi), where
ŷi are the continuous predictions of the model for input
xi and τ a step function that has the transition point at

3 Bold symbols are used to represent vectors. Here xi denotes ith

data sample with arbitrary size.

the median of all ŷi. Then, label misassignment (LM) of
a model over M samples can be defined as,

LM =
1

M

M

∑
i=1

(τ(ŷi) − τ(ŷj))2
τ(ŷi) + τ(ŷj) (25)

Notice that each term in the sum is either 04 (if the
model prediction is the same for xi and xj) or 1 (if the
predictions are different). This allows LM to count the
amount of misassigned predictions. For example, a model
that has perfectly symmetric outputs will be 0% of LM,
while a model that produces random outputs 50% of LM.
A model that predicts the opposite label for all symmetric
inputs will have 100% of LM.

Furthermore, 1−LM/2 can be used to upper bound the
accuracy of a model. Consider the model that predicts
the opposite label each time (i.e. LM=1.0); this model
can have, at best, 50% accuracy. Similarly, a model with
random outputs (i.e. LM=0.5) can’t have an accuracy
larger than 75%. Notice that 1−LM/2 doesn’t predict the
accuracy of a model but only upper bounds it, otherwise
one would expect the completely random model to have
50% accuracy.

IV. EXPERIMENTS

In this section, we provide numerical experiments to
validate our findings. To achieve this goal, we perform
binary classification experiments, compute χ2 and label
misassignment (LM) that we previously defined in Sec-
tion III B, utilizing both simulated and hardware results.

For the experiments, we consider datasets with Z2

symmetry as described before. Accordingly, we choose
the symmetry transformation such that R(σ) ⋅(xi) = −xi.
We generate a dataset, as depicted in Fig. 3 that carries
this symmetry for the classification experiments.

As we illustrated earlier, the choice of an equivariant
data embedding induces a specific unitary representation
of the symmetry group element, which will restrict the
choices of the parametrized gates and the observable. We
define two different two-qubit EQNN models, EQNN-Z
and EQNN-XY, as shown in Fig. 4a, 4b. In both models
the data encoding is performed with the Pauli rotation
gates RY and RX , inducing the representation Rq(σ) =
Z0Z1. EQNN-XY data encoding uses the same gate at
each layer, while in the EQNN-Z case, the order of RX

and RY gates are alternated.
The parametrized gates in both cases are the same. We

select three generators G ∈ {X0X1, Z0I1, I0Z1} from the
set of commutators of the representation Z0Z1. These
generators are used to obtain the parametrized gates of

4 We avoid division by zero in the case of zero predictions, by

adding a small epsilon to the denominator for the numerical ex-

periments
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target in this manuscript is to investigate the scalability
of GQML on hardware, rather than just being able to ex-
ecute circuits. This means error mitigation methods such
as probabilistic error cancellation (PEC) are not suitable
for this study due to their exponential overhead [43]. Fur-
thermore a naïve implementation of PEC may result in
further loss of equivariance. This opens up new avenues
to explore whether we can perform PEC by preserving
given group symmetries. Additionally, we briefly explore
the potential of zero noise extrapolation (ZNE) in Ap-
pendix D, revealing its effectiveness when provided with
analytical expectation values but highlighting challenges
with a limited number of shots.

In conclusion, our study not only advances our un-
derstanding of the intricate interplay between hardware
noise and GQML models but also lays the groundwork
for informed strategies to enhance their resilience. As
we navigate the challenges posed by noise in QML, our
findings open new avenues for further exploration and op-
timization, offering a promising trajectory for the future
development of robust and scalable GQML on quantum
hardware.
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Appendix A: Noise models

1. Amplitude Damping Channel

In Section II B, we introduced the amplitude damping (AD) channel with the following Kraus operators,

K0 = [1 0
0
√
1 − γ

] , K1 = [0
√
γ

0 0
] . (A1)

These were given as matrices. Here, we also give them in the Pauli basis,

K0 =
1 +
√
1 − γ

2
I +

1 −
√
1 − γ

2
Z ,K1 =

√
γ

2
X − i

√
γ

2
Y. (A2)

This allows us to see the commutation of the AD channel with the Z gate.

2. Pauli Transfer Matrix formalism

Working with the Kraus operators can become messy very quickly. Pauli transfer matrix (PTM) formalism allows

us to simplify this process [29]. In this formalism, we start by choosing the normalized Pauli basis P̂ = 1√
2
{I,X,Y,Z}.

Then, the n-qubit operator P̂ ∈ P̂
⊗n can be represented as a basis vector ∣P⟫ ∈ R

4
n

.
We can also write the density matrix of a quantum state using this formalism. Consider the state ∣ψ⟩ = ∣0⟩, which

has the density matrix ρ = ∣ψ⟩ ⟨ψ∣ = ∣0⟩⟨0∣. The density matrix ρ can be simply written as [1/2,0,0,1/2]. This can
easily be seen when ∣0⟩⟨0∣ is explicitly written as (I +Z)/2.

Following this, a quantum channel E ∈ R
4
n×4n becomes a matrix. Finally, the expectation value of the operator

on the density matrix is simply tr(ρP̂ ). Then, using the PTM formalism we can compute the adjoint action of the
unitaries as well as the noise channels as simple matrix multiplications.

Now, let’s recall the Kraus operators of the Pauli channel NP are given as K0 =
√
1 − px − py − pz I, K1 =

√
px X,

K2 =
√
py Y , K3 =

√
pz Z. To obtain the PTM matrix of the Pauli channel we can write the action of the channel on

all Pauli operators and perform state tomography. This will be fairly simple in this case.

NP(I) = I (A3)

NP(X) = 1 − 2(py + pz)X (A4)

NP(Y ) = 1 − 2(px + py)Y (A5)

NP(Z) = 1 − 2(px + py)Z (A6)

We will define the Pauli fidelity fP of a Pauli operator P as the coefficient we observe in front (e.g. fx = 1−2(py+pz)).
Then, the PTM of the Pauli channel becomes,

ΛP =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 fx 0 0
0 0 fy 0
0 0 0 fz

⎤⎥⎥⎥⎥⎥⎥⎦
. (A7)
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Following this, we can recover the bit flip (BF), phase flip (PF), depolarizing (DP) channels’ Kraus operators and
the corresponding PTMs.

BF channel with probability p becomes K0 =
√
1 − p I, K1 =

√
p X. Then its PTM reads,

ΛBF =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 − 2p 0
0 0 0 1 − 2p

⎤⎥⎥⎥⎥⎥⎥⎦
. (A8)

PF channel with probability p becomes K0 =
√
1 − p I, K1 =

√
p Z. Then its PTM reads,

ΛPF =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 − 2p 0 0
0 0 1 − 2p 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
. (A9)

DP channel with probability p becomes K0 =
√
1 − p I, K1 =

√
p/3 X, K2 =

√
p/3 Y , K3 =

√
p/3 Z. Then its PTM

reads,

ΛDP =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 − 2p/3 0 0
0 0 1 − 2p/3 0
0 0 0 1 − 2p/3

⎤⎥⎥⎥⎥⎥⎥⎦
. (A10)

PTM of the AD channel can also be obtained following the same procedure. Here we will skip this step and directly
give the matrix.

ΛAD =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0
√
1 − γ 0 0

0 0
√
1 − γ 0

γ 0 0 1 − γ

⎤⎥⎥⎥⎥⎥⎥⎦
(A11)

Finally, we can use the PTM formalism to show the commutation of the Pauli Z with the AD channel. Recall that
we need to satisfy the following for the commutation,

NAD ○AdZ(⋅) = AdZ ○NAD(⋅) (A12)

Then, it’s easy to show this using the PTM formalism,

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0
√
1 − γ 0 0

0 0
√
1 − γ 0

γ 0 0 1 − γ

⎤⎥⎥⎥⎥⎥⎥⎦
⋅

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
⋅

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0
√
1 − γ 0 0

0 0
√
1 − γ 0

γ 0 0 1 − γ

⎤⎥⎥⎥⎥⎥⎥⎦
. (A13)

Since we are considering local noise models, the PTM of the n-qubit AD channel can be obtained by taking nth

Kronecker power of the single qubit ΛAD i.e. it is Λ⊗n
AD

. Similarly, this also applies to AdZ(⋅), and as a result, we

can conclude that Z⊗n commutes with the n-qubit AD channel.

Appendix B: Calculations for the toy model

In this section, we will give the details for the calculations in Section IIIA. Let’s start by recalling the definition of
the toy model, which was described in Fig. 2. The data is encoded using the RY gate and the redundant computation
of UU † is repeated d times. The input state is chosen to be ∣+⟩ The noise is modeled by applying the noisy operation
between each U and U † gates. For simplicity, U is chosen to be RY (θ), and the output of the model is considered to
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be the expectation value of the Pauli X. Then the final state of the model, before measurement, for input data x is
given as,

ρ = AdRY (−θ) ○N ○AdRY (θ) ○AdRY (−θ) ○ ⋯ ○AdRY (θ) ○AdRY (−θ) ○N ○AdRY (θ) ○AdRY (x)(∣+⟩⟨+∣). (B1)

The terms AdRY (θ) and AdRY (−θ) that appear next to each other will be identity. Then, this reduces to,

ρ = AdRY (−θ) ○N ○ ⋯N´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
d times

○AdRY (θ) ○AdRY (x)(∣+⟩⟨+∣). (B2)

We can compute this using the PTM of these terms. We already defined the PTM of the noise channels in
Appendix A 2. Then, we give the definitions for the remaining terms here. The density matrix of ∣+⟩⟨+∣ can be written
as, (I +X)/2. Then, it can be expressed with the vector [1/2,1/2,0,0]. The PTM that represents the adjoint action
of the RY (θ) gate can be expressed as,

AdRY (θ) =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 cos(θ) 0 − sin(θ)
0 0 1 0
0 sin(θ) 0 cos(θ)

⎤⎥⎥⎥⎥⎥⎥⎦
. (B3)

Furthermore, we need to point to the fact that the repetitive application of the noise channel will appear as the dth

power of the PTM matrix of the corresponding noise channel. Finally, the expectation value of X in the PTM picture
will correspond to a dot product of the vector [0,1,0,0] with the final state. Then, let us write the full expression to
obtain the expectation value under the Pauli channel, as it was given in Eq. 18,

ŷ(x) =
⎡⎢⎢⎢⎢⎢⎢⎣

0
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎦
⋅

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 cos(θ) 0 sin(θ)
0 0 1 0
0 − sin(θ) 0 cos(θ)

⎤⎥⎥⎥⎥⎥⎥⎦
⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 fdx 0 0
0 0 fdy 0

0 0 0 fdz

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⋅

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 cos(θ) 0 − sin(θ)
0 0 1 0
0 sin(θ) 0 cos(θ)

⎤⎥⎥⎥⎥⎥⎥⎦
⋅

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 cos(x) 0 − sin(x)
0 0 1 0
0 sin(x) 0 cos(x)

⎤⎥⎥⎥⎥⎥⎥⎦
⋅

⎡⎢⎢⎢⎢⎢⎢⎣

1/2
1/2
0
0

⎤⎥⎥⎥⎥⎥⎥⎦
. (B4)

After the matrix multiplication, one obtains,

ŷ(x) = ((fdx + fdz ) cos(x) + (fdx − fdy ) cos(x + 2θ))/4. (B5)

Next, we would like to compute the output of the model under the AD channel. The PTM of the dth power of the
AD channel results in a different structure, since it is not a diagonal matrix. This matrix can be given as follows,

Λ
(d)
AD
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 (1 − γ)d/2 0 0

0 0 (1 − γ)d/2 0

Λ
(d)
AD(4,1)

0 0 (1 − γ)d

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (B6)

where the term Λ
(d)
AD(4,1)

corresponds to the matrix element of the index (4,1). This term can be explicitly written as,

Λ
(d)
AD(4,1)

≃ dγ −
d(d − 1)

2
γ2. (B7)

As also described in the main text, we skip writing the remaining terms as their contribution becomes negligible
when realistic values are considered for the variables. For example, γ ≃ 10−2 and d < 20. Then, this can be used to
compute the expectation value under the AD channel. Using this, we can obtain the noisy prediction under the AD
channel as,










