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In this paper we study the multipole expansion of the long-wavelength effective action for radiative
sources in (d + 1) spacetime dimensions. We present detailed expressions for the multipole moments for
the case of scalar-, electromagnetic-, and (linearized) gravitational-wave emission. For electromagnetism
and gravity, we derive expressions for the odd-parity, magnetic-type moments as SO(d) duals of the ones
traditionally used in the literature. The d-dimensional case features a novel set of “Weyl-type” moments,
coupling to the spatial part of the Weyl tensor, which are absent in three dimensions. Agreement is found in
the overlap with previous known results, notably in the d — 3 limit. Because of its reliance on dimensional
regularization, the results presented here play a crucial role for the further development of the effective field
theory approach to gravitational dynamics, and in particular for the computation of the gravitational-wave

flux, starting at the third post-Newtonian order.
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I. INTRODUCTION

Highly accurate analytic predictions are of prime impor-
tance for the signal analysis for gravitational-wave (GW)
detectors, notably when it comes to observing the inspiral
phase of binary compact objects. If the current ground-
based LIGO-Virgo-KAGRA network is mainly sensitive to
rapidly coalescing black hole binaries [1], this will not be
the case for future generations of detectors. Indeed, both the
spaceborne LISA instrument [2] and the ground-based
Einstein Telescope [3,4] are expected to be quite sensitive
to the inspiral phase (see [5] in the case of LISA). It is thus
crucial to provide accurate analytic waveforms for the data
analysis of those detectors.

When it comes to precise analytic predictions for the
two-body gravitational problem, the post-Newtonian (PN)
approach is a paramount tool. Focusing on the weak-field
and low-velocity inspiral phase of merging compact
objects, it allows us to derive the phase evolution and
GW amplitude perturbatively to the desired order in v/c
(the relative velocity over the speed of light). We let the
reader refer to [6-9] for reviews on the topic. For non-
spinning bodies, the current state-of-the art is the 4.5PN
precision for the phase [10] [i.e., the (v/c)° correction
to the leading order], the 4PN precision for both the GW
flux and the dominant quadrupolar amplitude mode [11],
and the 3.5PN precision for the subleading ones [12—14].
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For the case of spinning bodies, on the other hand, the state
of the art is at 4PN for the GW flux [15,16] and to the
3.5PN order for the amplitude [17-19]. These results were
derived through a combination of techniques, including the
post-Newtonian multipolar-post-Minkowskian (PN-MPM)
framework [20-24] (notably for the nonspinning case),
which relies on a careful matching between a PN expansion
in the vicinity of the source and a MPM one outside
the source, and the effective field theory (EFT) approach
[25-29], which also relies on a multipolar expansion,
together with a systematic separation of the relevant scales
of the problem, but directly at the level of the (effective)
action [8,9]. Although the EFT approach has also achieved
the 4PN order of accuracy, or next-to-next-to-next-to-next-
to-leading order (NNNNLO), in the conservative sector for
nonspinning bodies [30-32] (see also [33-38] for results at
higher orders), the computation of the GW flux has been
performed only to NNLO, at 2PN [39]. To move forward,
toward higher levels of accuracy, the well-known diver-
gences that appear already at 3PN, both in the equations of
motion [40] and in the nonlinear radiative corrections [27],
must be carefully tackled. Within dimensional regulariza-
tion, extensively used in the EFT approach since the
seminal work of [25] (see also [41,42]), divergences arise
as poles « (d — 3)~!, with d the number of spatial dimen-
sions. Even though these divergences can be carefully
removed from observable quantities in the conservative
sector to 4PN order [32], the computation of the GW flux
requires a careful analysis of the multipole expansion in
d-dimensions.

The multipole expansion at the level of the action in three
dimensions was originally performed in [29]. The purpose
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of this paper is to extend those results to the case of an
arbitrary number of spatial dimensions. Building upon the
analysis in [29] we study the scalar, electromagnetic, and
(linearized) gravitational cases, in that order. Along the
way, we also verify that the three-dimensional limits of
our results are consistent with those exposed in [29,43]. As
it was argued in [13], an important subtlety arises when
considering odd-parity (i.e., magnetic-type) moments. In
three spatial dimensions, those are constructed as irreduc-
ible representations of SO(3) via contractions between
purely symmetric and trace-free (STF) tensors and a
Levi-Civita symbol [24,29]. Such a feature, however, is
specific to d = 3, since there is no simple generalization
of the Levi-Civita symbol to arbitrary dimensions.
Therefore, when deriving multipole moments as irreducible
representations of SO(d), we must consider all possible
Young tableaux, and magnetic moments will carry non-
trivial symmetry properties described by a mixed Young
tableaux [44-46]. Additionally, a new set of multipole
moments emerges, corresponding to a different mixed
Young tableaux, which does not exist in three dimensions.
We point the interested reader to [13] for a more detailed
discussion about this subtle point, and to [34-36] for some
applications in the conservative sector. The calculation of
the GW flux to 3PN order within the EFT approach, where
the results derived here are of utmost relevance, will be
reported elsewhere.

This work is organized as follows. The d-dimensional
multipolar expansion of a scalar field is presented in Sec. II,
the electromagnetic case is treated in Sec. III, and gravity,
in Sec. IV. Section V concludes this work. Useful decom-
position formulas are collected in Appendix A and iden-
tities coming from conservation laws, in Appendix B.
Finally, cumbersome computations that are too long to
be presented in the main text are displayed in Appendix C.

Notation. We use natural units ¢ = 1 = 7, and work in a
spacetime with one time and d spatial dimensions, equipped
with a mostly negative metric signature. Greek letters denote
Lorentz indices (running from O to d) and Latin letters, spatial
ones (running from 1 to d). Bold symbols denote spatial
vectors, e.g., X = x', and we define the d’Alembertian
operator on the flat, Minkowskian background, as
O =»"0,0, = 0} — V2. We employ the multi-index nota-
tion as introduced in [20], i.e., xL = x/1x2 .. x/-1x% and
IF = [hirwiesie - and  weight the (anti)symmetrizations,
eg, T = f(TL) = L (T* + ¢-permutations), or T4} =
.Iﬁ(T“” ) =1(T%> — T%4). The STF operator is denoted with
hats or brackets, as 77 = Tt) = S"{F(TL). Last but not

least, we follow the notation in [13] for the magnetic- and
Weyl-like multipole moments, introduced in Secs. III and IV,
that correspond to the mixed Young tableaux.

II. SCALAR FIELD

Let us start by investigating the simplest case of a scalar
field ¢, linearly coupled to a source J in a (d+ 1)-
dimensional spacetime. The corresponding action reads

Sy = /dz/ddx <;a,,¢a“¢+J¢>,

and the equation of motion outside the source is given by

(2.1)

Lp = 0. (2.2)
We assume that the source is compact-supported, with
typical size a, and that the spatial evolution of the field
outside the source is described by a typical scale A.
Hereafter, we work in the long wavelength approximation,
i.e., in the regime where a < 4 holds. In this framework,
we are allowed to perform a Taylor expansion of the scalar
field around a point in space within the source, which for
simplicity we choose to coincide with the origin of our
coordinate system. This translates in

21
Z—,NdeJ (1.0),

n=0 n:

(2.3)

which we then plug into the source term of the action

Source = /dt/dde(t,x)d)(t,x)
/er (/ d?xJ (1, x)x >aN¢, (2.4)

where dy¢ = (dy¢)(£,0). We can already recognize a
multipolar structure, where the multipole moments are
given by the coefficients of the dy¢ operators. We now
need to express those moments as irreducible representa-
tions of the rotation group SO(d). The formula for an
arbitrary symmetric tensor SV expressed in terms of fully
STF tensors is given by [41,47]

[n/2] |
n: d) i i i Qi elp)ajaya,a
SN: 71\2_2 5(12...52(1—121)S2p+1 nJdidyayd,

(2.5)

where [n/2] denotes the integer part of /2 and we defined
the coefficients

FE+n)
2pI(§+n+p)

AY)

(2.6)
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In particular, we express the fully symmetric structures xV
in terms of their STF counterparts

(2.7)
with r = |x|, and we substitute into (2.4), which now reads
oo [n/2] A£1d—>2p,p
S = | W22 T2

X /ddXJ)ACN_ZPrngN_ZPV2p¢

o Al . _
= / ey % / dIx07JREr¥o,p,  (2.8)
£.j=0

where we used (2.2) in (2.8) to exchange the Laplacian
operators into time derivatives on the fields, which are then
shifted onto the source moment J via integration-by-parts.
It is now trivial to read off the sought structure

> 1
Ssource = /dIZﬂILaLd)v
=0 " "

with multipole moments given by irreducible representa-
tions of SO(d) as

0 d
=y FG+9) / d?x0% Jr2izL
L 2Y TG+ ¢+ )

(2.9)

(2.10)

In three dimensions, the combination A becomes

(@=3) 27+ 1)
LI 2N+ 2+ D1

(2.11)

hence the three-dimensional limit of our result, Eq. (2.10),
is fully consistent with the known three-dimensional multi-
pole expansion of a scalar field, e.g., Eq. (10) of [29].

III. ELECTROMAGNETISM

A. Framework description

An electromagnetic field A, linearly coupled to a source
J# in a (d 4 1)-dimensional spacetime is described by the
following action:

1
Sen = — / dr / ddx <1Ff‘”FW+J"Aﬂ>, (3.1)

where F,, = 9,A, — d,A, is the usual field strength tensor.
The current J* is conserved, i.e., d,J* = 0. The field

strength can be further decomposed in terms of the electric
and magnetic fields,

Ea = Fa() = auAO - atAuv Fah = auAh - abAu'

(3.2)

Ba|h =

Instead of the usual magnetic field in three dimensions
B, = e4pcFp/2, we adopt its dual B, to avoid the
ambiguity of Levi-Civita symbols in generic dimensions.
In vacuum space where J# = 0, the equations of motion,
Maxwell equations, and Bianchi identity for the electro-
magnetic field are given by

0rF,, =0, 0,F =0, and 0jaFps) = 0, (3.3)

respectively, which can also be written as

aaEa = O, aaBa“, = G,Eb, 26[aEb] = G,Ba‘b,
UE, = 0B, =0, (3.4)

in terms of the electric and magnetic fields.

B. Split of the action

Assuming a compact-supported source, we work in the
long wavelength approximation. The electromagnetic field
can be safely Taylor-expanded as

©_
= —xM(9yA")(1.0).

!
n=0 n:

(3.5)

Plugging the Taylor expansion of the field into (3.1), the
source term of the action becomes

/dt/ddXJ” (2,x) —xNaNA
- / dt( / dde°>A0
- JuSsL (e,
—/dzi:o;! (/ ddxjth>aNA,,.

In the second equality the expansion of A is separated into
two sectors. The first term that is free of derivatives is
nothing but the monopole representing the coupling of the
field to the total electric charge Q = [d’xJ°. This term
does not radiate, and thus is singled out from the multipole
expansion. The last two terms encrypt radiative modes,
which should couple to the two propagating degrees of
freedom, E, and B,,;, collectively. For this purpose, the last
coefficient in the action (3.6) can be conveniently expressed

source =

(3.6)
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in terms of its corresponding irreducible decomposition utilizing Young symmetrizers [44—46], here denoted as Young

tableaux through a slight abuse of notation

1
d b..N __ . .
e - A T T
2n1 ﬁ (/ddXJ[bxin]Nl) 7
n

= /dde(be) +

where, in the first equality, “+i-perms” means that all index
combinations {i,...,i,} must be added together. Imple-
menting this decomposition and using the conservation
law (B1), the last term of the action (3.6) can then be
rewritten as

Ssource = /dlz </ ddXJh N)>0NA;,
2n )
— Aty —— ( / ddeV’xlnlN—1>aNAh
/ ;(nJr 1)!
|
= [ dr — d?xJOxN ) oy_,0,A;
/ ;n!(/xx)Nltln
- n
+/dt —_— (/ ddeth>aN_le|in.
;(nJr 1)!

(3.8)

With this expression at hand, the source action is now
split as

Ssource = Sgggrgce + ng(l)(lllrcw (39)
with
Seoms = - / 4104, (3.10a)
| )
rad _ dv 710N i,
Ss%urce—/dt;;!(/d xJ'x >aN—1E
= n
dt —_— d?xJ4xN )oy_B,; -
+/ ;(n—i-l)!(/ xJix ) v-1Bai,
(3.10b)

Just as in the scalar field case, a multipolar structure starts
to manifest, which is yet to be expressed in terms of
irreducible representations of SO(d).

Before moving on to such reduction in the next section, let
us point out the consistency of the three-dimensional limit of
the expansion (3.10) with known results. The monopole term
as well as the J° sector are trivial. As for the J¢ sector, in
three dimensions any SO(3) antisymmetric a rank-2 tensor

i ( b | |inl‘+i—perms)
(n+1)! in

(3.7)

|
can be traded for its dual vector counterpart (see, e.g., [44]).
Hence, we can define the three-dimensional magnetic field
B, as the limit of the dual of B,;, by

1
limB,, = B, © B, =—=¢, limBy,., 3.11
dl_rg alb EapeDe a D) 8abcd1_lg blc ( )

where ¢, is the three-dimensional Levi-Civita symbol. By
injecting this limit in the last line of (3.10b), in three
dimensions the magnetic sector reduces to

B, ) =~ n
LIJE%SSOL‘ITCS = zlll—rg/dtz_:m (/ ddXJaxN) aN—lBa\in

/ inﬂ </ UaXb)}CN_l)

X On_1(€apeBe)
:/dtg( —’:1)! </d3X(Jxx)axN—1>
(3.12)

X aN_]Ba.

Such an expression is the usual form of the magnetic
expansion in three dimensions [see, e.g., Eq. (35) of [29]].

C. Irreducible decomposition of the moments

Let us now express the moments appearing in (3.10) in
terms of irreducible representations of SO(d). As they are
of different natures, we treat the scalar sector composed of
the J° term and the vector one involving J¢ separately.

Consider the scalar sector and apply the relations (A4)
and (A9), which leads to

¢S] 1 )
SP = / er; < / ddeOxN) Oy E'r
n=1"""

D) (d)
t
Z/' f—l—Zj—l— )

e
/’22 F=1)!

2j 70 ~al.— )
x / d?xa; O3~V 129, | E¢,

/ d9x0% JOxa%L 279, E

(d)
Af]

(3.13)
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which is already in the desired STF form. Next, we move
on to the moments involving J¢,

Sta = / dr Z

= n
m (/ ddXJ“xN)()N_lBain.
71 N

(3.14)

The first step is to express the purely symmetric structure
xV in terms of its STF counterpart, . Using the STF
relations (A3) and (A9) we obtain

0 A@
Je_ dy 2 Ja byl 25
sl = /dtzﬂ(f+2j+2)/dxatjxx 210, B,

o ALY
—/dtz;z —T
J

L”+2]+1)

X/ddxagj]a.%bL_]rzj/a\L_lBab
+/dt J
3 M ——

x / dx ot Jagl=1,2ig, | E9. (3.15)

The action is not yet in the irreducible form at this stage,
due to the vectorial nature of J¢. We hence need to reduce it
more toward fully irreducible representations of SO(d).
After some cumbersome derivation presented in detail in
|

TV =i lig—y|...| 92 | 41 and

In the d = 3 limit, Eq. (3.17) fully agrees with the known
three-dimensional multipole expansion results. It is trivial
to recognize that the electric multipole (3.17a) reduces to its
three-dimensional counterpart, Eq. (47) of [29], whereas
comparing magnetic moments requires more work. In the
three-dimensional limit, one can decompose the antisym-
metric structure of (3.17b) as a product of Levi-Civita
symbols, leading to

. c 20+ 1)
1 Ja\L — _ pcaip (
Ak 2° ;(2j)!!(2f+2j+1)!!

. TF
X [/ ddxatz"(ecqu”xq))%’“_lrzf
— lgcuifch—l
= d=3 >

(3.19)

where we recover the three-dimensional expression of the
magnetic moment, Eq. (48) of [29]

Appendix C 1, the final result is given by

Ssource = Scons T S{:d + S{:d
- / dtQA, + / dt;zlLaL_lEv
LD WE

with the d-dimensional electric and magnetic multipole
moments reading, respectively,

Pl (1L

20+ + ) d+7¢-2
o) d
x / d?x0;’ O3t 2 — Z G+ 7)
22U 0+ ¢+ )
o rE+7¢)
Ja|L — A Z i 2

lll/j

. JTE
— , { / ddxafmerZ/] :
(2D + ¢+ )

(3.17b)

J“' Or-1By; (3.16)

Ly

(3.17a)

where J = J%x“. The electric and magnetic moments are
indeed irreducible representations of SO(d), as their sym-
metries are respectively given by the symmetric and mixed
Young tableaux [44-46]

JG|L: 10 Lo—1|---| 12 | 21

(3.18)

. 0 (24 1!
i = Z(z,) 27 12+ D1

X / d?xa7 (J x x)tiexl=D 2 (3.20)

Hence, the magnetic sector of the action reduces to

J ‘LaL lBa|1,//

hm Sizggnem = hm / dtz

‘= 1

4
_/dIZ(K+ ) Jd gaL 1B1f’

(3.21)

where we recall that the three-dimensional magnetic field
B, is defined in (3.11). This limit is in full agreement with
the known three-dimensional result.
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IV. LINEARIZED GRAVITY

A. Framework description

Let us now consider the linearized approximation to
general relativity, by perturbing the metric around a flat
background as

hep
Gap = Nap + m—Pl’

(4.1)

where 77,4 is the Minkowski metric and the reduced Planck

mass reads mp; = 1/(327G). From the usual Christoffel

symbols I'),, we define the Riemann tensor as
Ry = aal"’y’ﬂ — 0l + F’;Tl“zﬂ - FZTFZH, (4.2)

from which the Ricci tensor R,3 = R¥,,5 and Ricci scalar
R = ¢*’R, are obtained.

Eup = Roaop = —2m
Pl

1
Ba|bc = RbacO = WP]

1
Wabcd = Rabcd +—-—= (5adEbc + 5bcEad - 6achd - 5deac)7

d-2

where the Riemann tensor R,,.; at the linear order is
explicitly given by

1
Rabcd =5 (abachad =+ aaadhbc - aaachbd - abadhac)'
Zmpl

(4.6)

By analogy with the electromagnetic case, the even-
parity E,, and odd-parity B,;. are, respectively, dubbed
“electric” and “magnetic” components of the Riemann
tensor. Note that, as advertised previously, we have to
deal with the dual of the usual magnetic-type component
of the Riemann tensor B, which is antisymmetric in
{a, b} and trace-free in all its indices. Moreover, to avoid
confusion, we point out there is no obvious symmetry
in {b,c}.

In the three-dimensional limit, it reduces to the usual
magnetic-type component of the Riemann tensor, B, as

: 1 .
LI_I)%BMIJC = €wpaBea © Bup = Eecd(aﬂlll_rng\gb)’ (47)

where underlined indices are excluded from antisymmet-
rization. As for the new component W,,.,, it denotes the

We restrain ourselves to the linear approximation,
implementing a coupling between the graviton and a
compact supported source, as

1
S:—Zm%l/dt/ddxw/—gR——

dr [ dIxT"h
2mp / ¥ "

(4.3)

composed of the Einstein-Hilbert action and a linearized
source term. The source term is conserved at linear level,
9,T* = O(h). The vacuum equations of motion leads to

Raﬁ - O, aaR“/j/w - 0,

and [OR

oRapyn =0,
=0. (4.4)

apuv
The Riemann tensor can be further split into propagating
degrees of freedom, depending on their parity under
SO(d), as

(aaathOb + 0,0,ho, — OFhyy, — aaabh00)7 (4.5a)
(aaachOb + abathac - abachOa - aaathbc) ’ (45b)
(4.5¢)

d-dimensional Weyl tensor, and hence bears its particular
parity under SO(d). Such an object should vanish in three
dimensions,’ as the number of its independent components
is given by

d(d+1)(d+2)(d-3)
12 '

#of Weyl components = (4.8)

Hence, in three dimensions the spatial Riemann tensor in
terms of E,, can be expressed as

(4.9)

limR = —€upe€eqrIME, ¢
=3 abed abe caifd_>3 efs

where the right-hand side involves Levi-Civita symbols.
Nevertheless, this work takes place in an arbitrary number
of spatial dimensions; thus, we need to consider W,,,., as
being as relevant as E,, or B, [13]. The three propa-
gating degrees of freedom correspond to the symmetric and
mixed Young tableaux as [44-46]

'This can be easily understood by considering its SO(3) dual
Cup & (8W s —2W ), which is vanishing as the Weyl
tensor is traceless by construction.
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b | c alc
Eab =| a b 5 Ba|bc = and Wabcd = . (410)
a b|d

In addition to being obviously traceless from (4.5), these propagating degrees of freedom obey Maxwell-like equations,
derived from Eq. (4.4)

Eaa =0, Ba\bb =0, Wabac =0, (4113)

aaEab =0, ach\ab = atEalﬂ acBa\bc =0, (41 lb)
(d-3)

2a[cEa]b = ath\ab’ 2a[cBg\Qd] = atRabczb adVVcdab = matBbwc’ (411C)

where underlined indices are again excluded from antisymmetrization.

B. Split of the action

We assume that the source is compact-supported and work in the long wavelength approximation. Plugging the Taylor
expansion of the gravitational field

21
W (x) = —xN(oyh™)(1.0), (4.12)
n.
n=0

into the source term of the gravitational action, the latter gives
S = dr [ d9xT™(t,x 1, X
source 2mPl / ) /w( )
(6]
dt/dd xTH(t, x xNoyh
mPl z; "
(9]

1 1
:—— dr d9xTOKN ) on by — — | dt —/ddTO”Nah
i 4 ([ st Yoo o farS S ([asaoe o,

n=| Pl n=0

d ab .N
—% dtza(/d xT4x )aNhab. (4.13)

n=0

Just as in the electromagnetic case, the action requires further partition in the conserved sectors and radiative ones. For the
purpose of expressing the radiative sector of the source action in terms of the propagating degrees of freedom E,;,, By, and
Wpea» W investigate the couplings to A, hg,, and h,, in (4.13) separately.

We start with the &, part of the action,

1 =1
Sgggrce = _ﬁ dlz; </ ddXTOOXN> aNhOO
Pl n=0 """

1
= dr / d9x T hoo—— dr / d9xT%x4 ) g hoo—— / dtz / d9XTOXN ) 9y kg,
2mP1

(4.14)

where M = [d/xT% is the total energy of the source and G* = ( [ d/xT%x%)/M is the center of mass position.
Just as in the electromagnetic framework, the coefficients coupling to %, can be additionally broken down into their

irreducible representation via the use of Young tableaux symmetrizers and substituting J¢ with 7%, We further consider
(B2); thus, we can write

104027-7
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1 1 1 SN
Shon e = —— dt( / dde°“> ho, — — dt< / d9x T )a,,hOa - dtZ— ( / ddeO“xN> Onhog

mpy mpy o l’l!

1 1 1 S|
= dt< / dde0“> ho, — — dt< / ddeO[“x”]>abh0a - [ = ( / dde°<“xN)> Inhoa

mpy mp “—~n!

1 . 2n
—— [ dr ddx 0l xilN= )a ho,
mpy ;(”‘i‘l)!(/ Mo

1 1
= —— dt(/ ddeO“)hOa — —/ dt [/ ddx(TO“xb - TObx“)} dpho,
Mmpy 2mp

me dtz { / ddeOOxN] On-2(0;_ 0/ho;, + 0; d,ho; )

2n
— d/xT%xN | 0y_1 (0; oy — 0uho; ), 4.15
mPl/ Ez:z(n‘i‘l)' |:/ X N 1( i,"*0a a 01”) ( )
where the first two terms in the last equality contain the coupling to the conserved quantities, the total linear momentum,
= [d9xT%, and the total angular momentum, L® = [ d/x(T%x" — T%x4).

Fmally, the decomposition via Young symmetrizers (once again here denoted as Young tableaux) for coefficients

coupling to h,, yields [44—46]
1 n+1 a | b i1 | .. fin-1
d ab N P
/d xTa = oo S T ( - +i perms>

n n—1 a b i1 ...in,2‘+.
1-perms
(n+D8\ i fins P (4.16)

1
:/ddXT(abe) + —4 (n+1) SS A (/ddXTa(be)>

n-+2 abN ai,

1 2n=Us 44 (/ddeabe>.
n-+1 Nai,bin_

Therefore, with the additional help of (B2b) and (B2c), the h,, term in the action reads

1 - 1
Sil“ﬁrce =———/dt — </ ddXTabe>a hq
© 2mp1 ; n! NTab

i1 in

2(n+1)
d ab .N E dyTa(bN
/d XT( X )>0Nhab / n'( +2 mn (/d xT ( X >>6Nhab

0
1 * 2(n—1)
—— [ dt d4xTxN ) o\ h
mp, Z(nJrl)!Zibé](/ X x>”‘”’

n=2
2mP] o n' N-2 lnln 1
—i/dzi 2n /ddeO“xN -z (0; 0,h; 0= 0,0h; )
Mp| — (n+ 1)| N=2\Yi,Yt'i,_a a“t'ti, i,
+/dl‘iu (/ ddXTah)CN) ONW i bi
o (n+ 1)! nPln—1
- -1 - .
=+ 1)i(d=-2)
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Note that in this derivation, the coefficients carrying antisymmetrization operators over the group of indices {a,i,} and
{b,i,_;} yielded couplings to the purely spatial Riemann tensor, which in turn is replaced by its traceless counterparts

using (4.5c).

Adding all the components together, we write the source action (4.13) as

Ssource

where

cons —
Ssource -
mp)

= 1
e = / W (/ ddXTOOXN> 2B
‘g n! n—1tn

n—1

— SCOI’IS
— ~source

1
5 [ di(Mhog -+ MG“d,hgp + 2P hoy + L0, hoy).

Srad
source»

(4.18)

(4.19a)

d aa N ipip_1 +N-2,2 _ ai, .aN—1 o
+/dt;(n<|»])|(d—2)|:/d X(T X +T X r 2T X )}0N_2Eln_],n

<. 2n ; . n-1 .
+ /dl‘z;m (/ ddXTO XN) 0N_zBa‘in71,»n +/dlz;m (/ ddXT bXN> aN—2Wainbi,,,1‘ (419b)

The radiative sector is expressed only in terms of couplings
to propagating degrees of freedom, and the multipolar
structure manifests.

Before turning to the reduction of those multipole
moments as irreducible representations of SO(d), let us
confirm the results so far at the three-dimensional limit. The
conservative part of source” and electric sectors are trivially
in perfect agreement with the known three-dimensional
multipolar expansion; see, e.g., Egs. (78) and (79) of [29].
As for the magnetic sector, by employing the three-
dimensional limit of the magnetic field (4.7), it becomes

o qBape g o~ 2n dgT0a N
Cljl_l’}I%Ssource—Llll_Ig/dt;(n_’_l)!</d xTx )

X On_2Byji, i,
_ o~ 2n d pinba0a bN—1
—-/dt;ml)'</dxf,’ Tx

X ON_ZBin_I,»", (420)

in full agreement with the three-dimensional result, Eq. (79)
of [29]. Finally, due to the vanishing of the Weyl tensor in
three dimensions, the last term of the radiative action (4.19a)
is not relevant in such a limit.

C. Irreducible decomposition of the moments

The last step is to rewrite the moments in (4.19a) in terms
of the irreducible representations of SO(d). Similar to the

2, . . .
The orbital angular momentum vector L* is recovered via
Lab — 8abch

|

electromagnetic case, we treat the different components
of T% separately depending on their tensorial nature. We
present in the main text the procedure followed to reduce
the purely symmetric structure x” in (4.19a) to the STF
counterpart %L, and we refer the interested reader to
Appendix C2 for the technical details of the remaining
computation regarding the complete reduction of the
moments. However, we hereby remind them that identities
(4.11a), (4.11b), and (4.11c), along with the equations of
motion, were extensively used. Additionally, we introduce
hereafter the following notations for some recurring factor
combinations:

asj=(0+2j+ 1) +2j+2)7, (4.21a)
Bej=(€+2j+1)(€+2j+3)¢), (4.21b)
Ve, =(d=2)(+2j+2)(£+2j+3)¢, (421c)

together with the contractions

and T = T9xab,

(4.22)

TO = TOaxa7 Ta = Tabxb’

1. Scalar sector

We start with the scalar sector of the radiative action,
namely the parts of the action (4.19a) involving 7% and
T4, These terms are already symmetric in the indices;
thus, we only need to implement the STF relations (A4)
and (A9). The T piece then becomes
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ST =

rad —

.1
/dtzzm (/ddXTOO N)a]\] 2Eln Lin

o Al
‘.

A
= [ dt —
/ g::o ar.j
(d)

© A
/ a2
/=0 %¢.j

dy A2J 700 absL 2/ 3
/d x0TV x* 3 r“ 0, E ,,

/ ddxaijOO abL zjaL

(d)

© ® Aff
fas

Py R af,(d+ 20 — 2)

(d)

© X AN 00 =1
LD s el

L Zga, (d+20-2)(d+20 - 4)

Using the identity in (C6a), the T% piece can be further

(d)
© o A ) .
Sty = / Ay / d¥x97 TO321219, ,E,,.
=2 j=0 ¥t-2.j
(4.24)

which is explicitly in the irreducible STF form. Similarly
the 7“ term in the action that is given by

aa 1 n—1 wa
Sz;d _d—2 +1)!(/ddXT N)aN 2E,n i,
(4.25)
|
DA I dIxT%xN ) ay_,B
rad — IZ;(n+ 1)! X X N-2Dali,_,i,

ddxa JTOa bcAL 2JaL albe

AN e

3 Pejld+2¢-2)

AL -1)
< Bpi(d+26-2)(d+20 - 4)

A
_ /d[ i/ddxaijOa'\bcL -2 ZjaL 2B
=2 j=0 Beaj
o A=)

2 [ary"y

£=2 j=0 ﬁf—l.](d +2¢ - 2)

o A;‘f}(ml)

/dt;o

2 Al — 4y
/ddxdleOOxL 2r21+4aabL—2Eab-

d9x0¥ T05bL 1279, B 1. +2/dt SR A
LB alb ;Oﬂm(d +27)

2j+1 AbL— i
ddX6,j+ ToaXbL zrzfﬁL_zEab,

i qdx g 00 sblajL) 2j+25 E
af,j(d+2f)/ X LB

oF o A~
/ ddxatJTOOXhL 1r2j+zauL—lEuh

(4.23)

|
can be rewritten in the STF form as

ST{AM

rad —

] / ddxa%j TaagabL-2 rzj/éL—zEab ’
(4.26)

following the same procedure.

2. Vector sector

We now move on to the vector sector, namely the 7°¢ and

T¢ = T9%x? terms. First, the 7% terms can be written as

o Ald)
Af,j(f—F 1) /ddxatijOaéb(cj\CUr2j+2/a\LBahc

2j ~bl— i+2
/ddxaleOaxbL lrzﬁ_zacL—lBa\bc

d A2 T0a 2 L2 ,2j+473
/d X0 TR r 7 0pep 2B yjpe

(4.27)
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where in the last equality we apply (C6b) and (Cé6c¢) to rearrange the indices by symmetry. Notice the similarity with the
vector sector (3.15) in the electromagnetic case. After some manipulations we atrive to the irreducible decomposition of the

T% part of the radiative action
ST‘Z‘ — 2/ ti i ( -1 /ddxa,zH'TO(“fch‘” r2j+25L_2E ,
8 D G d 7=

(d)(f 1)
§ :E : dy A2J 10 8abL—2 273
—2/dt ﬁf 1] d—‘,—f 2)/(1 X@, T x rf()L_zEab

=2 j=0

d)
N Afff(f b dy Piroazbel—2 25| 5
/ IZZK' (C+2j-1)(¢+1 )[/d X0 T™% r 1 O0p-2Bape- (4.28)

=2 j=

We proceed in the same way for the 7¢ piece of the action, which can be written as

2 > n-—1 "y
[ty ([ dIxTN oy,
rad — d—2/ ‘s (n+1)'</ X[rx ) N=2%i,_41,

sTe =
o A N ~
=-2 / >4 / dx0; TxP 3L 1210, E,,
Ve
£.j=010.J
o A<d N R o oo <d>f N ~
=2 / > / / d/x07 T93L 129, E ;) — / dtzzy d+2 Y / d9xop TaxL=1 120429, E,,
£.j=010.J =1 j=0 f]

=2 fary "y / Ax0p TS 0, By, (4.29)

fljoyflj

and the final result is given by

© (d) .
2j i~ ~
ST = -2 / dt ( ) / d¥x0, T'3PL-2 1210, ,E,
ad ;JZO}/{ 2 d+f_2 t L-2 b
AW

0o 00 f-j i e PEN
a3y d;f 5y [ AT

/= =0 V- 2}
d

G -1 s ] TE
_2/df )) |:/ ddxatzj+1Ta)’ebcL—2rzj:| aL—ZBa|bC’ (430)
Ye-1
=2 j=0 J

where the technical details of the computation for the 7% and 7¢ terms can be found in Appendix C 2 b.

3. Tensor sector

Finally, the remaining T terms in the action (4.19a) are given by

T"” dyTipi N-2.2 n—1 dab N
déxT'ntn-1x ov_LE;, . + dtg dx7 ON_IW i pi
d 2/ Z n +1 </ X r > N=2Li i, / > (n 1)! (/ X > N-2"Vai,bi,_,

I'dd
(4.31)

This tensor sector is unique to the case of linearized gravity and has no electromagnetic equivalent. Plugging in the STF

relations (A4) and (A9), the 7% terms can be rewritten as

104027-11



AMALBERTI, LARROUTUROU, and YANG PHYS. REV. D 109, 104027 (2024)

) (d)
ng - /dt Z Ye /ddXOQJT“b L 2’+23L b"‘/dt Z ij )/ddxatzjTabedchrzngWacbd
£,j=0"7%J ¢.j=0
> A;d)' 2j 23 = Af-(d—2) 2j S
= / ey =L / d9x0 Tb3L 2029, E,, + / ey ——— / d9x07 Tab3<dL y2i9, W),
= ‘j=0 T
(d)
= AN+ D)d=2) [ -
+ / dr J / d?xa, T 541 r2I20, W oy pu
f,]'ZO Vf,j(d + 2{) ! L
/d ii A(d).f(d—2) /dd I TabRAL=1 27425 W
+ t e —— X xR cL— ac
Ly (d+20-2) ’ btk
(d)
©  © A0 —1)(d-2) )i R
—|—/dt »J /ddxa ]Tab)%L_ZFQJ-M()Cd —ZWacbd
;;ym(d—i—w 2)(d+2¢ — 4) ! L
Bhe A;‘fj).(d—2) dy A2iabscdl—2,2j73
= dlzz y d Xat 7% r ]aL—ZWacbd
£=2 j=0 £=2.j
®© o (d),f(d_3) : ~
-2 / dr i / ddxo¥ I Tabsel-12425, B
;;m(dufﬂ) ‘ Lot
(d) .
® Ay 2j(d-3) ; o
+/dt _/<1 n >/danZJTabj\CLr2j+Za E.,. 432
;0 . d+20+2j ' L 432

where in the last equality (C6f) is applied to contract the Kronecker symbols. And the final results in terms of the irreducible
representations are given by

s :/dtii A

/= =0 V£-2.j

d

/ dx 0[21' Tlabsl=2),2 j+25L_2 E,

o o A P
/ AfJ](d 1)(d+2f+2,] 1)/dantij<ah5CL_2>r2j+25L_2Eah

ar) ) d+e—1)(d+7-2)

/=2 =0 Ve-2j

(d) . i
A -1 2 2i—-1 . o~
“j (1 (d—1)(d+2¢ +2j )) /ddxa?/wach—a 203, oE,,
yfzj(d-i-f 2) d+7¢-1)

ADj(d+2¢+2j-1)
Ve (d+¢=1)d+¢-2)

i dj[z(j —1)(d=2) + (d+2¢)(d - 3)]
2
=0
>

+2 / dIx07 TH3"=21%10, ,E,,

A% TrabL-2,2j-23, E
Ve j(d+¢—1)(d+ ¢ -2) / X0, 41X r L—2Eap

A +2j+2)(d - 2)

‘.

Yoo ;(C+1)(d+C—1)

TE
) |:/ d% 2]+1Ta( ~cL-2) 2/+2:| aL—zBa\bc

Ad(f—l)[2j(d 2)+ (£ +1)(d -3)]
Ve (€ +1)(d+¢ 1)

-2

jos:
jos:
jos
[y

2it] A ] TF
|:/ ddxatJJr Taith—2r211:| aL—2Ba|bc
+/dt o o Ad (¢ +2))(¢+2j+1)(d -
— Ye—2,(€+1)(€+2)

J=

2) 5 JTEL
|:/ ddxdth“bchdL_zr”} aL—ZWacbd7 (433)

where the details of the reduction to irreducible representations of SO(d) are presented in Appendix C 2 c.
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4. Final expressions for the moments

At this stage, all contributions to the radiative part of the source action are written in terms of irreducible representations
of SO(d), and we are ready to add them together. The lengthy expression of the final sum is presented in (C19) of
Appendix C 2 d. Making use of the conservation laws for the stress-energy pseudotensor (B2) to replace the coefficients
involving T, T'¢, TO% and T%, the final action can be compacted into an elegant form

Ssource = Scons + STy + ST 4+ ST 4 ST 4+ ST

rad rad

1
e — dt(MhOO + MG”dahOO + 2Pah0a + Labaah()b)

2mp1
<1
+ / dtZzILaL_inm_l - / dtz J L9, 2Bajii,
/ tz 1),Kab‘LaL—2Waifbif,l, (4.34)

with the exact expressions for the d-dimensional electric, magnetic, and Weyl multipole moments, respectively,

= TEg+7) 4j(d-1)d+C+j-2) : :
IL — i 2 1 /dd aZJTOOAL 2j
Zzzzj!r(g+f+j)( +(d—2)(d+f—1)(d+f—2)> X0y 24T

) 2d=1)d+E+2i-1)
_ dd a] TOAL 2j
Zz%r +f+])(d—2)(d+f—1)(d+f—2)/ X0 X

® r§+2) 1 ( 2j(d—1) >/ PRI
+Zj:o22-"j!F(%+f+j)(d—2) A -n@re-g) ) T

% I+ ¢) (d-1) T
+22211'F( dte+)) (d—2)(d+f—1)(d+f—2)/d X0, TR, (4.35a)

S rg+¢) 2j 2j T
Jl = A = <1 +7> { / d’x0 "TO“)?erf]
ai/;?/j!l“(‘—zl—l—f—i—j) (d+7¢-1) !

. F(d"“’/ﬂ) 1 il TR
_.A . 2 /dd aH— TaAL 2j 7 435
“iszo22’jlf(%’+f+j)(d+f—1)[ xo R (4.35b)

KL — A A 2 { / ddxaij“bchrzf} : 4.35¢
aiy bi,_, /:Zo 221j!F(‘§1 +74 ) ' ( )

The electric moment corresponds to the symmetric Young tableau

5 =i fioo| [ o [ | (4.36)

when the two other moments are, respectively, given by the mixed Young tableaux [44—46]

ig z'H]...] is ‘ i ‘ iy z‘Hz'H]...] is | i ‘
and Kbl — .
a al| b

JoE = (4.37)

Note that the three-dimensional limits of the multipoles I* and (the dual of) J¢/* perfectly agree with the known three-
dimensional results, (105) and (106) of [29], whereas the additional set of moments K“I is absent in three dimensions.
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V. CONCLUSIONS

We have extended to a generic number of spatial
dimensions the results presented in [29] for a scalar field,
electromagnetism, and linearized gravity. Our results con-
firm that electric-type moments can readily be generalized
to d spatial dimensions, while magnetic-type moments
have to be represented by expressions having the sym-
metries of a mixed Young tableaux. Furthermore, within
the framework of linearized gravity, we have identified a
novel set of “Weyl-type” moments, with symmetries of
another type of mixed Young tableaux. These additional
moments couple to the spatial Weyl tensor and are absent
in three dimensions, in agreement with the discussion
presented in [13], where a different formalism and gauge
are considered. The expressions of the gravitational
moments (4.35) are crucial ingredients toward high accu-
racy gravitational waveforms within the EFT framework.
Indeed, they are the key ingredients of the GW flux, the
computation of which entails (logarithmic) divergences
starting at the 3PN order. This provided our main motiva-
tion for this work, since one then needs to obtain the
expression of the (source) mass quadrupole moment, /¥/, in
arbitrary dimensions. The derivation of the 3PN GW flux
will be discussed elsewhere. Needless to say, the results
given in this work will be building blocks toward con-
structing accurate waveforms at even higher PN orders. To
conclude, let us remark that we have excluded throughout
this work the inclusion of nonlinear terms in the action.
Within the EFT context, the so-called ‘“tail-of-tail” effects
due to the gravitational interactions with the background
geometry in the far zone must be taken into account in the
computation of the gravitational flux starting at 3PN [27].
Moreover, nonlinear terms, incorporating notably dissipa-
tive effects, will be of prime importance when reaching
4PN, where the interplay between conservative and dis-
sipative dynamics affects the gravitational flux [11]. We
reserve this exciting new avenue for future work.
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APPENDIX A: FORMULAS FOR IRREDUCIBLE
TENSOR DECOMPOSITION IN d-DIMENSIONS

This appendix lists expressions and relations that are
useful when computing the irreducible decomposition of
tensors of SO(d).

Arbitrary symmetric tensors SV are expressed in a STF
guise as

|
N — 7”’ (d) ( i i2p- '2 Qi p "'in)a ap--dpdp
SN = E (n—2p)'A”_2p~176 hiz ... §lap-1tp §l2p+1 rdrdpdp

(A1)

where [n/2] denotes the integer part of n/2 and where we
defined

L4+ n)

A :
’ 2% pIT(¢+n+ p)

(A2)

Therefore, products such as x" can be rewritten as [41,42]

[n/2] |
N _ n (d) (2P AN—-2P) 2
s ; (n—2py e ® AT (A3)
where 8°F is a product of p Kronecker symbols. With a

little manipulation, this leads to the extremely useful
relation

o Al

(o]
1 @
E ﬁdeL: E #rzfovzde.
=0 " " Z,j=0 :

(A4)

Given a tensor 7%, STF in the indices {L}, and a tensor
T L, separately STF in the pair {a,b} and the indices
{L}, one can extract the symmetric and antisymmetric
parts as [13]

jaL _ j(aL) + isj[aif]L—l’

A
£+1L (A32)
JabL _ 7 (abL) +wggAq'a<bL)
£+2 abl ai
4(¢ -1)
N s JabL AS5b
+ +1 L‘;’é’b;’il ( )

The irreducible decompositions of the same objects into
their corresponding TF counterparts read [13]
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£(d+ 20 — 4) | £(f-1) -
al _ aLTF a(i, OL-1) _ (igip—1 OL-2)a
T = e @202 T e—a@12e=° ¢ (A6)
and
2¢0(d+2¢ —4) A 47
abL _ [7abL]TF aiy | 2/bL—1 (bL—1)
T = e s e = /[H T =@+ }
2"ﬂ("ﬂ — 1) ipip ) abL—2 4z (abL-2)
A+ 7-2d120-2) s’ {H VR RSk
20(d +20 - 4) £(6 —1)(d +2¢ - 6)

5abH(ifL—1) S(Sazfébzf 1L -2

C(d=2)(d+¢-2)(d+2¢) (d+¢-3)d+¢—-4)(d+2¢-2)1L
20(¢ = 1)(¢ =2)(d +2¢ - 6)
Cd+C=3)d+C—4)(d+20-2)(d+20 —4)ab

(-1 -2)(¢ -3 o
Tare- 3)(d(+ Z —)i)(d +)2(f - 2;(d e LR
£(¢ = 1)(d+26—-06)
T d+-3)d+¢—-4)(d+20-2)(d+20—4)

S&a tf(szf Vg 2£L =3)b

5ab5(i/if_1 EL—Z)’ (A7)

where we defined the trace-free parts of the tensors as [J4|TF = TET al and [T PL)TF = "l;lzT abL " and introduced the

tensors

QL—I = jaaL—l’ HL = TLFTaifaL_l, and EL—Z = TababL—Z’ (AS)

which are STF in all their indices. Applying those relations to the simplest case of coordinates and derivatives, one finds the
relations

-0
2L — yicpl-1 d(+2f)_r45w<tf15614—2>, (A9a)
-~ f— 1 < 2
0= 0,011 = Ot 01 ) V2 (A9b)

which are used extensively throughout this work.
APPENDIX B: CONSERVATION LAWS FOR THE ELECTROMAGNETIC CURRENT
AND THE STRESS-ENERGY PSEUDOTENSOR

This appendix contains useful formulas derived from the conservation laws of the sources.
In the case of electromagnetism described in Sec. 111, the conservation of the four-current d,J* = 0 yields the identities
(valid for any j,7Z > 0)

/ddxa,JOrzfo = /ddx(L”J(if’xL_l)ij + 2T xl 272, (B1)

where we recall our notation J = J%x¢
Similarly, in the case of linearized gravity investigated in Sec. IV, the conservation of the stress-energy pseudotensor
0,T% = 0 can be translated into a set of relations (valid for any j,Z > 0)

/ddXT(i,«_]ifo—Z)ij+2 __/ddxatTO(ifo—l)rle _w/ddxi’(ifxl'_wrzj’ (B2a)

!

oy | ~ . 2j ~ . 1 .
/ddeWxL_l)rzf :;/ddxdtTOerzf —%/ddeerzf_z—E/dde"“erzj, (B2b)
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/ddXTO(ifo—l)r2j+2 _ %/ ddxQ, TO0xk 22 2(]; 1) / ddxTOxL 12, (B2¢)
/dde“(if/”)cL‘l)}’213r2 _%/ddxatTOaerZN —@/dde“erzj, (B2d)

with the help of integration-by-parts. We remind the reader of the shorthand notations introduced in (4.22), namely
TO = T0ax, T* = Texb and T = T x.
Note that, although derived in d-dimensions, these relations are similar to the three-dimensional ones used in [29].

APPENDIX C: TECHNICAL DETAILS OF THE IRREDUCIBLE DECOMPOSITION

This appendix collects technical steps that are followed when decomposing the multipole moments into their irreducible
counterparts, for both electromagnetism and linearized gravity.

1. Electromagnetism
Let us detail how we decomposed the electromagnetic radiative source terms (3.13) and (3.15) into irreducible
multipoles, as given in (3.16).
The scalar sector, Eq. (3.13), is already in the sought form, so we will deal here with the vector one, Eq. (3.15), namely

(d)
SJ“ :/dt Z,j : /ddXdzj]a}%bL_lrzjaL—lBab
e ;j:o -DIZ+2j+1) ! \
(d)
dr »J dd az,]+1Ja,\L_l 2]0 N3 1
+/ ;,Zo:(f—1)!(f+2j+2)(d+2f—2)/ X0p IO (C1)

The first line has nearly the appropriate symmetries for a magnetic-type moment: it is STF in its {b, L — 1} indices and
antisymmetric in {a, b}, so it only requires a removal of the trace, which is easily done by applying the relation (A6). As for
the second line, let us first symmetrize it, using the relation (AS),

/ dixoX T jagl=12i9, |E® = / dx ot jlagl=1,279, | Ea jLz('fffl)Ls1 ( / ddxaff“ﬂ%ff—dL—Zr2f'>5L_1Ea. (C2)

Using the Maxwell equations (3.4), using the relations (A9), and removing the traces with the help of (A6), one obtains
irreducible expressions for the coefficients entering both the first line of (C1) and (C2) as

(¢ —1)*r

J(uAL—2)5 L O.E“
dte-3)dt2c—4) + 2%

JUPE10, By, = [P0, By,

-1

+ m]X“L_ZBL_ZG,E“, (C3a)

206 - 1)(¢ - 2)*r
£(d+20—4)(d + 26— 6)
200 - 1)(¢ -2)

_ 7 *aL—3/a\ aZEa b
f(d+2£—4)(d+2f—6)Jx b3t (C3b)

Jagl=1g, |Fe = jlagl-19, |Ee 4 JagL=39, P E¢

(¢ =2)3r?

J(a’\L—3>5 B 02E¢4
20d+—-a)(dr2—62 1 R

. ~ 1
S VR0, By = S [198 20, 50,By, -

(¢ -2
2(d+¢—4)(d+2¢—6)

+ J%9L=39, 02E°, (C3c)

where J = J9x“. Those identities allow us to rewrite (C1) in terms of irreducible representations of SO(d) as
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AD

Sy = / dr & / d¥xa; ! 51129, B
ad ;]ZO (-1 +2j+2)(d+£-2) ! t
+/dt oJ /ddxa I plagl=1),275, | E¢
g (0 - DI +2j+2)(d+6-2)
(o] oo )
x [dy Sy A T gaxapigos1,20] ™5, 8 (C4)
- ( + 1)' t L-1Palb-

A
Il
.

Adding the scalar sector S .q (3-13) and using the conservation of the current, Eq. (B1), the electromagnetic radiative action
can be written as

> A% 2j dg A2l J0sal—1,2j3 fa
Stad = dIZW l—l—m d*xo0;"J°x r’o, E

£.j=0
© o AW
— [ dr J / d¥xop T jral=1,2ig, | E
o3 S et
© @ AWy S TE
+/m;;Z%foJ/&&Wﬂﬁbwﬂ Ou-1Baly (©3)
= <=

This final expression directly gives the result for the irreducible decomposition of the electromagnetic action, Eqs. (3.16)
and (3.17).

2. Linearized gravity
Let us now turn to the case of linearized gravity, described in Sec. IV C. This appendix hence details the necessary steps

to decompose in an irreducible fashion the radiative action (4.19a). Hereafter, we will often use the following identities that
are consequences of the formulas exposed in Appendix A

£(d+2¢ - 4)

~sal—173 E
Gt Ddrae—2) On-1Ea (C6a)

5a<b2L>5L Eab —

2¢

A ~ ~
) = aL=19, 1 1Bejap — 2719, _1Bepas C6b
X a(bYL) c\ab f—l—lx bL—1P c|ab (f—l—l)(d+2f—2)x bL-1Pc|ba ( )
~ S 4 sal—173 2¢ ~sal—173
XL5b(aaL>Bc\ab = pan lx L labL—ch\ba - 1 1)(d+20— 2)x L 1abL—1Bc|abv (Céc)
Tab'\ch—25 /a\ E , = d—-2 TabAacL—25 E Cced
X c(bOL-2) ad_<f_1)(d+2f_6) A L-2Cbes (Co6d)
A £=2)(d+20-8) o i~ T e
T 5" 28,,0; 5)Ecq = Ebﬂ - liéd Y 6; T5Pedl=30,, 3Eq + o1 P20, HE,p, (Cée)
£(d+26 -4 L
Tab5d< >aL)/Vacbd = ( ) Tabde_lacL—IWacbm (C6f)

¢+ 1)(d+20-2)

i 278 206 -2)17 .., (¢ -2)(¢-3)r*
TabzabL=2 _ [T _ Iy aL-2 _ T(lf,zAL—3> T<lf 2ip_3 4L— 4)
* < d120—4)" Tadxar—a N T as 2 —ad+20-6) *

(Cog)
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a. Scalar sector

The 7% and T § terms are treated in the main text, in Sec. IV C 1. Their expressions in terms of the irreducible
decomposition of SO(d) are given in (4.24) and (4.26), respectively.

b. Vector sector

The 7% and T¢ terms are, respectively, given by Eqgs. (4.27) and (4.29),

ENENIN 5 R
=2 / ey o> /)’f_;‘ / %07 Y3712, B ,1p,

=2 j=0
B d)( £-1) dy 251 m0a sbL-2 273
/dtzuzﬂf ST 2)/d x0TI T0axbl=22jg, E . (C7a)
ST =2 / e <t / dIx07 Ta%PL~1 129, |E,p. (C7b)
=1 j=0 J

Exactly as is the case for electromagnetism in Appendix C 1, the first line needs only its trace to be removed, whereas the
two other lines require more work. Upon using (AS5a), we can decompose

2j+1 A — i S Di+1 ~ _ . ~
/ddxatj"r TOagbL 2r2J+20L—2Eab —_ /ddxat]"r TO(axbL 2)r2/+20L_2Eab

2( -1 ; o\~
( ) S </ danIZjJrlTO[a)%b]L—Zij-ﬁ—Z)aL_zEab’ (Cga)

+ 4 bL-2

/ddxdtij“)Ach_lrzj/a\L_lEab :/ddxatij(“fch_l)rzj/d\L_lEab

2¢ . N\~
1, S ( / d9xoX TlazblL-1 r2J> 011Ep. (C8b)

Using the Maxwell-like equations (4.11), using the relations displayed in the appendixes, and removing traces with (A6),
one can irreducibly reduce all pieces appearing in those expressions as

46 -2)(¢ -3)
£(d+ 20— 4)(d+ 27 —8)
4(£ = 2)2(¢ = 3)P?
£(d+ 20 —4)(d+2¢ —6)(d + 2¢ — 8)

T0(a )ACbL—z)gL_2 E, = T0(a )?bL—Z)’a\L_Z E, — 70 )AcabL—45L_4 0*E,,

+ TOagbL-49, ,PE,,, (C9a)

~ ~ £ —
TOaAbcL—Z B — TOa’\bcL—Z TF B TOAahL -33 E
304720, 5 Byjpe = (T3P0, 5 Boppe + ir7-3 0r-30,E 4,
(-1 -2)r OlanbL3)3
- T%a3xbL=3)5, 10,E,,, C9%
d+e-3)dt+ac—4) + 00t (C9P)
4(2-2)(¢ - 3)

T3P=20, E,, = T390, ,E,, - T340, 4O E,,

£(d+2¢—4)(d+2¢-8)
4 -2)* (¢ -3)r?

Tlagbl-49, ,PE , C9
Ad+20—4)(d+20—-6)(d+20—8) ~  OLdita (C9c)

+
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TabeCL_sz—zBa\bc = [Ta’ACbCL_z]TFBL—zBawc + T3=30;, 30,E,

PR
(¢-1)(¢-2)r
Cd+£-3)d+2¢0-4)

TlaRbL=3)9, 10,E.p. (C9d)

(Z-=2)(¢-3)(¢—-4)

TOlagbll=25 B — _
S TR0, 2 Eap 2(6-1)(d+¢—4)(d+2¢-38)

bL-2 2(¢-1)

[T0432L31TFG,_30,Bype 0346, _4E,,

(£ =2)2(¢ =3)(£ —4)r?
20— 1)(d+ ¢ —4)(d+2¢ — 6)(d+2¢ - 8)

+ TOaRPL-4)9, ,PE,,. (C9e)

(¢ =2)(¢ = 3)(¢ —4)
abe "2 =1)(d+ ¢ —4)(d+2¢ - 8)

(£ =2)(¢ = 3)(£ - 4)r
200-1)(d+ £ —4)(d+2/—6)(d+ 27 —8)

N ~ -2
S Tlazhlt=2, E, = —

FragbeL=3 TF/a\ 0.B
b2 2e—p T o0

FraabL—47 2
Tx“ OL_40t Eab

+

Tlazbl=49, L?E,,. (COf)

After some manipulation, we recover the irreducible expressions of the 70¢ and T¢ sectors, displayed in Egs. (4.28)
and (4.30), namely

SZ:; = Z/dtzzﬁ kd+f 2)/ddxa?j+1TO(afch—2>r2j+2/a\L_2Eab
: £-1.j -

_2 [ a J\C ddx P FORabL-2,2i5 |
Zzﬂf_l,,,(dw—z)/ o Dot

o A
— NC+2j-1)(+1)

. | TEL
[ / %07 TO9RPL=2127 | 0; 5B ppe. (C10a)
=2

S Aiﬂd)' 2j 24 ~
; f <1+ - 2) / d9x0X TlazbLl-242i9, ,E,,

d) .
A(f,])'J

D

=

a ; JZZ; Ye-2j(d+ € —=2)
2.2

2] Ara — -2
/ddxat'lTx“bL 2}"2] 20L_2Euh

d
A - 1)

X - . TF
Yeo1;(€ 4 1) {/ ddxa?ﬁlTaXbCL_zrﬂ Or-2Bape: (C100)
=2 j=0 -1,

c. Tensor sector

Let us now turn to the 79 sector, displayed in (4.32),

2 .
2 A - i3
/ ddxd,JT“bedL zrzde_ZWade

©  AD4(d-3)

Ve, (d+26 + j) / A%y TR 0, B
0 705
)

2 2j(d-3) / dy 2iabsl 25423
1+— dx0,’ T JT20, E . Cl1
’ < + d + 2/ + 2] X0, X°r L&~ab ( )
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To apply the formulas of Appendix A, we need to take the STF part of 7¢” [as the tensor 7 “ entering (AS5b) and (A7) has
to be separately STF in its two first indices, as well as its £ other]. Hopefully each of Ej,, B ., and W4 are traceless.

Hence, one can safely replace 7 by its STF part, 7%, in (C11)

. 0 A(fd)(d—Z) 2 Aab ac —~
STy = / D e — / A% T3 =21210; W e
= =0 Vr-2j

o @ £(d-3) i o
dr ddx o H Fabgel-1,2j+2) 3
S fas S M g 1B

=1 j=0
o Al

2j(d - 3) bin L
dt Ci(p 4 ST [ qdxgP pabiLl 2425, E C12
+/ f;om( +d+2f+2j>/ X0,/ T* 3L r*120, E,, (C12)

Once again, the first line is nearly in the sought form, and only its trace needs to be removed, which is to be done with the
help of (A7)

2(d-3)¢

FrabgedLy Woepa = [T@05edL TF) Woepa +
L bd [ ] L bd (d 2>(d+ f)

[chcabL_l]TFaL—l ach|ab

_2(d=3)f(¢+ )P
(d=2)(d+¢)(d +2¢)
d-3)(¢-1)¢ P
(d—2)§d+f)(— 2)(d>+f— 1)( d+2pr) VL0, 20 Eay
2(d-3)(¢ - 1)
d=-2)d+£-2)d+¢—-1)(d+27)
(d—3)(£ - 122
(d=2)(d+¢=2)(d+¢—1)(d+2¢=2)(d+27)

[TC(akbL_1>]TlﬁL—10th\ab

_|_

Tlazbl-25, ,PE,,

_l’_

T(ab%L-2)9, 22E,,. (C13)
As for the second line, after some manipulation, one can irreducibly decompose

IR 4 o £+2 R
TabeLaLBclab ~ 711 T [TabedL I]T 10 Wacha — 7+1 [TC(aXbL)}TFBLBc\ab

B (=12 (d+36+3)r?
Z1D)dré-1)(d+20-2)(d+27)
(&= 1)e(d+3¢ +3)
@+ D)d+Z-1)(d+20)
de?r?
Td=2dri-)d+27-2)
(€ =22(¢ = 17267

[Tc(afch—2> ]Tlfa\L_za%B

clab

[Tc 5C<sz—2]T}:5L_2 0’B

clab

T(ab%L=19, |0,E,,

YaT -3 A+ -2(dtr20-22d+ 204 TR0, 200y
a0~ _2§>f<c_z i)f__z%ffzf o T 00
+ (d- 2)(;+ /1) TﬁfcabL_laL—latEab - d+7— ;i; j_) ;f_—zl))(z'rj_ 20— 27 Tﬁ)%“”L‘35L_30?Eab
+ (d+¢— 3()1/;;3);{_2)1()5+ 20 =2) T30, 30} E . (C14)

To apply this formula to (C12), one simply needs to downgrade the value of # by one. Finally, for the last line, let us first
(anti)symmetrize it by using (A5b)
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2£0(¢ +3)

44 aQJ"fvabAL 2j+25 E . — /dd aZJ'f(abAL) 2j+25 E
/ Xt X°r L%~ab Xt Xr Lab+(bﬂ+1)(f+2)

/ ddxatzj j‘vabsz r2j+25L_1 i, Ea]h

20(£ -1 i b 2

Working out those coefficients with the set of relations at hand, we find

8A2(£ — 1)
(£+1)(+2)(d+26)(d+ 26 —4)?
8C(¢ —1)(£ —2)2(¢ — 3)r Ly
R 2)(6(1 + 25) (— 2)(d)+( 20 —)4)3((1 +20-6)? TR0, 40! Eay

824 —1)
(D) +2)(d+20)(d+20 - 4)
16£(£ — 1)(£ = 2)2(£ = 3)r*
(C+D)(+2)(d+26-2)(d+20 —4)>(d+2¢ - 6)

82(£ —1)

(£ + 1)(€ +2)d(d +2¢)(d +2¢ - 4)
~ (¢ —1)(€ =2)(¢ - 3)r

(€ + 1) (€ +2)(d+26-2)(d+26—4)>(d+2¢-6)
82(¢ —1)(¢-2)(¢ -3)

4+ D) (€ +2)(d+26-2)(d+ 26 —4)*(d +2¢ - 6)

T@bzL)9, E,, = T'“P%L)9, E,;, + T 3L=29, 2E,,

Fla 5617L_2>5L—2 0’E,,

Tlagbl=49, ,0*E,,

+ T*3L=20; »07E ),

Taa)'eabL—él aL—4a?Eab

+

Txrabl=49, ,0°E,,, (Cl6a)

% [TabjchL_z}TFb\L—zatzWacbd 52—; l
(- 2)(€=1)22(* = 1)+ (d = 3)E) . toeblznT
£d+¢—2)(d+20—2)(d+20—4)? 5 [TsP=]"0,_30}B
€ =2)(¢ =D -1)+(d=3)] aemprzmes
fase-2dre—adrze—-a v 1 0B

(£ = 1)2(dt +2¢ — 4)r?
2(d=2)(d+¢=2)(d+2¢-4)?
(£ =3)2(£ = 22(£ - 1)2r* e
v -3 dt-a)d+ 20— 4P(d+20-6) TR 0,401 By
(£ = 1)(dt +2¢ - 4)
T2(d-2)(d+¢-2)(d+20-4)
(£ =3)(¢ =2)2(¢ = 1)
T (d+=3)(d+E—4)(d+20-4)
(£ = 1)(dt +2¢ - 4) -
-2 d+-2)(d+20-4) Tpi 0,20 Eay
(£ =3)(£=2)(£ = 1)
S 2d+£-3)(d+-4)(d+20-4)
(£ =3)(¢-2)(¢ 1)
2d+¢-3)(d+¢—4)(d+26-4)

1319, i, Eaqp = [TC(aAbL_w]TFBL—lach\ab

clab

T(@b3L-29, PE,,

Tlagbl-2)9, ,PE,,

T<a5€bL_4>5L-4a?Eah

T340, _40lE,,

Trabl=49, ,0°E,,, (C16b)
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| £+ 1
—y[Tabx A=21TC0, 20t Wacha = 7
(¢=2)(¢—=1)2d - £* + 36 = 2)r?
S ld+£=2)(d+2f-2)(d+ 26— 4)?
(¢=2)(2d - ¢*+36-2)
AT e—2)(dr20=2)(d+20-4)
(¢ —1)2[(d - 2)(£ - 2) — 2d)r*
2(d=2)(d+¢=2)(d+2¢ —4)?
(d—2)(¢ -2)%¢ =3
2d+¢=3)(d+ ¢ —4)(d+2¢ —4)3(d +2¢ - 6)2
(¢ - 1D)[(d—-2)(¢-2) - 2d]
2(d-2)(d+¢-2)(d+2¢0 - 4)
(d—2)(¢ —2)X(¢ —3)2r2
C(d+£-3)(d+ ¢ —4)(d+20—4)3(d+2¢ —6)
(Z-1[(d-2)(£-2)-2d|
2d(d-2)(d+¢—-2)(d+2¢—4)
(d—2)(¢ -2)(¢ —3)2?
C2d+£¢-3)(d+ ¢ —4)(d+26—4)3(d+20-6)
(d—-2)(¢-2)(¢ -3)*r
2d+¢=3)(d+¢—-4)(d+2¢—4)*(d+2¢-6)

Tai/_lj\cbifL—25L_l[ifEa]b — [TC(aAbL 1)}TF5L 10, Bc|ab

[Tc<a5\CbL—3)]TF/a\L_3 »PB

tPclab

[TC )AcabL—3]TE’5L_3 B

clab

T ab3L=2)9, ,0?E,,

+ T340, 40t E,,

Tlagbl-29, ,PE,,

Flagbl=49, ,0*E,,

P ~abL-273 2
T,,x” 6L_26, Eab

P sabL—47
Tpx* 0140/ Eqp

+ Txrabl=49, ,0°E,,. (Cl6c)

Injecting all those relations into (C12), we recover the result displayed in (4.33) that we recall here

(s (59 A

0o 00 d) . )
+2/dt A;,J)'J(d—l)(d+2f+2j_1)
=2 j=0 Vf—z,j(d+ £—-1)(d+¢-2)

/ ddxatzj Tlab3L-2) r2j+2/a\L—2Eab

A

= AgiJ (d=1)(d+2¢+2j-1) /d S mbL2) 21N
1- d9x07 TlazbL=2) y2i9, FE
nyzjd—i—f 2)( d+7-1) XOp LT T 02 a

ADj(d+2¢+2j-1)

Z Ve (d+C—-1)d+7-2)

o0
dr Z
=2 j=0
[s+] . A~
ey / dIx0} ThRPL-21210, ,E,,
=2

d
© ® ] 2(j—1)(d=2)+ (d+2¢)(d - 3)] - o
+4/dl E E /ddxd IT5abL=242j-29, E,
/=2 j=0 Yo j(d+¢=1)(d+ ¢ =2) ' L2 E,

d

De(¢+2j+2)(d-2)
L+ D) (d+e-1)

dy 2JH 1 palb scl=2) ,2j+2 TE
d X@, TH%x r aL_ZBa‘bC

2 =0 Tr-
d
© o £—1)[2j(d=2)+ (£ +1)(d - 3)] [ i TTE
2/dt g E /ddxa /+1Ta56th—2r2J} 9B,
/=2 j=0 Ve (€+1)(d+€—1) i L—2Dq)p
© o Ad (+2)(+2j+1)(d-2) _ TTE
th E dix ¥ Tabgedl-2,2i | 3 ' .
+/ =2 j=0 Yo (€ +1)(€+2) {/ X0 X r] L-2Wacba (C17)

104027-22



MULTIPOLE EXPANSION AT THE LEVEL OF THE ACTION IN ... PHYS. REV. D 109, 104027 (2024)

d. Summing all sectors

The full radiative action is
aa a Ta ab
Seaq = STy + ST 4 ST 4 ST 4+ ST, (C18)

where the irreducible decompositions of the five terms are displayed, respectively, in (4.24), (4.26), (4.28), (4.30),
and (4.33). Putting everything together, it becomes

o o A -1) S
Srad = / dt; ;O AT 7T / 4%} TORPL21219, ,E,,
., / y i i ADe(e-1) / G FORal2 2
5 N +2)(C+2j+2)(d+¢-2)
2 / < fi; ,i; N+ 21)(/'\/”%02(;? J: 21))(d +¢-2) / A0 TR, 0B
2 / dr ;: g I gfjj(z;(i o 7 li‘;& if;—zf )(_dlj— ) / dx0} TR 220720, 2
* / ar ; J°° I 2;\)({2?&&2]—3 )(d=2) <1 + (jﬁcfftii(; —2|—jf_ - )2)) / R
R e
J o5 e (1Y) [inrencaor
2] ‘”Lﬁ;i G +A(f?f;i_zi)- gL sro ] oamn
-2 / dtff; Jfg G ijzi(i Dd+7-1) U atxal TR 21} s
2 / dt; ,i; &+ D)\ ;f,)‘f d+¢-1) U Ao r2/+2} TFBL_ZB“W
+ / dr ;oo; g% [ / d’xo;’ T”bfc"dL‘zrzf] TFEL_ZWMM. (C19)

Implementing the conservation laws (B2) to replace the coefficients involving T'¢‘-1, 7% T% and T%, it finally becomes
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© (d> . .
Agj 4j(d=1)(d+ ¢+ j—-2) / dy 320700 2abL—2.2]3
= d d¥xo0/ T x4 10; _LE
Srad /IZZ < “)d+i—-1)d+7-2) O

=2 j=0

—)(d+£+2j-1)

@ g
=2 [ dt dixo¥ 1 F08abl-2,2/5  E
/ Zzﬂ(d D)d+c—-1)d+ ¢ - 2)/ Xoo B OB

=2 j=0
©  © 2j(d—1) / 9 R B ~
dr dd a]Taa abL-2 2}6 E
+/ ;;f' ( (d+f—1)(d+f—2)) U

. © A(d)<d — 1) gd 02”27” DL 2].5 £
t avk= _
+/ Zzﬂd 2) d+f—1)(d~|—f—2)/ Xor Ao Ba

=2 j=0

NS

[Ce] TF
3 £.j dy A2t FasbeL-2 2j| 3
2[4 e Ud xor T j} Ou2Bape

+2
/=1 j=0
(d)
© 00 Aﬁj(bﬂ_
+/d’ZZ ¢+ 1)

(@ .
= & AZ 2

A S

dtzz(val)!f( M

. JTE L
> |:/ ddxa?JTOa.%bcL—ZrZ]] aL—ZBu\bc

(£-1) ) JTEL
/ ddxa,’ Tab'%ch—Z r2] aL—ZWacbd’

(C20)

from which we extract our final result, Egs. (4.34) and (4.35).
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