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Leveraging scattering information to describe binary systems in generic orbits requires identifying local

and nonlocal in time tail effects. We report here the derivation of the universal (nonspinning) local in time

conservative dynamics at fourth post-Minkowskian order, i.e., OðG4Þ. This is achtieved by computing the

nonlocal-in-time contribution to the deflection angle, and removing it from the full conservative value in

[C. Dlapa et al., Phys. Rev. Lett. 128, 161104 (2022).; C. Dlapa et al., Phys. Rev. Lett. 130, 101401

(2023).]. Unlike the total result, the integration problem involves two scales—velocity and mass ratio—and

features multiple polylogarithms, complete elliptic and iterated elliptic integrals, notably in the mass ratio.

We reconstruct the local radial action, center-of-mass momentum and Hamiltonian, as well as the exact

logarithmic-dependent part(s), all valid for generic orbits. We incorporate the remaining nonlocal terms for

ellipticlike motion to sixth post-Newtonian order. The combined Hamiltonian is in perfect agreement in the

overlap with the post-Newtonian state of the art. The results presented here provide the most accurate

description of gravitationally bound binaries harnessing scattering data to date, readily applicable to

waveform modeling.

DOI: 10.1103/PhysRevLett.132.221401

Introduction.—Motivated by the impending era of

high-precision gravitational-wave (GW) astronomy with

observatories such as LISA [1], the Einstein telescope [2]

and the Cosmic Explorer [3], and the incredibly rich amount

of information expected from compact binary sources [4–9],

the (long dormant [10]) post-Minkowskian (PM) expan-

sion in general relativity—entailing a perturbative series in

G (Newton’s constant) but to all orders in the relative

velocity—has experienced a resurgence in recent years,

e.g., [11–46]. This is, in part, thanks to the repurposing of

modern integration techniques from collider physics (see

Refs. [42,44] and references therein), which have led to a

plethora of new results. Notably, using worldline effective

field theory (EFT) methodologies [47–51], the rapidly

evolving state of the art includes the total relativistic

impulse (yielding the scattering angle and emitted GW

flux) of nonspinning [11,12] and spinning [39,40] bodies

to OðG4Þ, akin of a “three-loop” calculation in particle

physics, as well as partial results in the conservative sector

at 5PM [46].

The derivations in [11,12], together with a (Firsov-

type [52,53]) resummation scheme [21,22], have led to

an unprecedented agreement between analytic results and

numerical simulations [54–56], paving the way to more

accurate waveform models for hyperbolic encounters.

However, due to nonlocal in time effects [57,58], unbound

results cannot be used to describe generic ellipticlike

motion (away from the large-eccentricity limit [11]). As

shown in [23], the binding energy for quasicircular orbits

obtained from scattering results [via the “boundary-to-

bound” (B2B) analytically continuation [21,22] ] does not

reproduce—other than logarithms—the known post-

Newtonian (PN) values [57–61] (see also [62]). Hence,

to fully harness the power of scattering calculations, a

separation between local and nonlocal in time effects was

thus imperative. In this Letter we report the derivation of

the universal (nonspinning) local in time conservative

dynamics of binary systems at OðG4Þ. This is obtained

via a direct computation of the nonlocal-in-time contribu-

tion to the scattering angle. Following [23,63], the calcu-

lation entails an integral over the energy spectrum times the

logarithm of the center-of-mass GW frequency. To solve

the integration problem, we implement the methodology of

differential equations, already used in [11,12]. However,

unlike the total impulse, which obeys a simple (power-law)

mass scaling [16,21], isolating (non)local effects in a gauge-

invariant fashion entails dealingwith two relevant scales: the

velocity and mass ratio. Despite the complexity of the two-

scale problem, we find that it can be factorized into solving

two second-order Picard-Fuchs (PF) equations. The non-

local part of the angle features multiple polylogarithms
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(MPLs), complete elliptic integrals, and integrations thereof.

We find agreement in the overlap with the 6PN values

in [63].

We derive the local in time contribution to the

conservative scattering angle by removing the (unbound)

nonlocal terms from the total result in [11,12]. The local

radial action follows directly via the B2B map [21–23].

Using the relations in [21,22], we reconstruct the universal

local-in-time center-of-mass momentum and Hamiltonian

in isotropic gauge, together with the complete logarithmic

dependence, all applicable to generic motion. We also

provide—for all practical purposes—results expanded to

30 orders in the (symmetric) mass ratio and all orders in the

velocity (with an error beyond 30PN). To incorporate the

remaining (nonlogarithmic) nonlocal part of the bound

dynamics, we adapt to our isotropic gauge the values

obtained in [63] to 6PN order. The combined Hamiltonian

at OðG4Þ perfectly matches in the overlap with the state of

the art in PN theory [62–64]. The results presented here can

be directly inputed onto waveform models for gravitation-

ally bound eccentric orbits, potentially increasing their

accuracy by incorporating an infinite tower of (local in

time) velocity corrections.

(Non)local in time tail effects.—The scattering of the

emitted radiation off of the binary’s gravitational poten-

tial, or “tail effect,” enters in the 4PM conservative

dynamics both through local as well as nonlocal in time

interactions [57–61]. Because of this, although an effec-

tively local description is possible to any order [11,12],

the coefficients of the radial action (or Hamiltonian)

depend on the type of motion, and therefore are not

related via analytic continuation for generic orbits. Our

strategy is to identify the local and nonlocal in time parts

of Sr, the total radial action. Because of the structure of

tail effects [23,57,58], the nonlocal in time tail terms can

be shown to take the gauge-invariant form

S
ðnlocÞ
r ¼ −

GE

2π

Z

ω

dE

dω
log

�

4ω2

μ2
e2γE

�

; ð1Þ

where
R

ω≡

Rþ∞

−∞
ðdω=2πÞ, E and ðdE=dωÞ are the total

(incoming) energy and emitted GW spectrum in the

center-of-mass frame. The “renormalization scale” μ,

which cancels against a similar term in the local in time

part [11,34,58], can be arbitrarily chosen. The factor of

4e2γE (with γE Euler’s constant) follows the PN con-

ventions [57,58]. An explicit derivation of (1) in the

context of the PM expansion can be found in [23], see

also [63] for a discussion in the PN regime. For unbound

motion, the scattering angle is given by ðχ=2πÞ ¼ −∂jIr,

with Ir ≡ ðSr=GM
2νÞ and j≡ ðJ=GM2νÞ the (reduced)

radial action and angular momentum, and M ¼ m1 þm2,

q ¼ m2=m1 (m2 ≤ m1), ν ¼ m1m2=M
2 the total mass,

mass ratio, and symmetric mass ratio, respectively. We

split the PM coefficients of the deflection angle in impact

parameter space as

χ

2
¼

X

n¼1

�

χ
ðnÞ
b þ χ

ðnÞ log
b log

μb

Γ

��

GM

b

�

n

; ð2Þ

where γ ≡ u1 · u2 (using the mostly negative metric

convention), u1;2 the incoming velocities, and

Γ≡ E=M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2νðγ − 1Þ
p

. (The reader should keep

in mind that logarithms of the velocity may still appear in

both coefficients.) In the rest of the Letter we choose μ≡

1=GM for the renormalization scale.

Integrand construction.—Because of the overall factor

of G in (1), it is sufficient to construct the integrand to

OðG3Þ. Using the results in [33], and multiplying by a

factor of ð2eγEk · ucomÞ2ϵ̃, with k ¼ ðω; kÞ the (on-shell)

radiated momentum, and ucom ≡ ðm1u1 þm2u2Þ=E the

center-of-mass velocity, we readily derive a covariant

version which, after projecting on the center-of-mass

frame, matches at Oðϵ̃Þ the expression in (1). We find

it convenient to distinguish the ϵ̃-expansion from the

standard D¼ 4−2ϵ that we use for dimensional regu-

larization. To the families of (two-loop) scalar integrals

introduced in [33] for computing the total impulse,

we add

I
��;T5…T9
ν1…ν10 ¼

Z

l1;l2

δðν1−1Þðl1 · u1Þδðν2−1Þðl2 · u2Þ
ð�l1 · u2Þν3ð�l2 · u1Þν4

× ðk · ucomÞ2ϵ̃−ν10
Y

9

j¼5

1

D
νj
j;Tj

; ð3Þ

with a noninteger powered propagator, where we use the

same notation as in [33] (see also [42]). The radiative

momentum is rewritten as kα ¼ l
α
1 þ l

α
2 − qα, with qα ≡

ðq0; qÞ the momentum transfer, obeying q · ua ¼ 0 (not

to be confused with the mass ratio). The choice of

i0þ-prescription for the square propagators, either re-

tarded or advanced, is encoded in Tj ∈ fret; advg:

D5;ret=adv ¼ ðl01 � i0Þ2 − l2
1; D6;ret=adv ¼ ðl02 � i0Þ2 − l2

2;

D7;ret=adv ¼ ðl01 þ l
0
2 þ q0 � i0Þ2 − ðl1 þ l2 − qÞ2;

D8;ret=adv ¼ ðl01 − q0 � i0Þ2 − ðl1 − qÞ2;
D9;ret=adv ¼ ðl02 − q0 � i0Þ2 − ðl2 − qÞ2: ð4Þ

Using integration-by-parts (IBP) reduction techniques

implemented in the packages LiteRed [65] and

FiniteFlow [66], we find 17 master integrals contrib-

uting to the radiation region (where the k momentum goes

on-shell), which isolates the contribution to the energy

loss from the total impulse. It is possible to select

integrals such that we can take ν1 ¼ ν2 ¼ 1, ν10 ¼ 0.

PHYSICAL REVIEW LETTERS 132, 221401 (2024)

221401-2



The final set, specified by ν3���9, becomes

ð−1;0;0;0;1;1;1Þ; ð−1;0;0;0;1;1;2Þ; ð−1;0;0;0;1;2;1Þ;
ð−1;0;0;0;2;1;1Þ; ð0;−1;0;0;1;1;1Þ; ð0;−1;0;0;1;1;2Þ;
ð−1;0;0;1;1;0;1Þ; ð0;−1;0;1;1;0;1Þ; ð−1;0;0;1;1;1;1Þ;
ð−1;0;1;0;1;1;0Þ; ð0;−1;1;0;1;1;0Þ; ð−1;0;1;0;1;1;1Þ;
ð−1;0;1;1;1;1;1Þ; ð−1;0;1;1;1;1;2Þ; ð−1;0;1;1;2;1;1Þ;
ð0;1;1;1;1;0;0Þ; ð1;0;0;0;1;1;1Þ;

modulo different choices of i0þ-prescriptions (T5���9) and
signs in front of linear propagators.

Integration.—To solve for the master integrals, we derive

differential equations in x and the mass ratio, q, where x is

given by γ ¼ 1
2
ðxþ 1=xÞ. We then adopt the strategy of an

ϵ- (and ϵ̃-)regular basis [67], such that we can set ϵ ¼ 0, and

consider the expansion of the integrand, differential equa-

tions, and boundary constants, only to Oðϵ̃Þ. The latter are
determined via a small-q expansion, together with the

techniques described in [42] (adapted to the new factors of

ϵ̃). From this setting, it is then straightforward to find a

solution of the differential equations through iterated

integration.

For the parts containing MPLs, and similarly to the x

variable, it is useful to rationalize the square root of the energy

ðE=m1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ 2γq þ q2
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðq þ xÞðq þ 1=xÞ
p

, by

introducing a new variable, y, defined through q−1 ¼ −γ −

ðv∞=2Þðyþ 1=yÞ, with v∞ ≡
ffiffiffiffiffiffiffiffiffiffiffiffi

γ2 − 1
p

. Hence, we find the

traditional harmonic polylogarithms with letters fx;1þx;

1−xg [26,33], aswell asMPLswhich depend on thevelocity

and mass ratio via the new letters: fy; 1þ y;1− y;

y− ½ð1þ xÞ=ð1− xÞ�; y− ½ð1− xÞ=ð1þ xÞ�; 1þ 2½ð1− xÞ=
ð1þ xÞ�yþ y2g. In addition to MPLs, the solution to

the differential equations depend on another set of func-

tions, through an a priori irreducible fourth-order PF

equation, already at Oðϵ̃0Þ. However, a Baikov representa-

tion [68,69] of the maximal cut suggests a simpler

Calabi-Yau twofold as the relevant geometry. Indeed, in

terms of the variables ðqx; q=xÞ, the differential equations
can be solved, in the first and subsequently the second

variable, via two equivalent second-order PF equations

(per variable). The solution can then be written in terms

of products of K’s [such as the f1 in (5) below] as well as

the leading three derivatives w.r.t. the mass ratio. As in

previous PM computations, e.g., [11,12,34], KðzÞ ¼
R

1
0
dt=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − t2Þð1 − zt2Þ
p

, is the complete elliptic integral of the

first kind.

After the leading order solution is known, it is then

straightforward to obtain the Oðϵ̃Þ part. We find that it can

be written in terms of (at most) twofold iterated integrals,

with elliptic kernels depending on the mass ratio, q, as the

integration variable. The full set is given by

f1¼
Kð−qxÞKð1þ q

x
Þ−Kð−q

x
ÞKð1þqxÞ

π
;

f2¼
f1

q
; f3 ¼ ∂xf1; f4¼

∂xf1

q
;

f5¼
�

1−x2

x
ð1þq∂qÞ−

1−q2

q
x∂x

�

f1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðqþxÞðqþ 1
x
Þ

q : ð5Þ

Remarkably, while individually this is not the case, the

combination of complete elliptic integrals in f1 has a

simple power-series expansion in the PN limit (x → 1).

Furthermore, the fi’s are real, and have (at most) simple

poles in q. Let us point out, however, that a simplified

version of the iterated integrals may still be possible. In

particular, upon assigning to KðzÞ a transcendental weight
one, we notice that the iterated integrals would have up to

weight four, in contrast to the MPL part with maximum

weight two. Hence, we expect that either the naïve assign-

ment is incorrect or an even simpler form exists. We leave

this open for future work.

Scattering angle.—After solving for the master integrals

and plugging them back into the integrand, we arrive at the

radial action, and from there to the nonlocal in time

contribution to the deflection angle, χ
ð4Þ
bðnlocÞ and χ

ð4Þ log
bðnlocÞ,

at 4PM order. As anticipated in [34], the logarithmic part

takes on a simple closed form,

1

πΓ
χ
ð4Þ log
bðnlocÞ ¼ −2νχ2ϵðγÞ

¼ −2ν

ðγ2 − 1Þ2
�

h5 þ h9 log

�

γ þ 1

2

�

þ h10arccoshðγÞ
ffiffiffiffiffiffiffiffiffiffiffiffi

γ2 − 1
p

�

; ð6Þ

with χ2ϵ introduced in [34], and the h5;9;10 are polynomials

depending only on γ, which also enter the nonlogarithmic

part (see below). The latter, on the other hand, also involves

a set of iterated integrals in the mass ratio. Despite its

complexity, it is straightforward to construct a “self-force”

(SF) expanded version, for which we find the generic form,

valid to any nSF order,
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1

πΓ
χ
ð4ÞðnSFÞ
bðnlocÞ ¼ ν

ðγ2 − 1Þ2
�

h1 þ
π2h2
ffiffiffiffiffiffiffiffiffiffiffiffi

γ2 − 1
p þ h3 log

�

γ þ 1

2

�

þ h4arccoshðγÞ
ffiffiffiffiffiffiffiffiffiffiffiffi

γ2 − 1
p þ h5 log

�

γ − 1

8

�

þ h6log
2

�

γ þ 1

2

�

þ h7arccoshðγÞ2 þ
h8 logð2ÞarccoshðγÞ

ffiffiffiffiffiffiffiffiffiffiffiffi

γ2 − 1
p þ h9 log

�

γ − 1

8

�

log

�

γ þ 1

2

�

þ h10 logðγ
2−1

16
ÞarccoshðγÞ

ffiffiffiffiffiffiffiffiffiffiffiffi

γ2 − 1
p þ h11Li2

�

γ − 1

γ þ 1

�

þ h12
�

arccoshðγÞ2 þ 4Li2
	

ffiffiffiffiffiffiffiffiffiffiffiffi

γ2 − 1
p

− γ

�

ffiffiffiffiffiffiffiffiffiffiffiffi

γ2 − 1
p

�

: ð7Þ

Because of the structure of the full solution, except for

the h1, h3, and h4 carrying information from the (iterated)

elliptic sector (h1;4) and the new letters in the MPLs

depending on the mass ratio (h3), the remaining hi’s are

SF exact. We find the nSF coefficients may be split as

hi ¼ h
ð0Þ
i ðγÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4ν
p

h
ð1Þ
i ðγÞ þ Δhiðγ; νÞ; ð8Þ

where the h
ð0Þ
i ðγÞ, hð1Þi ðγÞ, are polynomials in γ only. The

Δhiðγ; νÞ vanish except when i ¼ 1, 3, 4, for which they

become polynomials both in γ and ν, up to OðνnÞ. We

provide in [70] their values up to n ¼ 30. The 30SF result

(with an error beyond 30PN) is in perfect agreement in the

overlap with the 6PN values in [63]. Let us emphasize that

the definition of nonlocal-in-time in [63,64] includes not

only the expression in (1) (W1 in [63]), but also an extra

contribution (W2 in [63]). Because of the local in time (and

gauge-dependent) nature of W2, we do not add it to (1).

Therefore, (7) agrees (in the overlapping realm of validity)

with the scattering angle obtained from the W1-only terms

in Eq. (3.14) of [63]. After subtracting from the total

conservative angle in [11,12], we arrive at the local in time

counterpart, [Although amenable to a conservativelike

description of the relative dynamics, we keep the other

(time-symmetric) radiation-reaction corrections, i.e., “2 rad”

in [12], in the dissipative part.]

χ
ð4Þ
bðlocÞ¼ χ

ð4Þcons
bðtotÞ −χ

ð4Þ
bðnlocÞ; χ

ð4Þ log
bðlocÞ ¼−χ

ð4Þ log
bðnlocÞ; ð9Þ

where we used the fact that the logðμb=ΓÞ cancels out in the
total value. The result in (9) can now be used to describe

generic bound orbits, as we discuss next.

Local in time conservative dynamics.—Following the

B2B dictionary, the local in time (reduced) bound radial

action takes the form [21]

i4PM
rðlocÞ ¼

2v4∞

3ðΓjÞ3
�

χ
ð4Þ
bðlocÞ
πΓ

þ
χ
ð4Þ log
bðlocÞ
2πΓ

log
j2

v2∞

�

: ð10Þ

Using the expressions in [21,22], and a dimensionally

rescaled distance r̂ ¼ r=ðGMÞ, we can also reconstruct the

center-of-mass momentum (notice we use different con-

ventions with respect to [21,22])

p̂2 ¼ v2∞

Γ
2

�

1þ
X

n¼1

1

r̂n
ðfn þ f

log
n log r̂Þ

�

; ð11Þ

with p̂≡ p=ðMνÞ, and Hamiltonian, Ĥ ≡H=ðMνÞ,

Ĥ ¼ Êþ
X

i¼1

1

r̂i
ðĉi þ ĉ

log
i log r̂Þ; ð12Þ

where Ê ¼ P

a Êa, Êa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p̂2 þ ðma=MνÞ2
p

. The coeffi-

cients ðĉ4ðlocÞ; ĉlog4ðlocÞÞ are displayed in [70].

Universal logarithms.—Nonlocal in time tail effects also

contribute with a log r̂ term in the bound dynamics.

Performing a small-eccentricity expansion of (1), and using

Kepler’s law (logΩ ¼ −
3
2
log r̂þ � � �, with Ω the 1PM

orbital frequency), we find

ĉ
log

4ðnlocÞ
r̂4

¼ −
3

2

ĉ
log

4ðlocÞ
r̂4

¼ −3G
Γ

ν

dE

dt













3PM

; ð13Þ

where (ξ≡ f½Ê1Ê2�=½ðÊ1 þ Ê2Þ2�g; γ ¼ νðÊ1Ê2 þ p̂2Þ)

G
dE

dt













3PM

ðr̂; p̂2Þ ¼ −
4ν3

3r̂4
γ2 − 1

Γ
3ξ

χ2ϵðγÞ; ð14Þ

is the energy flux at 3PM order [23,34]. Similarly,

f
log

4ðnlocÞ ¼ −
3

2
f
log

4ðlocÞ ¼ −8Γνχ2ϵ; ð15Þ

consistently with (6). Hence, adding both terms,

Ĥ
ellðlogÞ
4PM ¼ 4ν2

3r̂4
ðγ2 − 1Þ
Γ
2ξ

χ2ϵ log r̂; ð16Þ

and likewise,

ðp̂2ÞellðlogÞ4PM ¼ −
8νv2∞

3Γr̂4
χ2ϵ log r̂; ð17Þ

for the full logarithmic dependence of the bound

Hamiltonian and center-of-mass momentum at 4PM.

Towards the complete bound dynamics.—Putting

together the local in time coefficient plus exact logarithmic
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part, the total bound Hamiltonian up to 4PM order may be

written as

Ĥell
4PM ¼

X

i¼4

i¼1

ĉiðlocÞ
r̂i

þ
X

i¼4

i¼1

ĉiðnlocÞ
r̂i

þ 4ν2

3r̂4
ðγ2 − 1Þ
Γ
2ξ

χ2ϵ log

�

r̂

e2γE

�

; ð18Þ

wherewe have absorbed the factor of e2γE that arises from (1)

into the logarithm. The ĉ1j2j3ðlocÞ are the known local-in-time

PM coefficients up to 3PMorder [18,20,25,26], and ĉ4ðlocÞ is
reported here for the first time. To complete the knowledge

of the bound dynamics, we are still missing the [non-

log ðr̂=e2γEÞ] nonlocal in time contributions, ĉiðnlocÞ, which
depend on the trajectory. These aremore difficult to compute

in a PM scheme, since they are often needed in the opposite

limit of quasi-circular orbits, thus entering at all PM

orders. Yet, they can be readily obtained within the PN

approximation by evaluating the radial action in (1) in a

small-eccentricity expansion. Adapting the (W1-only)

results in [63] to the isotropic gauge, we quote their values

in the Supplemental Material to 6PN and eight order in the

eccentricity [70]. The combined Hamiltonian in (18) is in

perfect agreement to OðG4p̂6Þ with the Ĥell
6PNð4PMÞ derived

in [62] using the state of the art in PN theory, while at

the same time it incorporates all-order-in-velocity correc-

tions. Ready-to-use expressions for the full results and

30SF-approximate are collected in [70].

Conclusions.—Novel integration techniques in combi-

nation with EFT methodologies have been extremely

successful in reaching the very state of the art in our

understanding of scattering dynamics in general relativity,

including conservative and dissipative effects [42,46].

However, as illustrated in [23,62], although local in time

and logarithms are universal, the full hyperbolic results fail

to describe quasicircular binaries. This is due to the

presence of orbit-dependent (nonlogarithmic) nonlocal in

time effects, which preclude a smooth analytic continuation

via the B2B map [21,22]. Hence, up until now, we were

lacking a direct correspondence to generic bound motion,

notably for the conservative sector. We have computed the

nonlocal-in-time contribution to the deflection angle, and

removed it from the total conservative value in [11,12], thus

yielding the local in time counterpart. We then derived the

radial action, center-of-mass (isotropic-gauge) momentum

and Hamiltonian, as well as the total logarithmic-dependent

part(s), all applicable to generic motion. Upon adapting the

(nonlogarithmic) nonlocal in time effects for ellipticlike

orbits computed in the PN expansion [63], the combined

total Hamiltonian becomes the most accurate description of

gravitationally bound binary systems obtained from PN or

PM data to date, readily applicable to waveform modeling.

Studies assessing the implications of our results towards

constructing high-precision GW templates, as well as the

derivation of a PM version of nonlocal in time effects for

bound orbits, are underway.
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