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Abstract

We present a detailed benchmarking of different treatments of the QCD evolution of unpolarized PDF's
at approximate N*LO (aN®LO) order in the QCD coupling. Namely, the implementations in the pub-
lic aN®LO releases of the MSHT and NNPDF global PDF fitters, as well as that of the theoretical
FHMRUVYV collaboration are compared. This follows the same procedure as in previous benchmarking
exercises at lower orders, that is by considering the impact of this evolution on a set of simple toy PDFs.
Excellent agreement between the MSHT and NNPDF results is found at NNLO, and at aN*LO when
the same (FHMRUVYV) implementation of the splitting functions is used. In addition, in the data region
only small differences between these is seen when their original approximations are used for the splitting
functions. The origin of these differences, and the larger ones observed at lower x, is well understood
in terms of the differences in the approximate splitting functions. Good convergence is also observed
between the exact and truncated solution methods for the DGLAP evolution equations. Overall, this
provides confidence in the precision of the existing implementation of PDF evolution at N3LO.

1 Introduction

The scale dependence of parton distribution functions (PDFs) is governed by QCD evolution equations
whose kernels, the splitting functions, are accessible within QCD perturbation theory. For about 20 years
next-to-next-to-leading order (NNLO) has been the standard for precision predictions in perturbative QCD,
including studies of the proton structure and fits of PDFs. For the solution of the integro-differential
equations describing parton evolution in QCD, different codes have been developed within the community,
making it necessary to check that there is consistency between the evolution codes used by the various
groups. To this end a set of benchmark tables for parton evolution up to NNLO accuracy was produced in
[1, 2] in order to provide a means of checking the (numerical) accuracy of any evolution code.

Given the increasing experimental precision and the challenge to push the accuracy of QCD perturbation
theory by one quantum loop beyond the state-of-the-art, it is now necessary to extend the benchmarking of
QCD evolution codes to the next order, i.e. next-to-NNLO (N3LO) in perturbative QCD. In this document,
we provide a new set of benchmark tables for the evolution of unpolarized PDFs.! As the required QCD
splitting functions are not yet fully known at this order, we resort to approximations which are valid within
a restricted kinematic range. The outcomes of this study are

e benchmarking of available codes for parton evolution to N3LO.

e discussion and comparisons of different approximations for the QCD splitting functions at N3LO.

1A short summary has been published as part of the activities of the “Standard Model” working group for the “Physics at
TeV Colliders” workshop (Les Houches, France, 12-30 June, 2023) [3].



We provide a brief summary of the theoretical status of unpolarized parton evolution in QCD in Sec. 2,
including a list of available tools and codes. We also discuss the different approximations for the N3LO
splitting functions. The results and tables with benchmark numbers are listed in Sec. 3. We finish with
conclusions and an outlook in Sec. 4.

2 Evolution equations and their solutions

2.1 The renormalization group equations

The scale evolution of the parton distributions f,(x, u?) = p(z, uf), where p = ¢;, ¢, g with i =1, ..., ny,
is governed by the 2ny+1 coupled integro-differential equations
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where summation over p’ is understood. The factorization and renormalization scales are denoted u¢ and
Ly, and ® is the standard Mellin convolution in the fractional-momentum variable z. The scale dependence
of the strong coupling reads
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where we abbreviate as = ay/(4m). The S-function coefficients 8; are known to five loops in QCD [4, 5, 6, 7],
which allows for the solution of Eq. (2) through N*LO for the as evolution.
The general splitting functions P®) in Eq. (1) reduce to the simpler expressions P®)(z) at equal scales
s = pe. Up to N3LO the corresponding relations read
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The splitting functions are currently known completely up to NNLO, i.e. analytic expression for P;SIQ)') (x) are
available [8, 9]. At N3LO, this is also the case for non-singlet splitting functions in the planar limit [10] as
well as for some parts of the functions Pzgi’) (x) proportional to powers of ny [11, 12, 13, 14]. In addition,
there are a number of Mellin moments available for all splitting functions at N3*LO [15, 16, 17, 18, 19, 20]
(at least the first five moments, often ten or even more for specific colour factors). This information, taken
together with knowledge on the functional form of the splitting functions in the limits z — 1 and = — 0,
to be discussed below, serves as the basis for approximations to all N3LO splitting functions, allowing for a
solution of Eq. (1) to this order.

2.2 Heavy-quark treatment

The renormalization group equations, Eqgs. (1) and (2), are viable for a fixed number of flavors ny and so we
need to specify the prescription for changing ny. The transition ny — ny + 1 is made at the scales of the

heavy-quark pole masses,
= V2GeV?, my = 4.5 GeV?. (4)



The matching conditions for the strong coupling in the transition ny — ny + 1 derive from the decoupling
formulae, given by

as(nf+1)(krm}2L) _ as(nf) ) _|_Z ( (nf) kmh) Z Cpy Inky (5)

The matching coefficients ¢, ;, are known to four loops [21, 22], so that five-loop running can be obtained
consistently from Eq. (2), taking into account threshold effects. The benchmark computations presented
here use running a( ) at N3LO with the four- loop 5 function
The matching conditions at these thresholds u? = mh, h = ¢, b, t for the PDFs involve the operator
matrix elements (OMEs) with heavy-quarks, A,, (x), which are accessible in perturbation theory in an
expansion in ags with coefficients A;l;,, known [23] to two loops, i.e. Az(;)" For the benchmark computations,
we apply these conditions up to NNLO(=N"=2L0) and they read [24] (§,,2 = 1 at N™=2LO below)
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where h = h and ¥ (") = S (gi+Gi). The N3LO QCD corrections to massive OMEs are also available [25,

26, 27]. Those for fli;]@) have recently been completed [28, 29], superseding previous approximations [30, 31].

The massive OMEs also provide the transition matrix elements in the variable-flavor number scheme
(VFNS), where the transition ny — ny + 1 treats one heavy-quark flavor at the time, i.e. the single-mass
case [32]. At higher orders, both the ¢ and b-quark loops appear in massive OMEs [33, 34, 35]. Accounting
for those corrections requires the transition ny — ny + 2, i.e. the two-mass case [36]. For the benchmark
computations, the VFNS transition employs the single-mass case at NNLO only.

2.3 Available information and tools

As it is not possible to solve Eq. (1) in closed form beyond LO, a numerical algorithm has to be applied
for which several public codes exist: APFEL [37], apfel++ [38], EKO [39], HOPPET [40], PEGASUS [41], and
QCDNUM [42]. The codes can be split into two different categories according to how they approach the solution
of Eq. (1), by either taking a direct approach in momentum fraction space (APFEL, apfel++, HOPPET, QCDNUM)
or solving in the conjugate Mellin-space (EKO, PEGASUS).

In the following we give a short review on the different approximation strategies applied by the MSHT
group [43, 44], the NNPDF collaboration [45, 46], and FHMRUVV [10, 17, 18, 19, 20] - for a detailed

discussion we refer to the respective references.

2.3.1 MSHT

The first attempt to produce an approximate set of N3LO PDFs, incorporating the known information about
the N3LO, i.e. O(af), splitting functions was made by the MSHT group [43]. At the time this study took
place less information was available than is currently the case. The approximation for the splitting functions
was based on the following procedure (precise details can be found in [43]).

e Information on the Mellin moments of the splitting functions [10, 16] was used.

e The full information on the non-singlet splitting function presented in [10] was used. This includes
information at high z from [47] as well as information appropriate in the limit of large flavour and
colour number.



e The available information on leading In(1/z) resummations from [48, 49, 50, 51, 52, 53, 54, 55] was
used.

For each splitting function the terms which are known exactly were input, together with a set of basis
functions chosen to be concentrated over a variety of x regions. For each splitting function one more
function than there are known Mellin moments was chosen (i.e. a set of 5 basis functions to accompany the
4 moments known at the time for singlet splitting functions and a set of 9 basis functions to accompany the
8 moments for the nonsinglet splitting function). This leaves an unknown parameter, p which reflects the
splitting function uncertainty and was chosen to be the coefficient of the most divergent unknown piece of our
set of basis functions at small z. The variation in this parameter was then constrained by two requirements:
for allowed p at high x, when the other coefficients of basis parameters are determined by matching the full
splitting functions to the known Mellin moments, then the splitting function corrections at N®LO should not
be large compare to those at lower orders; at sufficiently small x, for a fixed value of p, the splitting function
is required to be contained within the range of variation predicted from exploring a full range of choice of
basis functions. Once a particular choice of basis functions has been made there is then a preferred value of
p and a variation which incurs a x? penalty, i.e. there is a prior based on all the available knowledge about
the function and lower orders. This prior was then modified in a fit to data and a posterior “best-fit” value
and uncertainty was obtained for the value of p for each splitting function. The constraints on the splitting
functions were applied in moment space in order to determine the values of p, but the splitting function
was then expressed in x space and evolution performed via numerical solution of the renormalization group
equations in Eq. (1).

This approach was used in both the first release of the approximate N*LO PDFs [43] and subsequent
work including also QED evolution [44], examining various aspects of the data used for the high = gluon in
the aN3LO PDFs [56], and the first determination of the strong coupling at aN®LO in a global PDF fit [57].

2.3.2 NNPDF

The default program adopted by the NNPDF collaboration for DGLAP evolution is the recently published
code EKO [39]. It focuses on solving Eq. (1) in terms of evolution kernel operators (EKOs) E which are
independent from the actual PDF f,(x, u?), depending only on the theory setup (such as perturbative
orders or the initial scale yf ;):

fp(ﬂ?) = Epp (M% — H%,o) ® fpr (Mtz',o) (8)

The EKOs are computed in Mellin space and transformed to momentum fraction space via interpolation
techniques. EKO provides several strategies for solving the respective renormalization group equations which
are perturbatively equivalent, but differ by the number of resummed terms. As EKOs are independent of the
boundary PDF values, they are ideally suited for a PDF fit and as such EKO is integrated into the pineline
framework [58].

The EKO strategy for approximating the N®LO splitting function P®), can be summarized as follows:

e The available information from soft gluon resummation in the threshold region  — 1 [10, 11, 47, 59,
60, 61] is used.

e The available information from BFKL resummation in the high-energy region x — 0 [48, 49, 50, 51,
52, 53, 62, 63, 64] is used.

e The available information in the limit of large number of flavors [10, 11, 12, 14] is used.
e The available information on the low Mellin moments [10, 16, 17, 18, 19] is used.

All limits are combined in a unique way and a number of sub-leading terms corresponding to the number of
known Mellin moments are added. Precise details can be found in Section 2 of [46]. In particular the specific
choice of the form of the sub-leading terms is arbitrary and drawn from a pre-defined list. This freedom
represents the uncertainty associated with the partial knowledge on splitting functions and is referred to
as Incomplete Higher Order Uncertainty (IHOU). THOU are estimated independently from other possible
sources of theory errors, such as the incomplete perturbative expansion (referred to as missing higher order
uncertainty (MHOU) [65, 66]).



2.3.3 FHMRUVV

Approximate results for the N3LO splitting functions have been constructed based on the available Mellin
momer@l& 16, 17, 18, 19, 20] and all known results for the large-z and small-z limits. The large-z behavior
of the MS-scheme diagonal splitting functions reads

3 A(l)
-1
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where the four-loop cusp anomalous dimensions A,(;l) [59, 67] as well as the coefficents Cp(4) and Dp(4) 19,
47] are known analytically, while the virtual anomalous dimensions Bp(4) multiplying 6(1 — x) have been
determined in approximate form [68, 69]. For all N3LO splitting functions further large-x constraints are
known [61, 70, 71] and are also used. Information on their small-z behavior is also available. In case of
Pg(g) it is governed by the BFKL logarithms, of which the next-to-leading logarithmic (NLL) correction
has been calculated [52, 54] and transformed to the MS-scheme some time ago [72, 73] (for Pg(g), see [55]).
Sub-dominant small-z terms for all splitting functions have also been derived [62].

The procedure is then based on a total of 80 approximations featuring slightly different functional forms
for the splitting functions Pp(p‘g,)(m)7 consistent with their respective known endpoint behaviour. These ap-
proximations define a range and for the two boundaries of this range selected representatives Pp(;’,) () and
Pp(ps,)’ p(z) are presented to provide the error bands for ny = 3, 4, 5 light flavours. The quality of this
procedure is tested through approximations of the known NNLO splitting functions, demonstrating good
convergence and providing information on the range of x for which residual uncertainties due to missing
higher Mellin moments are small.

The approximate N3LO splitting functions are valid at large-z, with the uncertainties increasing towards
smaller values of z. The FHMRUVYV results [10, 17, 18, 19] for Pq(qg)(gc) (non-singlet and pure-singlet)
and Pq(gg)(m), based on ten Mellin moments N < 20, are reliable approximations down to x ~ 10~%. The
quantities Pg(qg)(x) and Pg(j)(x), based on five Mellin moments N < 10, are reasonable approximations down
to 2 ~ 1073, Their convolution with PDFs will dampen the uncertainty at small-z, so that one gains one
additional order of magnitude on the right hand side of the evolution in Eq. (1) due to fast falling PDF's as
z — 1. The N3LO approximations to splitting functions convoluted with PDFs are, therefore, reliable in the
range 107° <2 <1 (Pq(qg)(gc)7 Pq(gg)(x)) and 1074 <z <1 (ng') (2), P;é”(l‘)% respectively. The latest results
for Pg(qg)(gc) [20], based on ten Mellin moments (N < 20), have not been used in this benchmark comparison.

3 Benchmark tables

The corresponding lower order benchmark results are available at LO and NLO in [1] and at NNLO in [2],
where LO and NLO polarized evolution has also been included. A number of minor typos have been reported
in [39, 74] and are listed here for completeness:

e In [1], table headers, the combination L, has to be defined as L, = 2(d + @).
e In [1], header of Tab. 1 a4(u? = 10* GeV?) = 0.117574, as pointed out in [2].

e In [1], Tab. 1, xs;(z = 0.5, s = 10* GeV?) = 7.3137 - 10~* for ny = 4, and zb, (z = 1077, iy =
10* GeV?) = 4.6071 - 10*! for ny = 3...5, differ in the last digit.

e In [1], Tab. 4, the value zu,(z = 0.7, us = 10* GeV?) = 2.0102 - 10~2, differs in the last digit.

e In [1], Tab. 3, the values zL_(x = 1075 yy = 10* GeV?) = 1.0121 - 10~* and zL_(z = 10", yy =
104 GeVQ) = 9.8435 - 1073, contain wrong exponents.

e In [2], Tab. 15, the values xd,(z = 10~7,uf = 10* GeV?) = 1.0699 - 10~* and zg(x = 1077,y =
104 GeVQ) = 9.9694 - 102, contain wrong exponents.



3.1 Initial conditions

The initial conditions for the reference results are taken from [1, 2] with the evolution starting at
pig = 2 GeV?, (10)
and the parametrizations of input distributions are chosen as
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where the valence distributions are defined as ¢;, = ¢; — ¢; and the value for the running coupling at the
input scale is fixed as
as(u?=2 GeV?) = 0.35 . (12)

These initial conditions are used regardless of the perturbative order of the evolution and of the ratio of the
renormalization and factorization scales, which take the values
2 _ 2 _
we = kepi ke =05, 1, 2, (13)
except for LO, where this ratio is fixed to unity.
We assume two different setups for the heavy quark treatment discussed in Section 2.2:

1. We assume a fixed number ny = 4 of quarks participating in DGLAP evolution and we refer to this
as the Fixed Flavor Number scheme (FFNS). We assume that all distributions in Eq. (11) are given
directly in this scheme and that the charm distribution vanishes at the initial scale /J%,o- Similarly, we
assume that the boundary condition of the strong coupling Eq. (12) is given in this scheme.

2. We assume a dynamic range ny = 3...5 of participating quark flavors for our Variable Flavor Number
scheme (VENS), where each quark (here charm and bottom) gets activated when the evolution scale
matches the quark mass. We assume Eqgs. (11) and (12) apply for ny = 3, such that an immediate
matching procedure is triggered at the beginning of the evolution.

3.2 Results

The benchmark values are reported in the same basis adopted in [2], and we define:
@w=q—q, L =(d—a), Ly=2(d+u), qr=q+7. (14)

In order to simplify the comparison, only NNLO matching conditions are adopted, although the N3LO
coefficients are now available in literature and implemented in the evolution tools. The evolved PDFs are
then evaluated at a final scale ,u% = 10* GeV?, which is chosen as representative for LHC processes. As a
preliminary condition to the N3LO benchmark, we have tested that the different evolution codes are able
to reproduce the NNLO benchmark tables of [2] with an accuracy of 0.01% or below. We adopt the same
notation as in the previous study and write % = x x 10°.

In Tables 1 to 5 we report the central values for the FENS aN3LO evolution for the 3 different splitting
function approximations from FHMRUVV, MSHT and NNPDF respectively. The first part of the table
refers to the central scale puy = p, while the second and the third parts refer to the scale varied results.
For MSHT we report only the values at the central scale py = p,. Taking the same splitting function
approximations from FHMRUVYV as input, Tables 1 and 2 show a comparision of the two aN3LO evolution
codes used by MSHT20 and NNPDF in the FFNS scheme at the central scale puf = p,. In the range
1075 < o £ 0.5 there is generally very good agreement between the two evolution codes, with slightly larger



Table 1: Results for the FFNS aN3LO evolution for the initial conditions and the input parton distributions

given in Sec. 3.1, with the FHMRUVYV splitting functions approximation and the MSHT20aN3LO code.

FHMRUVYV in MSHT20aN3LO n; =4, u? = 10* GeV?
T H Ty xdy xL_ o TSy TSy TCt g
u = uf
1.077 || 1.10737* | 5.3078° | 7.84407% | 1.4895%2 | -2.74097° | 7.3405%! | 7.2681F! | 1.0858*3
1.076 || 5.7851=% | 3.1908~* | 3.0969~° | 7.18901! | -4.2596~5 | 3.5094F1 | 3.4520%1 | 5.0367T2
1.07% || 2.914773 | 1.697473 | 1.2301~% | 3.38411! 7755876 | 1.6245%! | 1.5791F1 | 2.227412
1.07% || 1.365772 | 8.0056~% | 4.7181~* | 1.51751! 2.3197~* | 7.0536%° | 6.6950%° | 9.0183*!
1.073 || 5955772 | 3.437972 | 1.718473 | 6.298070 | 4.0044=* | 2.736210 | 2.4588%0 | 3.1320*!
1.072 || 2.31187! | 1.29537 | 5.744973 | 2.266510 | -2.31127* | 8.51927! | 6.6316~" | 8.15031°
1.071 || 5.5109°1 | 2.7129-1 | 1.0031~2 | 3.9000~! | -3.2796~* | 1.1381~! | 5.9754=2 | 9.0578 1
3.071 || 3.50317" | 1.3010~ | 2.971572 | 3.5600~2 | -3.82777° | 9.0840~3 | 3.3480~3 | 8.44182
5.071 || 1.2107-" | 3.150372 | 3.6016~* | 2.456273 | -3.2055=C | 5.8459~* | 1.7823~* | 8.1560~3
7.071 || 2.006872 | 3.087373 | 1.00767° | 6.384875 | -1.1067"7 | 1.3107~° | 3.9940% | 3.9250~*
9.071 || 3.5111% | 1.783475 | -5.9504~8 | 1.7816~" | -1.3937710 | 6.9228 9 | 8.6110~° | 1.2313¢

deviations observed in regions of x where PDFs are becoming very small, i.e., in the limits  — 0 (vanishing
valence PDFs) and  — 1. This very good agreement among the evolution codes provides the basis for
quantifying the aN3LO FFNS evolution, now with the splitting function approximations from MSHT20 as
input (Table 3 with MSHT20 prior and Table 4 with MSHT20 posterior) using the MSHT20 code, and for
the NNPDF approximations (Table 5) with the NNPDF code, cf. Section 2.3 for details. Due to the different
methodology in perparing those approximations, larger deviations are observed as a result of the aN3LO
evolution, especially for smaller  values, e.g., for the gluon PDF at x < 1073, when sufficient constraints on
the splitting fuction Pg(; ) (z) from Mellin moments are lacking. In essence, these deviations demonstrate the
current uncertainties inherent in the knowledge of the evolution kernels. However, these deviations would
reduce with the use of more up to date input information for each of the groups determination of the splitting
functions (particularly for the older MSHT determination).

The corresponding values for the VFENS evolution are listed in Tables 6 to 10. Tables 6 and 7 show again
very good agreement in the same x range as before between the two aN®LO evolution codes (MSHT20 and
NNPDF) with the FHMRUVYV splitting function approximations, now employing the VFNS scheme, while
Tables 8 and 9 (MSHT20 prior and posterior with the MSHT20 code) and Table 5 (NNPDF approximations
with NNPDF code) in the VFNS scheme display the same similarities and differences as observed in the
FFNS scheme.

For simplicity we only give the central values in Tables 1 to 10, while the complete set containing all
evolved PDFs with all the splitting functions variations are available under the following URL:

https://www.hep.ucl.ac.uk/pdf4lhc/aN3L0benchmarking. shtml

The benchmark numbers are illustrated in Figs. 1 to 4, where we show the absolute and relative difference
with respect to the NNLO evolution for the different aN3LO evolutions, for each PDF flavor combination,
reported in the previous tables. We display the FFNS and VFNS settings respectively with the central scale
y = pe. The figures include an estimate of the uncertainties due to the approximated splitting functions,
which is obtained by varying a single splitting function at a time during the evolution, and taking the
uncertainty, for each point in z, as 1/2 of the spread of the final PDF. The displayed FHMRUVV result
is averaged between the values obtained with the MSHT20 and NNPDF evolution codes. Since MSHT
and NNPDF parametrizations do not include uncertainties for the non-singlet combinations, errors for the
combinations d,,u,, sy and L_ have been set to 0, though the difference from different approximations
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Table 2: Results for the FFNS aN3LO evolution for the initial conditions and the input parton distributions

given in Sec. 3.1, with the FHMRUVYV splitting functions approximation and the NNPDF code.

FHMRUVYV in NNPDF n; =4, u? = 10* GeV?
T H Ty xd, xL_ L TSy TSy TCt g
W= uf
1.077 || 9.83697° | 4.51707° | 7.501176 | 1.4885%2 | -2.9106~° | 7.3353" | 7.26391! | 1.0846%3
1.076 || 5.6405=% | 3.0895~* | 3.07307° | 7.189411 | -4.67385 | 3.50961! | 3.4528%! | 5.0358*2
1.07° || 2.894673 | 1.681073 | 1.2302~* | 3.3858"1 | -3.57537¢ | 1.6253"! | 1.58031! | 2.228212
1.07% || 1.363372 | 7.98327% | 4.7274* | 1.5182+! 2.11237% | 7.05711° | 6.70051° | 9.0222!
1.07% || 5.956772 | 3.438272 | 1.723173 | 6.300710 | 3.9314* | 2.737610 | 2.46117° | 3.1336!
1.072 || 2.31307 | 1.29627! | 5.764573 | 2.266810 | -1.9644~* | 8.5223~1 | 6.6372"! | 8.153410
1.07' || 5513171 | 2.7140' | 1.008572 | 3.8981~! | -3.18127% | 1.1389~! | 5.98502 | 9.0623!
3.071 || 3.5044-1 | 1.3015! | 3.014473 | 3.5450~2 | -3.84097° | 9.101973 | 3.3625~3 | 8.4444~2
5071 || 1.211271 | 3.151872 | 3.7781~* | 2.408573 | -3.305176 | 5.9065~* | 1.8276~* | 8.15863
7.071 || 2.007772 | 3.0900~3 | 1.343775 | 5.68187° | -1.17977 | 1.4269~° | 4.9009~6 | 3.9235~*
9.071 || 3.4849=% | 1.813575 | 1.38387% | 1.0982~7 | -2.1740 10 | 4.2627—8 | 3.46288 | 1.3275°6
=2 pf
1.0°7 || 1.1400~* | 6.33017°% | 6.5066~6 | 1.4118%2 | -7.8056~6 | 6.9517+! | 6.88011! | 1.0533%3
1.07% || 5.9327% | 3.4617~* | 2.7505° | 6.9885! 6.1035~7 | 3.4090! | 3.352211 | 4.985912
1.07° || 2.90663 | 1.718672 | 1.1268* | 3.3325! 6.6447-° | 1.598671 | 1.553511 | 2.2228+2
1.07% || 1.347872 | 7.908473 | 4.4131~% | 1.5014 ! 2.36337% | 6.972310 | 6.61511° | 9.0028*!
1.073 || 5.897372 | 3.401072 | 1.644173 | 6.249479 | 2.7889~% | 2.710910 | 2.4339+0 | 3.121611
1.072 || 2.30487! | 1.29187' | 5.647373 | 2.259710 | -2.8956—* | 8.4756~! | 6.5859~1 | 8.12961°
1.07 || 5.5246~1 | 2.7213~' | 1.0081~2 | 3.9105~ ! | -2.8317~* | 1.1407~! | 5.977572 | 9.0774~!
3.071 || 3.522971 | 1.30927! | 3.031573 | 3.567672 | -3.273875 | 9.149473 | 3.36643 | 8.4779 2
5.071 || 1.22057t | 3.178572 | 3.81187% | 2.425173 | -2.81677° | 5.9294~% | 1.8094% | 8.20043
7.071 || 2.029172 | 3.12567% | 1.36047° | 5.66137° | -1.0201~7 | 1.39917° | 4.5001~6 | 3.9492*
9.071 || 3.542274 | 1.84407° | 1.4099% | 9.3900~8 | -1.914810 | 3.4475-8 | 2.6320~8 | 1.34076
py = 0.5 pif
1.077 || 4.419275 | -1.118475 | 9.049376 | 1.6657+2 | -8.7990~° | 8.2215%! | 8.1501F! | 1.1828+3
1.076 || 4.3474=4 | 1.7517-* | 3.5176° | 7.56831! | -1.8556~* | 3.69921! | 3.6425T! | 5.215012
1.07° || 2.68073 | 1.45867°% | 1.3589~* | 3.43921! | -2.3604* | 1.65211' | 1.6071F! | 2.247012
1.07% || 1.351272 | 7.83987% | 5.1075* | 1.5206! 3.94167° | 7.06997° | 6.713910 | 9.03261!
1.073 || 5.994672 | 3.468872 | 1.823172 | 6.28961° 6.1057—% | 2.733310 | 2.457210 | 3.1414F!
1.072 || 2.3195° | 1.30137! | 5.92873 | 2.26061° 1.9683~* | 8.5037"! | 6.6210~* | 8.173110
1.07! || 5.5088~1 | 2.7116~! | 1.013272 | 3.8936~' | -3.0333~* | 1.1393! | 5.998272 | 9.0498"!
3.071 || 3.4987-1 | 1.2993~! | 3.01403 | 3.548972 | -4.16827° | 9.143373 | 3.41513 | 8.43722
5.071 || 1.208871 | 3.145372 | 3.7730~% | 2.4190~2% | -3.60766 | 5.9739~* | 1.9043~* | 8.16263
7.071 || 2.003072 | 3.082473 | 1.34087° | 5.81377° | -1.24877 | 1.49677° | 5.624176 | 3.9298*
9.071 || 3.4739=% | 1.8076=° | 1.3770~8 | 1.3969~7 | -2.2060~10 | 5.758278 | 4.9611~% | 1.3299¢




Table 3: Results for the FFNS aN3LO evolution for the initial conditions and the input parton distributions

given in Sec. 3.1, with the MSHT20aN3LO prior splitting functions approximation.

MSHT20aN3LO prior ny =4, p? = 10* GeV?
x H Ty xd, xL_ L TSy TSy TCy xg
u = ui
1.077 || 1.2189~* | 6.70967° | 2.4727-6 | 5.2287*1 | -9.9201—¢ | 2.5070"! | 2.4349*+1 | 4.050812
1.07% || 5.8593~* | 3.3362% | 1.27697° | 3.4289*! | -1.9932—° | 1.6292F! | 1.5721*+! | 2.6377+2
1.07° || 2.896573 | 1.691473 | 6.8967~° | 2.1730T! 1.39587° | 1.0188*! | 9.735910 | 1.5546+2
1.07% || 1.361972 | 7.973673 | 3.4675~* | 1.2464T1 2.0204=% | 5.69721° | 5.339610 | 7.77661!
1.073 || 5.9587~2 | 3.4383~2 | 1.551373 | 6.123010° 3.7152~% | 2.648110 | 2.37101° | 3.0816*
1.072 || 2.312971 | 1.2959°1 | 5.7459—2 | 2.326519 | -2.3233—* | 8.8203~! | 6.9326~1 | 8.41071°
1.07! || 5.5130~1 | 2.7140~1 | 1.0091~2 | 3.8948~ 1 | -3.2809—* | 1.1372~! | 5.96582 | 9.0604!
3.071 || 3.50441 | 1.3015°! | 3.018273 | 3.54002 | -3.82917° | 9.086973 | 3.346373 | 8.4342~2
5071 || 1.211171 | 3.151672 | 3.7949~* | 2.39273 | -3.2067°6 | 5.85874 | 1.7784"* | 8.176073
7.071 || 2.007572 | 3.0885~3 | 1.38477° | 5.327175 | -1.1071"7 | 1.296275 | 3.5378 =6 | 3.8989—*
9.07! || 3.51257% | 1.784175 | 1.6416728 | 8.616179 | -1.3944=10 | 6.3097~° | 2.0583~°2 | 1.18586

Table 4: Results for the FFNS aN3LO evolution for the initial conditions and the input parton distributions

given in Sec. 3.1, with the MSHT20aN3LO posterior splitting functions approximation.

MSHT20aN3LO posterior ny = 4, ,u% =10* GeV?
T H Ty xd, xL_ L TSy TSy TCt xg
uy = 1t
1.077 || 1.21897% | 6.70967° | 2.472776 | 8.4227t!1 | -9.92016 | 4.1040%! | 4.0322*! | 7.1749+2
1.076 || 5.859374 | 3.33627% | 1.27697° | 4.4674%' | -1.993275 | 2.1485%! | 2.09157! | 3.693112
1.075 || 2.896573 | 1.691473 | 6.8967° | 2.3876%! 1.39587° | 1.1261*1! | 1.0810%" | 1.8224%2
1.07% || 1.361972 | 7.973673 | 3.4675"% | 1.2426T! 2.02047% | 5.678470 | 5.321210 | 8.1561 !
1.073 || 5.958772 | 3.438372 | 1.551373 | 5.9728%0 | 3.7152* | 2.57301°0 | 2.29607° | 3.0671+!
1.072 || 2.312971 | 1.295971 | 5.745973 | 2.327310 | -2.32337% | 8.8244~' | 6.9366~! | 8.3365™°
1.07 || 5.51307" | 2.71407" | 1.0091~2 | 3.9002~! | -3.2809~* | 1.13997! | 5.99262 | 9.0673!
3.0°! || 3.50447" | 1.3015~' | 3.018273 | 3.5367"2 | -3.82917° | 9.07073 | 3.330073 | 8.431572
5.071 || 1.211171 | 3.151672 | 3.7949—* | 2.39993 | -3.2067-C¢ | 5.8951* | 1.8148~* | 8.1793~3
7.071 || 2.007572 | 3.088573 | 1.38477° | 5.254475 | -1.107177 | 1.259875 | 3.175276 | 3.8961~*
9.0"! || 3.51257* | 1.784175 | 1.641678 | -1.934279 | -1.3944~10 | 1.034579 | -3.20717° | 1.1788°6




Table 5: Results for the FFNS aN3LO evolution for the initial conditions and the input parton distributions
given in Sec. 3.1, with the NNPDF splitting functions approximation.

NNPDF njy =4, pf = 10* GeV?
T H Ty xd, xL_ L TSy TSy TCt g
pr =i
1.077 || 9.17117% | 4.15207° | 6.345576 | 1.3633%2 | -2.91347° | 6.7094! | 6.6379"! | 9.907412
1.076 || 5.4825~% | 3.0047% | 2.8366~° | 6.8193T1 | -4.6755"° | 3.32451! | 3.2678%T1 | 4.766012
1.075 || 2.865372 | 1.6659—2 | 1.1996—* | 3.3061*F! | -3.5228 6 | 1.5855%! | 1.5404F1 | 2.171212
1.07% || 1.360572 | 7.97053 | 4.7399—% | 1.5100! 2.1129% | 7.01621° | 6.65967° | 8.9608*1
1.073 || 5.960172 | 3.440372 | 1.7396—3 | 6.3082T0 3.9309~% | 2.7415%0 | 2.465079 | 3.1379*H1
1.072 || 2.313571 | 1.29647! | 5.780573 | 2.268210 | -1.9645"* | 8.5296~ ! | 6.6444~! | 8.165010
1.071 || 5.5130~1 | 2.7140~1 | 1.008472 | 3.8980~! | -3.1812~* | 1.1388~! | 5.98472 | 9.0618 !
3.071 || 3.5044~1 | 1.3015! | 3.014473 | 3.5451~2 | -3.8409° | 9.102073 | 3.3626~3 | 8.44452
5071 || 1.211271 | 3.151872 | 3.7782* | 2.408573 | -3.30517% | 5.9064=* | 1.8275~* | 8.15873
7.071 || 2.007772 | 3.090073 | 1.34387° | 5.6818 5 | -1.1797"7 | 1.426975 | 4.90126 | 3.9230%
9.071 || 3.4849% | 1.81357% | 1.387778 | 1.09777 | -2.1739710 | 4.263178 | 3.4632—% | 1.3315¢
2 2
Py =2 pi
1.077 || 1.1006~% | 6.114375 | 5.8224=6 | 1.3396%2 | -7.81737% | 6.59051! | 6.518971 | 9.9727+2
1.076 || 5.8391~% | 3.41157% | 2.610375 | 6.7757 1! 6.111977 | 3.30261! | 3.2458%! | 4.825012
1.075 || 2.889173 | 1.709673 | 1.1086~% | 3.2868*! 6.648275 | 1.575711 | 1.5306%! | 2.1888%2
1.07% || 1.346172 | 7.900873 | 4.4203~% | 1.4967! 2.3636~% | 6.948710 | 6.59167° | 8.965711
1.073 || 5.899372 | 3.402272 | 1.6540~3 | 6.253710 2.7886—* | 2.713119 | 2.436110 | 3.12411!
1.072 || 2.305171 | 1.29197! | 5.656973 | 2.2605T° | -2.8957—* | 8.4798~1 | 6.5901"! | 8.13661°
1.071 || 5.5246= | 2.72137! | 1.0080~2 | 3.9105~! | -2.8317~* | 1.1407~1 | 5.977372 | 9.0772~1
3.071 || 3.5229=1 | 1.30927! | 3.031573 | 3.567672 | -3.27387° | 9.149573 | 3.36653 | 8.47802
501 | 1.220571 | 3.178572 | 3.8118* | 2.4251—3 | -2.8167% | 5.9293—* | 1.8093~* | 8.20053
7.071 | 2.029172 | 3.125673 | 1.36047° | 5.66127° | -1.0201~7 | 1.3991~° | 4.5003~6 | 3.9489~¢
9.071 || 3.54227% | 1.844075 | 1.412278 | 9.3870~8 | -1.9148710 | 3.447878 | 2.632378 | 1.3434°6
2 2
My = 05 Mf
1.077 || 3.13617° | -1.82327% | 6.821276 | 1.4192*+2 | -8.8075° | 6.9888%! | 6.9175T! | 1.004013
1.076 || 4.0428=% | 1.5878 % | 3.06187° | 6.83361! | -1.8570% | 3.3318%! | 3.2752%! | 4.699212
1.075 || 2.624373 | 1.429573 | 1.3000~% | 3.28011! | -2.3602~% | 1.5726%! | 1.5276%! | 2.138112
1.07% || 1.345872 | 7.815573 | 5.1314~* | 1.5042%t1 3.961175 | 6.987810 | 6.631910 | 8.9170T!
1.073 || 6.001172 | 3.472872 | 1.8548~2 | 6.3047T0 6.1053=% | 2.740910 | 2.4648%0 | 3.1498+1
1.072 || 2.3206~1 | 1.30187! | 5.959373 | 2.263410 1.968174 | 8.518271 | 6.6355~! | 8.1950™0
1.071 || 5.508771 | 2.7116~t | 1.01302 | 3.8935~! | -3.0333~% | 1.1393~! | 5.9975~2 | 9.0489~1
3.071 || 3.4987-1 | 1.299371 | 3.014073 | 3.548972 | -4.16827° | 9.143673 | 3.415473 | 8.43752
5.071 || 1.2088~1 | 3.145372 | 3.7731~* | 2.418973 | -3.6076"° | 5.9738% | 1.9041* | 8.1628 3
7.071 || 2.003072 | 3.082473 | 1.34097° | 5.813575 | -1.2487"7 | 1.49675 | 5.6246=6 | 3.9290—*
9.071 || 3.47397% | 1.807675 | 1.38447% | 1.3960~7 | -2.2058 10 | 5.7593—8 | 4.9622~8 | 1.3364~6
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Figure 1: Absolute difference of the aN3LO evolution with respect to the NNLO, for the initial conditions and
the input parton distributions given in Sec. 3.1 with the FFNS settings. We display results for FHMRUVV
(blue), MSHT prior (orange), MSHT posterior (green) and NNPDF (red) approximations. The displayed
FHMRUVYV result is averaged between the values ofltiie MSHT20 and NNPDF evolution code.
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Figure 2: Same as Fig. 1, but now displaying the relative difference with respect to the NNLO evolution.

12



Absolute difference to NNLO, VENS, u? =10* GeV?

0.0010 - >
0.0006 -
0.0005 - 0.0004 -
0.0002 -
0.0000
= =
3 =5 0.0000
~0.0005 -
~0.0002 -
~0.0010 - ~0.0004 -
~0.0006 - =
0.0015 Ft S 0 d e
107 104 103 102 10! 100 105 104 103 102 10! 100
x T
>
0.00020 -

0.00015 -

S
|

g 0-00010 -

I” 0.00005 -~
~

0.00000
>
—0.00005 -~
T T T T

X FHMRUVV
—60 §  MSHT (prior)
Y MSHT (posterior)
—8or ¥ NNPDF
T i ST e (o T/ e T
x T
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Table 6: Results for the VENS aN?LO evolution for the initial conditions and the input parton distributions

given in Sec. 3.1, with the FHMRUVYV splitting functions approximation and the MSHT20aN3LO code.

FHMRUVYV in MSHT20aN3LO, n; =3...5, uf = 10* GeV?
x H Ty xd, xL_ xLy TSy TCq xby xg
u = uf
1.077 || 1.16397% | 5.56307° | 8.33967% | 1.5915%2 | 7.8505%" | 7.6906%! | 6.4245%! | 1.0973%3
1.076 || 6.0389~% | 3.3257~* | 3.26927° | 7.615311 | 3.7227F! | 3.60621! | 2.962511 | 5.054412
1.07° || 3.018373 | 1.75633 | 1.28727* | 3.5490! | 1.7071+! | 1.6248%! | 1.3056T! | 2.217512
1.07% || 1.40242 | 8.21587% | 4.8879~* | 1.57241! | 7.3290%0 | 6.775570 | 5.276610 | 8.8931+!
1.073 || 6.063672 | 3.497672 | 1.759673 | 6.43081C0 | 2.8038%0 | 2.456710 | 1.820410 | 3.0517+!
1.072 || 2.33257! | 1.30557 ! | 5.802673 | 2.275210 | 8.5774~1 | 6.6785" 1 | 4.51727! | 7.81607°
1.071 || 5.48761 | 2.6967~1 | 9.948373 | 3.8453~! | 1.12197! | 6.45462 | 3.7236"2 | 8.5051 1
3.071 || 3447271 | 1.277271 | 2.902473 | 3.470672 | 8.842273 | 4.049573 | 2.109573 | 7.867172
5.071 || 1.1798~" | 3.061572 | 3.4653~* | 2.378973 | 5.6438~* | 2.4370~* | 1.2144* | 7.62523
7.071 || 1.933572 | 2.965473 | 9.247376 | 6.2100° | 1.25487° | 5.990276 | 2.97546 | 3.7046~*
9.07! || 3.3148* | 1.67827° | -6.338278 | 1.8337"7 | 6.28927° | 8.47637Y | 3.5330° | 1.1753¢

(which is largely at small z) can be regarded as a measure of the uncertainty. This is generally very small on
an absolute scale due to the smallness of the corresponding non-singlet flavor combinations. Figs. 1 and 2 for
the evolution in the FFNS scheme show that all the N?LO approximations provide consistent results in the
data region of > 1073, with at most few percent differences relative to NNLO and often less for most PDF
flavor combinations, whilst absolute differences are smaller still. There are some remaining differences in the
small-z region where the uncertainties of the individual approximations also grow due to unknown small-z
logarithms and so the theoretical uncertainties are larger. Thus in the kinematic range of the LHC, the
benchmark numbers for the aN3LO evolution demonstrate good perturbative convergence and a significant
reduction of the residual theoretical uncertainty. Hence, they should be sufficient for most collider-physics
applications. Similar findings are observed in Figs. 3 and 4 for the evolution in the VFNS scheme.

As a final study, in order to check the stability of the DGLAP kernels at different QCD orders, we
investigate the effect of different DGLAP solution methods [41], called ezact and truncated, which differ by
the inclusion of higher order terms. The former is utilised by MSHT in their z-space implementation and
the latter by NNPDF in their Mellin space implementation. In the NNPDF code either method of solution
is implemented and we utilise this to compare the impact of this difference. From Fig. 5 we observe that,
as higher orders in the splitting functions are included the difference between the different solution methods
is smaller, indicating a good perturbative convergence. This is visible both for non-singlet like distributions
(L™) and singlet-like (LT and g).

4 Conclusions and Outlook

The study has shown excellent agreement between MSHT and NNPDF evolution when exactly the same
versions of the N3LO splitting functions are used. In addition, it is observed that the differences for z > 1073
are very small when the distinct original estimates used in [43] and [46] are used. Moreover, the origin of the
small differences in this region, and larger ones for smaller x is well understood in terms of differences in the
approximate splitting functions. Hence, the study has been a success in this regard. Furthermore, we can
see in Fig. 5 that there is also good convergence in the difference between the exact DGLAP evolution and
the truncated solution method as the order of the equation used increases, and specifically that at N3LO this
is also small fractions of a percent except at very small x or in very small non-singlet quark combinations.
Thus, overall, we can have high confidence in our precision in PDF evolution at N3LO. However, there are
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Table 7: Results for the VENS aN?LO evolution for the initial conditions and the input parton distributions
given in Sec. 3.1, with the FHMRUVYV splitting functions approximation and the NNPDF code.

FHMRUVYV in NNPDF, ny =3...5, u2 = 10* GeV?

x H Ty xd, xL_ xLy TSy Ty xby g

g = i

1.077 || 1.034774 | 4.72967° | 7.986976 | 1.5846%2 | 7.8162%! | 7.65757 | 6.3898+! | 1.0941%3
1.076 || 5.8850=% | 3.2158~* | 3.2458 5 | 7.5933%1 | 3.7117%! | 3.5959*+1 | 2.951111 | 5.047512
1.07% || 2.996373 | 1.738073 | 1.28787% | 3.5427+! | 1.7039*! | 1.6221+! | 1.3021+! | 2.216912
1.07% || 1.399872 | 8.190873 | 4.8992=% | 1.5705%" | 7.32011° | 6.768810 | 5.266610 | 8.8942+1
1.073 || 6.065172 | 3.4981~2 | 1.765173 | 6.42691°0 | 2.80207° | 2.455910 | 1.818310 | 3.0527*!
1.072 || 2.333971 | 1.30657" | 5.824873 | 2.274410 | 8.5749~1 | 6.6796"" | 4.5145~! | 7.8173%0
1.0~ || 5.49007! | 2.6978~! | 1.000772 | 3.84257! | 1.12257' | 6.465872 | 3.727472 | 8.5068 !
3.071 || 3.4485~1 | 1.27767! | 2.949173 | 3.452272 | 8.851772 | 4.060173 | 2.115073 | 7.8667 2
5.071 || 1.18037 ' | 3.062972 | 3.65637* | 2.317673 | 5.6611~* | 2.4371~* | 1.2203~* | 7.6246~3
7.071 || 1.934472 | 2.968373 | 1.28397° | 5.247175 | 1.27497° | 5.980176 | 3.08477% | 3.7020~*
9.07! || 3.29557* | 1.72327° | 1.0350~8 | 5.5700% | 1.989378 | 1.441878 | 7.7074° | 1.2669°

py =2 pi

1.077 || 1.1909% | 6.59707° | 6.874176 | 1.4822+2 | 7.30361! | 7.1713" | 6.09171! | 1.0484%3
1.07% || 6.1538=% | 3.5855~% | 2.8837° | 7.2880*"! | 3.55891! | 3.4609"! | 2.87971! | 4.938012
1.075 || 2.993573 | 1.768573 | 1.1716™% | 3.4488%1 | 1.6568T! | 1.586111 | 1.2847+1 | 2.18912
1.07* || 1.378072 | 8.080673 | 4.5472~* | 1.53981 | 7.16501° | 6.672270 | 5.210810 | 8.8043!
1.072 || 598552 | 3.449572 | 1.6768 3 | 6.339610 | 2.757010 | 2431570 | 1.799110 | 3.02541!
1.072 || 2.321671 | 1.30017! | 5.693873 | 2.26397° | 8.5089"! | 6.6127~ ! | 4.4740~1 | 7.784510
1.071 || 55058~ | 2.7082~! | 1.001872 | 3.8658 ' | 1.1275~! | 6.30452 | 3.7010"2 | 8.5589!
3.071 || 3.477971 | 1.2900~! | 2.978973 | 3.493572 | 8.95143 | 3.848473 | 2.0908 3 | 7.9589 2
5.071 || 1.1956=" | 3.106872 | 3.7136~* | 2.353172 | 5.7380~* | 2.2346~* | 1.1959~* | 7.73313
7.071 || 1.970072 | 3.027473 | 1.31207° | 5.32887° | 1.2861° | 5.255076 | 2.9616 ¢ | 3.7634~*
9.0 || 3.3899"*4 | 1.77357% | 1.07797% | 5.39178 | 1.86488 | 1.25988 | 6.84017° | 1.2945°6

p; = 0.5 pf

1.077 || 4.554975 | -1.371875 | 9.7980~% | 1.8191%2 | 8.9889F! | 8.7771+! | 7.1481+! | 1.2220*3
1.076 || 4.5429=% | 1.7961~* | 3.773175 | 8.175411 | 4.0029*" | 3.8512*+' | 3.11461! | 5.337012
1.07° || 2.792173 | 1.513273 | 1.4423~* | 3.6683*T | 1.76691! | 1.66271! | 1.3311F1 | 2.275412
1.07% || 1.396972 | 8.095473 | 5.3559~% | 1.59671! | 7.4522%0 | 6.782810 | 5.327310 | 9.0292*!
1.073 || 6.137572 | 3.548872 | 1.884573 | 6.475310 | 2.8278%0 | 2.4397+0 | 1.838110 | 3.0881*!
1.072 || 2.347771 | 1.3154-1 | 6.018873 | 2.272810 | 8.5849~1 | 6.6835~1 | 4.5573~! | 7.8549%0
1.071 || 5.4786=1 | 2.6903~' | 1.003272 | 3.8184~1 | 1.1169~" | 6.78832 | 3.759272 | 8.4316~"
3.071 || 3.4245~1 | 1.26767! | 2.927473 | 3.423372 | 8.800373 | 4.551673 | 2.1528 3 | 7.7581 2
5.0 || 1.167771 | 3.027072 | 3.61117* | 2.294973 | 5.6319™* | 2.8913~* | 1.2584* | 7.513973
7.071 || 1.905572 | 2.920473 | 1.26157° | 5.19447° | 1.27347° | 7.41687% | 3.2604=6 | 3.6473~*
9.0~ || 3.2199~* | 1.68327° | 9.9709~9 | 5.9105=% | 2.1920~% | 1.7299-8 | 8.90149 | 1.2443~F¢
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Table 8 Results for the VFNS aN3LO evolution for the initial conditions and the input parton distributions

given in Sec. 3.1, with the MSHT20aN3LO prior splitting functions approximation.

MSHT20aN3LO prior, ny =3...5, pu? = 10* GeV?
T H Ty xd, xL_ L TSy xey xby xg
u = ui
1.077 || 1.2800~* | 7.031275 | 2.692376 | 5.48167" | 2.6337+! | 2.4743%! | 2.1448*F! | 3.956712
1.076 || 6.1135~* | 3.4762=* | 1.37057° | 3.5854*F1 | 1.70761" | 1.5914F! | 1.4042*+! | 2.595612
1.07° || 2.998773 | 1.74963 | 7.28607° | 2.2642*1 | 1.06461! | 9.82507° | 8.535610 | 1.53462
1.07% || 1.398472 | 8.182573 | 3.6107* | 1.2894*"! | 5.913510 | 5.36080 | 4.429610 | 7.65351!
1.072 || 6.067172 | 3.498272 | 1.5927—3 | 6.257710 | 2.71671° | 2.36997° | 1.796110 | 3.0052!
1.072 || 2.33381 | 1.3062"" | 5.810572 | 2.337570 | 8.8903~! | 6.9912~! | 4.6967 ! | 8.07541°
1.071 || 54900~ | 2.6978' | 1.0014~2 | 3.8396~" | 1.1210~! | 6.4442-2 | 3.7165"2 | 8.5071 !
3.071 || 3.448771 | 1.277771 | 2.953273 | 3.448972 | 8.845373 | 4.047873 | 2.10957 3 | 7.85982
5.071 || 1.18037 ! | 3.062872 | 3.67367* | 2.310473 | 5.6565~* | 2.43267* | 1.2147* | 7.644573
7.071 || 1.934372 | 2.9667 3 | 1.32597° | 5.08797° | 1.2404~° | 5.52906 | 2.83637° | 3.6793*
9.071 || 3.31627* | 1.6789~° | 1.57578 | 6.7806~° | 5.6859? | 1.88319 | 1.7371~° | 1.1316~6

Table 9: Results for the VFNS aN3LO evolution for the initial conditions and the input parton distributions

given in Sec. 3.1, with the MSHT20aN3LO posterior splitting functions approximation.

MSHT20aN3LO posterior, ny =3...5, ufz =10* GeV?
x H Ty xd, xL_ Ly TSy req xby xg
uy = 1t
1.077 || 1.2800~* | 7.03127° | 2.692376 | 8.95331! | 4.36951! | 4.2104+' | 3.7572+1 | 7.196512
1.076 || 6.11357% | 3.47627* | 1.37057° | 4.69461! | 2.2622%' | 2.1462+! | 1.9346%! | 3.6755T2
1.07° || 2.998773 | 1.749673 | 7.28607° | 2.48661! | 1.1758T! | 1.0938%! | 9.767910 | 1.803372
1.07% || 1.398472 | 8.182573 | 3.6107 % | 1.2832%! | 5.8825%0 | 5.330310 | 4.54201° | 8.0208*!
1.073 || 6.06712 | 3.498272 | 1.59273 | 6.099210 | 2.637410 | 2.290810 | 1.768710 | 2.9886"!
1.072 || 2333871 | 1.3062~! | 5.8105% | 2.339010 | 8.8977~! | 6.9985"1 | 4.6773~! | 8.00411°
1.0~1 || 549001 | 2.6978~! | 1.0014~2 | 3.8449~! | 1.1236°! | 6.471172 | 3.724072 | 8.5137!
3.071 || 3.448771 | 1.277771 | 2.953273 | 3.445772 | 8.829173 | 4.03167% | 2.105473 | 7.857372
5.071 || 1.180371 | 3.0628 2 | 3.6736* | 2.31777% | 5.69337% | 2.4693~* | 1.22367* | 7.647873
7.071 || 1.934372 | 2.9667 2 | 1.32597° | 5.01417° | 1.2035° | 5.1605°6 | 2.7464° 6 | 3.67654
9.071 || 3.31627* | 1.6789~° | 1.5757"% | -3.6339~Y | 4.78667 10 | -3.315279 | 4.9166— 10 | 1.1249~F
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Table 10: Results for the VFNS aN?LO evolution for the initial conditions and the input parton distributions
given in Sec. 3.1, with the NNPDF splitting functions approximation.

NNPDF, n; =3...5, u? = 10* GeV*?

x H Ty xd, xL_ xLy TSy Ty xby g

g = i

1.077 || 9.634475 | 4.33937° | 6.772776 | 1.4525%2 | 7.1554%1 | 6.9967+! | 5.8515%! | 1.000173
1.07% || 5.71677* | 3.1255=% | 3.0007~° | 7.2074*! | 3.5187*+! | 3.4029t! | 2.7983F! | 4.780912
1.07% || 2.965373 | 1.722073 | 1.2572~% | 3.4609+! | 1.6630F! | 1.5812+1 | 1.2709+! | 2.161672
1.07% || 1.396972 | 8.177673 | 4.9163=* | 1.56241" | 7.2793%0 | 6.728010 | 5.237110 | 8.8369*"
1.073 || 6.068772 | 3.500372 | 1.782973 | 6.4348%0 | 2.80607° | 2.4600%° | 1.821410 | 3.0571*!
1.072 || 2.334571 | 1.30687 ' | 5.841473 | 2.275710 | 8.582271 | 6.6869" " | 4.5199~! | 7.8282%0
1.07! || 5.4900~! | 2.6978"! | 1.000772 | 3.8424~1 | 1.1224"! | 6.465472 | 3.727272 | 8.5064!
3.071 || 3.4485~1 | 1.27767! | 2.949173 | 3.452272 | 8.851873 | 4.060273 | 2.115173 | 7.86682
5.071 || 1.1803~1 | 3.062972 | 3.6564~* | 2.317673 | 5.6610~* | 2.4370~* | 1.2202~* | 7.62473
7.071 || 1.934472 | 2.968373 | 1.28407° | 5.24707° | 1.27497° | 5.9804~6 | 3.0846% | 3.7016~*
9.07! || 3.29557* | 1.72327° | 1.038378 | 5.5649% | 1.989578 | 1.4420~8 | 7.7216° | 1.2702¢

py =2 pi

1.077 || 1.14887* | 6.36697° | 6.159776 | 1.407272 | 6.9288%1 | 6.7964T | 5.7807! | 9.9296"2
1.076 || 6.05427% | 3.53217* | 2739475 | 7.0695T! | 3.4496"! | 3.3517T! | 2.7917T! | 4.7808"2
1.07° | 2.97507% | 1.75907% | 1.1536~* | 3.4025T! | 1.6337+! | 1.5629 | 1.2667" | 2.1563 "2
1.07* || 1.376372 | 8.07277% | 4.5575~* | 1.5351T! | 7.1417%0 | 6.64907° | 5.193810 | 8.7698"
1072 || 5.987772 | 3.45087% | 1.687473 | 6.344170 | 2.7592%0 | 2.4338%0 | 1.80091° | 3.0279""
1.072 | 2.32197" | 1.30027" | 5703773 | 2.264710 | 8.51307" | 6.6169" | 4.4771"" | 7.7911%°
1.07! || 5505871 | 2.70827% | 1.001772 | 3.8658 ! | 1.12757! | 6.304372 | 3.70087% | 8.5586
3.071 || 3477971 | 1.29007' | 2.97897% | 3.493672 | 8.951473 | 3.848573 | 2.090972 | 7.95902
5071 || 1.19567* | 3.106872 | 3.7137~* | 2353073 | 5.7380~* | 2.2346~* | 1.19587* | 7.733273
7.0 || 1970072 | 3.027473 | 1.31207° | 5.32877° | 1.28617° | 5.25527¢ | 2.96167° | 3.7631*
9.07" || 3.3899"* | 1.77357° | 1.0800® | 5.3886"% | 1.8649® | 1.2599°% | 6.8475"° | 1.2968~°

p; = 0.5 pf

1.077 || 3.15617° | -2.140175 | 7.4030~% | 1.5487+2 | 7.6366T! | 7.4248%! | 6.06921' | 1.0369+3
1.076 || 4.21257% | 1.6183~% | 3.2809275 | 7.3820%! | 3.6062T! | 3.454571 | 2.80651! | 4.812212
1.075 || 2731573 | 1.481973 | 1.3816™% | 3.4999+1 | 1.6827%! | 1.5785T1 | 1.267911 | 2.167212
1.07* || 1.391172 | 8.0700~3 | 5.3883~* | 1.5800"! | 7.36861° | 6.699270 | 5.267710 | 8.9197+!
1.073 || 6.144672 | 3.553172 | 1.919173 | 6.491710 | 2.836110 | 2.448010 | 1.844410 | 3.0971+1
1.072 || 2.3480~ | 1.3159~! | 6.051273 | 2.275610 | 8.5998 ! | 6.6984 1 | 4.5683~! | 7.875810
1.071 || 54786~ | 2.6903~! | 1.0031~2 | 3.8183~' | 1.1168"! | 6.7876~2 | 3.75872 | 8.4307!
3.071 || 3.424571 | 1.267671 | 2.927573 | 3.423472 | 8.8006 3 | 4.5518 3 | 2.1530~3 | 7.7584 2
5.071 || 1.167771 | 3.027072 | 3.61127* | 2.20483 | 5.6318~* | 2.8912~* | 1.2583~% | 7.51413
7.071 || 1.905572 | 2.920473 | 1.26167° | 5.19427° | 1.27357° | 7.41747% | 3.26037° | 3.6466~*
9.0~ || 3.2199~* | 1.68327° | 1.003378 | 5.9017~% | 2.1925=% | 1.7304~8 | 8.93399 | 1.2496¢
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Figure 5: Relative difference in percent between the exact and truncated solutiong of the DGLAP evolution
at different pertubative orders. We adopt the same evolution and boundary condition as in the benchmark
exercise and display the result for the non-singlet quark combinations L=, L™ and the gluon g.
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obvious further avenues for exploration.

As mentioned in Section 2.2, the O(a3) versions of the OMEs for transition across heavy flavour transition
points are now complete [27, 29, 30, 35, 75, 76, 77, 78, 79, 80], though the final parts only became available
while our study was already well underway. Also, not all parts are currently in an easily usable form. Hence
we only included the transition matrix elements up to O(a%), i.e. NNLO in this study. In the future we can
consider the effects of improving upon this.

There are also effects of additional information [14, 17, 18, 19], such as moments, computed since the
original MSHT estimates of the splitting functions. We have studied the effect of the benchmark evolution
of MSHT including instead the FHMRUVV determination of the splitting functions, but it would be of at
least as much interest to examine the effect of this update in a full PDF fit. Indeed, MSHT have preliminary
results [81] which show changes mainly in the gluon distribution, but remaining within the uncertainty band
of the original MSHT determination. These bring the change in the MSHT aN3LO gluon compared to that
at NNLO somewhat closer to that observed by NNPDF, which also observes a dip in the gluon around
x ~ 0.01 but of reduced magnitude. To be explicit the change in the dip at = ~ 0.01 is reduced by about
1.5%. Finally very recently additional moments for Py, were determined in [20], these are therefore included
in neither of the PDF groups approximations and so it would be interesting to see the effect on the PDFs,
and corresponding improvements in agreement. As such, the level of variation in N3LO evolution illustrated
in Figs. 1 to 4 is very much an upper estimate, which will be reduced when all up to date information which
can be used to estimate N®LO splitting functions now available is used by all groups. Uncertainties from
other sources, e.g. limitations in the precision of cross sections to use together with N3LO evolution in PDF
extractions, is a possible study for the future. In addition, there are also methodological differences in the
implementation of the associated theoretical uncertainties.

However, given that the results in this report already show a good level of convergence in the most
important regions for N°LO PDF evolution phenomenological studies, we can conclude that at least as far
as an understanding of this evolution is concerned, we are reaching a point where relevant uncertainties are
very small and are estimated reliably.
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