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Tremendous efforts are undertaken to fight infectious diseases such as Covid-19, and to this end constant 
improvements in scientific methodology are required. One particular recent development of interest is three-
dimensional (3D) histophathology based on X-ray phase contrast computed tomography (XPCT)1–9. XPCT yields 
3D reconstructions of the cyto-architecture with micron-sized or even sub-micron voxel sizes, is compatible 
with standard tissue preparations such as formalin-fixation and paraffin embedding (FFPE), and effectively adds 
a third dimension to conventional histology. As computed tomography is intrinsically digital, it comes without 
any extra step of digitalisation. In fact, it is o�en even impossible to visually inspect each slice in a stack of sev-
eral thousands of slices, in particular when it comes to pre-clinical or clinical trials with larger sample size N. 
Digital pathology is no longer an option but becomes a must. To this end, efficient high throughput workflows 
of automated morphometric analysis and classification are in need. At the same time, data acquisition in XPCT 
is currently still slow, most investigations remain anecdotic concerning the sample size N, and translation from 
high brilliance synchrotron radiation sources to more accessible laboratory sources is in its infancy.

In the realm of biomedical research, however, the importance of a sufficiently large sample size N cannot be 
overstated, as many confounders may affect the outcome and obscure correlative or causal relationships. At the 
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same time N cannot be scaled arbitrarily, in view of animal well-being, ethical requirements, or cost. �is can 
pose challenges, in particular in vaccine or drug development when several compounds have to be tested, and 
calls for sophisticated and advanced statistical methods. While this generally holds true also for conventional 
histopathology, the challenges escalate significantly for 3D imaging by XPCT. �is is primarily due to the con-
siderable time and human resources required for current image acquisition and data analysis. Workflows are 
needed which harness the power of automated sample exchange or multi-sample holders, scripts for acquisition, 
reconstruction and image processing, as well as extraction of quantitative morphometric information.

3D imaging of lung by XPCT is a case in point. �e applicability of XPCT has been demonstrated across a 
spectrum of scales, ranging from the macroscopic to the  microscopic10–19, and even including in-vivo lung imag-
ing. With its intricate 3D networks of airways and vasculature, alveolar ducts, spaces and septae, 3D imaging is 
desirable and at the same time facilitated by strong contrast based on the density contrast of tissue and empty 
space filled by air or the embedding medium. XPCT has also been used to image unstained FFPE lung tissue 
from patients who succumbed to COVID-19, offering 3D insights into diffuse alveolar damage (DAD), hyaline 
membrane formation, lymphocyte infiltration, vascular damage, and intussusceptive  angiogenesis20.

With the 3D reconstructions at hand, morphometric analysis of the tissue can be carried out. Parameters such 
as tissue density, surface areas and curvature, sphericity of objects, as well as compactness can be determined, 
see for  example21. For lung tissue, sizes of alveoli and thickness of septae are of particular  interest22. More gener-
ally, extracting quantitative image information has become a major effort in view of diagnostic and prognostic 
capabilities, and in clinical context is o�en referred to as “radiomics”23,24.

Once morphometric features have been extracted, statistical evaluation and classification can be performed. 
Here, the challenge lies in the high dimensionality. In each sample image (patient, animal), there are typically 
many instances of the sought-a�er features. �is holds especially true for bulky 3D images. �erefore not indi-
vidual features, but instead whole collections of features must be compared between samples. �ese can be inter-
preted as being drawn from an underlying ground-truth probability distribution function (PDF) that captures the 
specific properties of each sample. Fortunately, machine learning and in particular optimal transport (OT) has 
recently evolved as a major tool for quantitative comparison of PDFs. OT provides a mathematical framework 
of re-arranging ‘mass’ from one location in a PDF to another, while minimizing the global (or average) cost of 
transport. Since its mathematical formalization by Kantorovich, OT has evolved into a well-known, versatile 
tool. Due to the availability of increasingly efficient numerical  methods25, several important applications in 
machine learning and image analysis have emerged, such as image  registration26,27,  segmentation28–30, pattern 
 recognition31 and data  fusion32.

In this work, we investigate the effectiveness of several (blinded) drug compounds for treatment of Covid-19 
in a small animal model, based on 3D histopathology of lung as the predominantly afflicted organ. Owing to the 
difficulties in SARS-CoV-2 infection in mice, we turn to the well established hamster model, as introduced  in33,34. 
�e scope of the work is primarily in method development, and demonstrating the potential of high throughput 
laboratory XPCT in combination with automated image processing and statistical analysis based on OT. A�er 
exploring different imaging configurations both at synchrotron and in-house X-ray sources, we scanned FFPE 
tissues of more than 50 hamsters with the same compact µ CT configuration and use the so-called chord length 
distribution as a distinct morphometric measure for the alveolar spaces in hamster lungs. Apart from positive 
and negative controls, five different drug candidates for Covid-19 treatment are included in the study, and are 
discriminated based on OT analysis. Interestingly, promising candidates are identified, notwithstanding the still 
very small N and the confounders intrinsic in such a trial.

�e manuscript is organized as follows: following this introduction, methods of sample preparation and 
image acquisition are detailed, as well as the analysis workflow including the concept of chord lengths distribu-
tion (CLD), the rudimentary principles of optimal transport, and data processing methods. Subsequently, the 
results are presented for XPCT image quality, morphometric measures, and OT-analysis. �e classification is 
then applied to test samples of infected SARS-CoV-2 hamster lungs treated with five different drug candidates. 
�e last section combines discussion, brief conclusions, and outlook.

Male Golden Syrian hamsters (Mesocricetus auratus; RjHan:AURA; 80-100 g) were obtained from Janvier Labs 
(Saint Berthevin, France) and were housed in standard rodent individually ventialted cages (IVCs) Type III in 
groups of 3 to 4 animals under standardized conditions (22°C; 12/12h light cycle). �e air supply and exhaust air 
are filtered through high-efficiency particulate air (HEPA) filters with HEPA filtration of the exhaust air for each 
individual cage, thereby excluding the risk of cross-contamination between cages. Manipulation of the animals 
always started with the mock-infected animals before handling infected animals. Drugs were administered orally 
(drug candidates 1 and 2), intranasally (drug candidate 3), or intraperitoneally (drug candidates 4 and 5) once 
a day. As diet, rodent pellets and water ad libitum were fed. For acclimatization, rodents were housed under 
these conditions for one week prior to inoculation. �e experiments were conducted in a BSL-3 animal facil-
ity. Animals were infected orotracheally with 1 ×105 TCID50 SARS-CoV-2 Germany/BavPat1/2020 (BavPat1)35 
(GISAID accession EPI_ISL_406862) in a volume of 100 µ L. �e animals’ well-being and body weight were 
checked daily. Animals were clinically observed for 7 days with a daily sampling for virological analysis. �is 
had been defined as the optimal time course for SARS-CoV-2 studies in Golden Syrian hamsters following our 
inoculation protocol in a previous  study34. A�er 7 days, animals were euthanized by inhalation of an isoflurane 
overdose followed by intracardial exsanguination and decapitation. Virological analysis of the collected samples 
was performed as described  in34.
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In total, 45 hamster lungs divided into nine groups were examined in this study, including three groups of nega-
tive, one group of positive controls ( POS − CTRL ), as well as five groups of drug treated cases, i.e. hamsters 
infected and subsequently treated by five different drugs. �ese are referred to as the five drug groups (drug 
groups #1 − 5 ). �e three negative control ( NEG − CTRL ) groups consist of untreated and uninfected control 
( UNI − CTRL ), and uninfected control groups subjected to treatment with a drug vehicle but no drug loaded. 
Corresponding to the solution injected, these are referred to as polyethylene glycol control ( PEG − CTRL ), and 
phosphate-buffered saline ( PBS − CTRL ). �e positive control group was infected with 1 × 105 tissue culture 
infectious doses 50 (TCID50) SARS-CoV-2, but not treated. Both positive and negative controls are used as 
training data. For clarity, the control samples were further tabulated in Table 1 and the preparation procedure is 
elucidated in Figure 1(a). �e five different drug candidates are tested with respect to the metric space spanned 
by the morphometric features of the negative and positive control groups. �e five drug groups are referred to 
as test data. Additionally, a ‘lung affection score’ (LAS) ranging from zero (healthy) to one (sick), was assigned 
to every dissected lung by visual inspection.

All hamsters were dissected 7 days a�er infection at the Friedrich-Loeffler Institute (FLI). A�er lung extrac-
tion, the samples were placed in a 10% formaldehyde solution. In a subsequent step, embedding of the tissue had 
to be performed to ensure stabilization and preservation of the tissue. FFPE is the most common embedding 
and preservation procedure in clinical pathology, and has already been successfully used for 3D virtual histology 
of lung with synchrotron and laboratory  radiation20,36. For FFPE, the tissue is first dehydrated by immersion in 
a series of ascending ethanol solutions. Xylene is then used as an intermediate solvent to allow for subsequent 
wax infiltration, which is not solvable in ethanol. While being placed on a cassette, the tissue is then infiltrated 
with paraffin.

A�er solidification, 3 mm biopsy punches are extracted from the identified regions of interest, guided by 
parallel histological sections (for the high-resolution scans at the ID16A beamline, 1 mm biopsies were punched 
out from the 3 mm biopsy bunches). �e paraffin embedded tissue biopsies were then mounted on a brass pin 
for tomographic recording. From each hamster, only a single lung biopsy was examined. �e tissue fixation, 
embedding and mounting of samples followed well established protocols described  in1.

Tomographic data was primarily acquired with a commercially available laboratory CT system (EasyTom, RX 
Solutions, Chavanod), motivated by the fact that such instruments can easily be made available in a pre-clinical 
setting. Further, they can be used over long times in rather simple and time-stationary conditions, ideal for 
biomedical studies with large sample numbers N. For the scans, the open transmission tube (Hamamatsu) of 
the EasyTom instrument was selected, equipped with a LaB6 cathode and a tungsten (W) target, and operated 
at a tube voltage of 60 kV and a target power of 6.6 W. �e spot size was approximately 1.5 µ m. Projection 
images were acquired by a CCD detector of 9 µ m pixel size (2x2 binned) (Ximea, Münster) with a fibre-coupled 
Gadox scintillator. Experimental parameters (geometry, acquisition time, source settings) were optimized by 
comparing the reconstruction quality for selected test samples, and then fixed for the entire series to the values 
tabulated in Table 2. To reduce image noise, four images were recorded at each angle and averaged (median). 
�e single-material phase-retrieval Paganin’s  method37 was used to account for phase contrast. Only in-house 
data recorded under identical settings was further used for statistical classification (illustrated in Figure 1b,c). To 
achieve semi-automatic data acquisition and processing at the laboratory setup, up to 10 samples were stacked 

Table 1.  List of all hamsters in the groups forming the negative and positive controls, serving as training data. 
Positive controls are denoted as POS − CTRL , the negative controls consist of three groups, the uninfected 
control ( UNI − CTRL ), the polyethylene glycol control ( PEG − CTRL ), and and phosphate-buffered saline 
control group ( PBS − CTRL ). �e macroscopically assessed lung affection score (LAS) is also given.

Hamster Group LAS [%]

52 UNI-CTRL 0

53 UNI-CTRL 0

55 POS-CTRL 20

56 POS-CTRL 30

57 POS-CTRL 100

58 POS-CTRL 70

59 POS-CTRL 100

60 POS-CTRL 80

62 POS-CTRL 90

63 PEG-CTRL 0

64 PEG-CTRL 0

82 PBS-CTRL 5

83 PBS-CTRL 0

84 PBS-CTRL 0
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on top of each other inside a Kapton tube, and scanned as part of a single measurement run, controlled by a 
corresponding script. Subsequently, six different sample stacks, each with up to 10 samples, were scanned under 
identical settings. Fig. 1(c) shows a photograph of the multi-sample holder in the beam, and Fig. 3 (a) a sketch of 
the data recording scheme. A�er completion of the scans, the recorded volumes are reconstructed and processed 
by cropping a cube shaped volume of interest, followed by segmentation of air-filled compartments and tissue.

Synchrotron data was recorded for selected samples, serving as a reference and benchmark (“ground truth” 
with respect to tissue morphology). Specifically, we recorded XPCT scans at two synchrotron instruments, the 

Figure 1.  (a) Seven days a�er infection of Golden Syrian hamsters by SARS-CoV-2, the animals were sacrificed, 
lung autopsies were extracted and paraffin embedding was performed. In total, 45 hamsters, divided in nine 
groups, were examined in this study, including uninfected controls ( ×3), positive controls ( ×8), PEG ( × 3) and 
PBS controls ( × 3) as well as five different drug candidates ( × 8, each). In further analysis, uninfected, PEG and 
PBS controls are referred to as NEG-CTRL, while positive controls are referred to as POS-CTRL. (b) Schematic 
depiction of the in-house experimental setup. �e cone beam geometry allows for an adjustable magnification 
and thus effective voxel size depending on the distances x 01 and x 12 . A scintillator-based CCD-detector is 
recording the incoming photons, followed by a phase- and tomographic reconstruction from the acquired 
projections. (c) Photo of the experimental setup with the source (le�), the sample stage (center, green) and the 
detector (right, blue). X-rays are created at the anode (orange spot) and propagate through the object, reaching 
the scintillator where X-rays are converted to visible light and subsequently to an electrical signal. (d,e,f) 
Schematic illustration of classification by OT. From top to bottom, in color: three synthetic sample distributions 
µ , ν and ρ ; the corresponding inverse cumulative distribution functions used in (2); the corresponding PCA 
embedding, obtained by projecting onto the two first principal components. From bottom to top, in gray: 
Some selected points around ρ in the 2d-embedding, along the first principal component; approximately 
corresponding to vertical translation in the inverse CDF space; approximately corresponding to a translation on 
ρ (with a slight change in standard deviation), thus making this direction in the embedding interpretable.
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P10 beamline at DESY (PETRA III, Hamburg) for microscale XPCT with parallel beam tomography, and the 
ID16A nano-imaging beamline (ESRF, Grenoble) for nanoscale XPCT (holo-tomography). At P10 a photon 
energy Eph = 13.8 keV was defined by a Si(111) channel-cut monochromator. A field-of-view (FOV) of approxi-
mately 1.5 mm was covered. 3000 projection angles were recorded over a 360◦ interval, with continuous rota-
tion and a rotational speed resulting in an illumination time τ = 0.035 s per projection. Images were recorded 
with a pco.edge 5.5 sCMOS camera (PCO, Germany) coupled to a 50 µm-thick LuAG:Ce scintillation screen 
using a high-resolution optical detection system (Optique Peter, France), equipped with a 10x magnification 
microscope objective. �is configuration resulted in an effective pixel dimension of pxeff  = 0.65µ m. �e detec-
tion and acquisition scheme are described in detail  in38. Phase retrieval was performed on the projections using 
the contrast-transfer-function (CTF)  approach39 (single distance), implemented numerically in a Matlab phase 
retrieval package  (HolotomoToolbox40).

Since the FOV and pixel size are of of the same order of magnitude, the P10 data can be regarded as a “ground 
truth” reference for the study based on in-house recording, showing the cytoarchitecture at the same scale, but 
with sharper and more contrasted reconstructions, as well as tractable gray values owing to the monochro-
maticity and better justified phase retrieval filters. Finally, as a comparison and high-resolution benchmark, 
nano-holography scans were recorded for two samples, one POS − CTRL and one UNI − CTRL sample, using 
the nano-focusing optics at the ID16A beamline of the European synchrotron radiation facility (ESRF, Gre-
noble). Taking into account the strongly holographic regime, four distances were recorded for phase retrieval, 
implemented as a generalized Paganin method with subsequent iterative  refinement41. All relevant experimental 
parameters are tabulated in Table 2.

For all instruments, the acquired projections were saved in either the .tiff or .h5 data format. Tomographic 
reconstruction was then performed by filtered back projection (FBP) and the Feldkamp-Davis-Kress (FDK) algo-
rithm, for the parallel beam data (P10) and the cone beam recordings (ID16A, EasyTom), respectively. Automatic 
rotation axis and dri� corrections, as well as ring removal techniques were used, where appropriate. At EasyTom, 
the reconstruction so�ware provided with the instrument was used. P10 and ID16A data was reconstructed 
using the ASTRA-Toolbox42 and  PyHST43, respectively. Final reconstructions were stored in the .raw file format. 
Representative imaging results for all three instrumental settings are shown in Fig.2 of the results section below.

In order to quantify changes of the peripheral lung structure associated with SARS-CoV-2 infection of the ham-
sters, we computed the so-called chord length distribution (CLD) as a characteristic  measure44–46. �e CLD is 
well suited to quantify changes in size of the alveolar lumen and septae associated with different  pathologies36. 
To this end, the reconstructed gray values representing electron density ρx,y,z are binarized into two phases, 0 
(lumen) and 1 (septae), using Otsu’s  thresholding47. For the binarized volume masks, chords are computed. A 
chord is defined as a segment of a line which traverses the volume with random orientation and intercept. �e line 
is then divided into several segments of length Lc , defined by endpoints at the interfaces between the two phases. 
�e procedure is visually explained in Figure 3. For the numerical computation of the CLD, we used Bresenham’s 
line  algorithm48, implemented  in49. Given proper normalisation, the CLD represents the probability density of 
finding a chord with length Lc for each of the two phases of the binarized image. As a quantitative measure for 
two phase materials, the CLD is well established not only in material  science50–52, but also for (binarized) lung 
 morphology53. However, up to now, it was solely used for two-dimensional (2D) histological tissue slices, while 
we here extend the method to 3D image analysis of lung tissue.

Optimal transport is a mathematical optimization problem that intuitively seeks to minimize the cost of trans-
forming one probability distribution into another. �is minimal cost then serves as a measure of similarity 
between the two distributions. For an approachable introduction with a focus on numerical methods we refer 
 to25. A more mathematical exposition can be found  in54. Here we very briefly sketch the central concepts used 
in this article.

Table 2.  Data acquisition and detection parameters, including the source setting, the source-to-sample 
distance x01 , the sample-to-detector distance x12 , the resulting effective pixel size pxeff  and field-of-view FOV 
(horizontal and vertical), the number of projections per scan #projs , as well as the exposure time τ and total 
scan time.

Laboratory P10 ID16A

Tube voltage / energy 60 kV 13.8 keV 17.1 keV

x01 9.3 mm 88 m 34.7 mm

x12 93.1 mm 29 mm 1.17 m

pxeff (µm) 1.63 0.65 0.09

FOV (h × v) (mm2) 3.3 × 2.2 1.6 × 1.4 0.29 × 0.29

# projs 1568 3000 2000

τ  (s) 1.2 0.035 0.2

Tot. scan time (min) 125 1.25 180
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Let µ and ν be two given probability distributions on Rd (representing, for instance, two chord length distribu-
tions). For transporting µ onto ν , we introduce a probability distribution π on Rd

× R
d , where intuitively π(x, y) 

represents the mass density that is taken from µ at x to ν at y. For π to properly transform µ into ν , its first and 
second marginals must be equal to µ and ν respectively. We then refer to π as a transport plan and denote the 
set of transport plans between µ and ν by �(µ, ν) . Let now c : R

d
× R

d
→ R be a cost function, where c(x, y) 

specifies the cost of taking one unit of mass from x to y. �en the total cost associated with a plan π is given by ∫
Rd

×Rd c(x, y)dπ(x, y) . �e optimal transport problem then consists of finding the transport plan with lowest 
cost, i.e.

Figure 2.  Comparison of imaging setups for uninfected control sample (le�) and positive control (right): 
(a) Selected slices from in-house recorded tomograms (entire 3 mm punch). (b) Comparison of two slices 
recorded at the coherent imaging beamline at DESY (P10, PETRA III) with an effective pixel size of 650 nm 
and a FOV of ∼1.3 mm. (c) Slices from an uninfected (le�) and positive control (right) hamster, recorded at the 
ID16A beamline (ESRF, Grenoble) with an effective pixel size of 90 nm and a FOV of 0.29 mm. All recording 
parameters are listed in Table 2.
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For the choice c(x, y) = ‖x − y‖2 , this defines the so-called 2-Wasserstein distance W2(µ, ν) =
√
C(µ, ν) on the 

set of probability distributions. �is distance is particularly relevant for data analysis, since it quantifies discrepan-
cies between data distributions associated with geometric deformations more meaningfully than other common 
tools, such as the L2-norm (also known as mean squared error) or the Kullback–Leibler divergence (also known 

(1)C(µ, ν) = min
π∈�(µ,ν)

∫
Rd

×Rd
c(x, y)dπ(x, y).

Figure 3.  Demonstration of workflow for XPCT. (a) Illustration of data acquisition by using in-house XPCT. 
Paraffin-embedded sample biopsies are stacked onto each other in a Kapton tube and inserted into a Huber pin. 
By vertical translation all samples are scanned and the electron densities ρx,y,z are automatically reconstructed 
(1). �erea�er, a region of interest in the volume is selected (2). (b) (i) shows the selected region of interest, 
which is binned (ii) a�er finding a thresholding value (Otsu’s  method47) and further processed by applying 
morphological operations (iii), namely a combination of erosion and dilation (opening/closing). Subsequently, 
chord lengths can be extracted by introducing a few thousand of randomly oriented lines to every slice of a 
binned volume. A line can pass through alveolar septae (phase 0, black) or alveolar lumen (phase 1, white) and 
is accordingly divided (iv). �e length is determined by the distance between the intersection points (blue dots).
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as relative entropy). An introduction to the use of optimal transport in data analysis and its advantages is given 
 in55, see in particular Figure 2 in that reference,  and56 for further examples.

For one-dimensional distributions, d = 1 (such as for chord length distributions), W2 can be written as L2

-norm on the space of inverse cumulative distribution functions (CDF), namely

where Fµ is the CDF of µ and F−1
µ

 denotes the corresponding inverse CDF (and F−1
ν

 the inverse CDF of ν , accord-
ingly). �is means that we isometrically embed the samples into the Hilbert space L2([0, 1]) . Note that computa-
tion of CDFs, their inversion, and evaluation of (2) are numerically simple. For inversion we use one-dimensional 
 interpolation57. Standard techniques of statistical analysis in Hilbert spaces can then be applied to the inverse 
CDF F−1

µ
 representing our data distributions. For instance, principal component analysis (PCA) can be used for 

dimensionality reduction and to identify prototypical directions of variation in the set of samples. By projection 
a sample onto the first few principal components, a low-dimensional embedding of the data can be generated. 
Conversely, any point in the low-dimensional embedding corresponds to some hypothetical inverse CDF F−1

µ̃
 for 

some hypothetical distribution µ̃ . µ̃ can be obtained by transforming back from the inverse CDF to the original 
PDF. In this way it is possible to visualize the dominant variations in the collection of samples and to evaluate 
whether they may be associated with pathological changes. Figure 1(d–f) illustrates, for simple synthetic data, 
the embedding onto the two dominant principal components, as well as the possibility to compute the inverse of 
the embedding in order to visualize the transformations that the principal components encode on the PDFs. A 
thorough introduction to optimal transport in one dimension, including details such as how to handle measures 
with atoms (i.e. mass concentrated on a single point), is given  in54, Section 2, a tutorial for applications in image 
analysis can be found  in56. For our numerical analysis we use the LinOT library for Python. (https:// pypi. org/ 
proje ct/ LinOT/.). An approximate generalization of this framework to distributions in higher dimensions has 
been proposed  in58,  see20 for an application in digital histology.

Hamster experiments were carried out according to the German Regulations for Animal Welfare a�er obtaining 
the necessary approval from the authorized ethics committee of the State Office of Agriculture, Food Safety and 
Fishery in Mecklenburg - Western Pomerania (LALLF MV) under permission number 7221.3-1-049/20 and 
approval of the commissioner for animal welfare at the Friedrich-Loeffler-Institute (FLI), representing the Institu-
tional Animal Care and Use Committee (IACUC). �e study is reported in accordance with ARRIVE guidelines.

In the following we present the results with regard to the three major aims of this study, namely (a) to implement 
an efficient XPCT imaging workflow for pre-clinical studies, (b) to quantify morphology of lung tissue, and (c) 
to use OT analysis to test potential drugs in pre-clinical small animal studies of Covid-19.

Figure 2 demonstrates the image quality achieved at the laboratory setup in comparison to the synchrotron data, 
at P10 and ID16A, respectively. As can be seen, the in-house image quality is sufficient to resolve the general 
tissue morphology in terms of alveolar spaces and lumen. A differentiation between infected and control tissue 
seems plausible in terms of the expected thickening of septae. Importantly, the geometric distribution of lung 
tissue can be captured, or more precisely the morphology in the two phase model, which accounts for air (par-
affin) and tissue, respectively. With the parallel beam synchrotron modality, more details of the septae become 
visible, such as the more strongly contrasted cellular nuclei, while maintaining a comparably large FOV. Finally, 
high-resolution scans at the ID16A beamline reveal much sharper tissue boundaries, different cell types based 
on different grey values, as well as sub-cellular structures. �is opens up a potential for quantification and clas-
sification of pathologies based on cellular and sub-cellular structural parameters (features)20,59. However, it is 
more challenging to achieve larger FOVs for a representative sub-volume, and more importantly, the required 
number of animals to be tested. Contrarily, the in-house configuration combines sufficient data quality for the 
current purpose with long-time availability, and accessibility, and is hence selected for the current study.

Figure 3 demonstrates the successful implementation of image segmentation for later chord length analysis. 
Since the image contrast is sufficiently high with reduced level of artefacts, a computationally inexpensive and 
straightforward segmentation based on thresholding the gray values can be applied, i.e. Otsu’s thresholding 
 method47. Note that an empirical offset was added to the threshold parameter, as controlled by visual inspection. 
�is offset was kept constant for all samples. In combination with the subsequent 3D morphological operations 
(opening: 3 pixel diameter; closing: 1 pixel diameter sized spheres), a sufficiently accurate segmentation result 
is obtained for further processing steps. Fig. 3(b) illustrates the procedure step-by-step. With the volume mask 
at hand, the chord length distribution (CLD) can then be computed in a straightforward matter, as described 
in "Methods" section.

Figure 4 presents the CLD resulting from the image processing described above. Note that the normalized 
CLD represents the probability density function (PDF) for finding a chord of length Lc among all chords in the 
volume. In (a), this is shown for all hamsters , as a waterfall plot, with color indicating the number of line seg-
ments of a certain chord length Lc , both for alveolar septae (phase 0) and the lumen (phase 1) In the lumen (phase 

(2)W2(µ, ν) =

√

∫ 1

0

|F−1
ν (x) − F−1

µ (x)|2dx,
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1), short chord lengths are significantly more prominent as expected with a peak at around 50 px, representing 
the mode of the distribution (in accordance with ∼ 60 µ m average width in  literature60). Compared to the lumen, 
the CLD of the septae is significantly broader with a pronounced tail towards high Lc . In (b) the PDFs are shown 
for hamsters of the (positive and negative) control groups only, enabling a better visual inspection than in the 
waterfall plot. In the data, one notes a tendency in the positive controls (red curves) to exhibit flatter and more 
extended distributions, compared to the negative controls (blue curves). �e differences reflect a generally larger 
propensity of septae with a moderate thickness and a broadened and flattened distribution in the sick hamster 
lungs. Reciprocally, this may also imply a possible shrinkage or destruction of a larger fraction of alveolar spaces 
in infected lungs. However, one hamster (H59, black curve) appears to be a clear outlier and visual inspection of 
the dataset showed strong artifacts due to preparation, notably cracks in the paraffin. It was therefore discarded 
and excluded from further processing. Further, two outliers (H56, positive) and (H52, negative) exhibits curves 
closer to the respective opposite class. Note, that such outliers are not too surprising based on the biological 
variability as well as possible involuntary infection or wanted but failed infection. In the next, towards further 
analysis, each PDF is re-weighted by Lc to avoid that small chords have too much impact in the subsequent linear 
optimal transport (LOT) analysis. In other words, larger chords corresponding to the right tails of the CLD are 
given more weight, facilitating the identification of characteristic differences between the different hamster lungs. 
�e reweighted PDFs are again normalized, and on these reweighted PDFs LOT will be applied further below.

In the following, the OT analysis based on inverse CDFs is applied to the post-processed hamster lung data, or 
more precisely to the re-weighted CLD of phase 0 (septae). We represent each sample by its inverse CDF and 
then apply PCA for dimensionality reduction.

We began by analyzing the positive and negative control groups (POS-CTRL & NEG-CTRL) that should contain 
information on the changes in lung morphology associated with the pathological state, unaffected by drugs. �e 
first two PCA components capture 94.5% and 4.9% of the dataset variance, indicating a clear low-dimensional 
structure. In the embedding Hamster H59 is separated by several standard deviations from the rest of the dataset, 
consistent with its very atypical chord length distribution (see Fig.4 (b)), and indeed upon visual inspection of 
the 3D image, one can see a crack in the paraffin in the corresponding selected region in the scan. We therefore 
remove H59 as a clear outlier and continue the analysis without this sample. PCA now yields 97.8% and 1.5% 
of variance captured by the first two components. Fig. 5 (a) shows the embedded samples represented by their 
coordinates with respect to the two first PCA components. Note that during the PCA we have not yet used the 
label information of the control samples. We merely used the samples in an unsupervised fashion to obtain a 
low-dimensional embedding. Given this embedding, recalling now the labels of the samples, we observe that 
the coordinate along the first PCA component (PCA1) serves almost as a perfect classifier. With the exception 
of samples H52 and H56 all pathological samples have positive PCA1, all uninfected samples have a negative 
PCA1. As can be observed on Fig. 4 (b), samples H52 and H56 indeed appear to be more similar to the CLDs 
of the opposite class.

A simple linear support vector machine (SVM)61 applied to the embedding would likely be able to perfectly 
separate the samples by a straight line. But the orientation of this hyperplane will depend strongly on the small 

Figure 4.  (a) Chord length distribution (CLD) for alveolar septae (le�) and lumen (right), shown for all 
hamsters, including control groups and drug treated animals. �e normalized CLD corresponds to the 
(unweighted) probability distribution function (PDFs) of finding a cord length Lc,in the alveolar septae or 
lumen, respectively. �e horizontal black lines divide the different hamster groups in (from top to bottom): 
UNI-CTRL, POS-CTRL, PEG-CTRL, drug group 1, drug group 2, PBS-CTRL, drug group 3, drug group 4, drug 
group 5. (b) �e PDFs for the septae data of the control groups (negative in blue, positive in red). Outliers are 
shown in green (H52, negative), orange (H56, positive), and black (H59). For the case of H59, inspection of the 
sample showed pronounced cracks in the paraffin, i.e. an artifact of sample preparation.
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number of samples near the interface between the two classes and thus will be sensitive to noise. We will therefore 
use PCA1 as a more robust classifier for further analysis.

As mentioned above, there exists an inverse map from the two-dimensional PCA embedding via inverse CDFs 
to PDFs and therefore we can visualize hypothetical PDFs corresponding to a movement along the first PCA 
component by one standard deviation in both directions. �is is shown in Fig. 5 (b). We observe moving into the 
pathological direction corresponds to a relative reduction of short chords. �is is in line with the observation that 
SARS-CoV-2 infection is associated with thickening of septae. In the following, we can embed the other samples 
into the same PCA basis and then use PCA1 as an indicator for the strength of the pathological lung affection.

Now we examine the samples from the drug trial groups. First, we project them onto the first PCA component 
obtained from the control samples, to obtain their PCA1 values. Figure 6 shows these values of all drug samples 
clustered by groups, with means and standard deviations of each group. Drug groups 1 and 2 have consistently 
a relatively high PCA1 value (corresponding to strong pathology), whereas groups 3, 4, and 5 have lower values. 
While the low number of samples per drug candidate does of course not allow for a statistically definite estimation 
of the drugs efficiency, the relative consistency of the values suggests that candidates 3 to 5 are more promising 
for further development and evaluation than 1 and 2.

We first discuss the analysis of the control group. �is allowed us to attribute labels such as ‘healthy’ (uninfected/
negative) and ‘sick’ (infected/positive) to the observed changes in the chord length distribution (CLD). We find 
that positive hamsters have a lower propensity for small chords (small alveolar spaces) and larger propensity for 
large chords, associated with larger empty entities, such as the non-physiological appearing fused spaces observed 
in the lung of the positive hamster shown on the right of Fig. 2. Note that while ‘healthy’ (uninfected/negative) 
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and ‘sick’ (infected/positive) are dichotomous (binary) labels, the OT analysis and subsequent embedding equips 
us with a continuous score. We stress again that by comparing histograms with OT takes into account their full 
information (instead of only considering a few features such as their mean, median, variance, and similar) and 
is more geometrically robust than the L2-norm or the Kullback–Leibler divergence.

On this high-dimensional representation we then use PCA to extract a low-dimensional interpretable embed-
ding. For the control data, more than 97 percent of the variance is captured by the first principal component 
(PCA1 axis in Fig.5). In other words, the hamsters of the control group are very well aligned along one direction 
in the high-dimensional space. In addition, this direction accounts almost perfectly for the prescribed labels. 
�is is also a strong result in terms of the veterinary and imaging methodology. In fact, we would have expected 
more confounding variables due to the gitter in infection and recovery times of the small animals, as well as in 
the later sample preparation, imaging, and processing workflow. However, since the procedures were kept identi-
cal for all samples, it seems that the confounders were rather well controlled. For XPCT in particular, consistent 
segmentation is only warranted when the resolution, contrast, level of artifacts (illumination, raw data correc-
tions, reconstruction errors) do not vary from sample to sample. While this can be difficult to achieve for high 
end synchrotron studies of highest resolution, we have here used a rather robust setting with high reproducibility 
at a time-stationary laboratory instrument.

Next, we discuss the drug candidates, i.e. the five drug groups which are classified with respect to the first PCA 
direction inferred from the control groups. A negative score indicates successful treatment as the lung recovered 
from infection, evidenced by the CLD regaining its physiological functional shape. A positive score means that 
the corresponding animals maintained the pathological morphology at the time of sacrifice. Here, we can make 
the following observations: while hamsters treated by drug group 1 and drug group 2 predominantly remain 
positive, hamsters treated by drug group 3, 4, and 5 have a negative (‘healthy’) average score, and a majority of 
hamsters on the negative side. Note that the drug compound and pharmaceutical background was not known 
to most co-authors, and in particular not to those co-authors involved in imaging and statistical testing. In fact, 
due to proprietary research, the information on the drugs cannot yet be disclosed, while the result of the present 
work is of course available to the companies involved. Note that for the methodological scope of this research 
it is not significant to know which drugs is which, and this ignorance even presents an advantage in view of a 
blinded and outcome independent investigation.

As main conclusions, we can note down:

• XPCT-based histopathology is compatible with pre-clinical studies, in view of the required number of samples 
N.

• XPCT in a laboratory setting and using a commercial instrument achieves sufficient image quality with 
reasonable loss compared to high-end synchrotron endstations.

• �e chord length distribution (CLD) is a suitable morphometric descriptor for 3D lung tissue.
• Optimal transport (OT) can be efficiently implemented and can identify and describe the observed changes 

in the data.
• �e transition from ‘sick’ to ‘healthy’ can be continuously visualized with respect to the CLD.
• �e automated OT/PCA workflow can replace the operator-dependent lung affection score (LAS).

Finally, how to view the present OT/PCA-based approach in the wider field of machine learning? Compared 
to convolutional neural networks (CNN), the main advantage is that it is fully mathematically grounded, offers 
traceability, requires very few parameters to be set (such as the number of principal components to retain), and 
hence is explainable. At the same time, more work needs to be performed in view of quantitative statistical error 
margins. Owing to the one-dimensional distribution of the present data, the inverse cumulative density func-
tion transformation can be used, which makes it particularly accessible. �e presented case is hence also ideally 
suited for the education of non-mathematicians. To this end, all relevant scripts, toolboxes and data are made 
available, along with sample documentation.

In the future, the assessment by trained physicians, radiologists, pathologists or veterinarians can be com-
plemented by the automated workflow presented here. OT analysis in particular, but also the XPCT imaging 
workflow itself, could provide pre-clinical research and clinical practice with an augmented capability. In addition 
to reducing the workload of research or medical staff, automated assessment can improve the quality of research 
or diagnosis. For the case of drug development, throughput, sample volume, and data dimensionality could be 
much further increased. For early pre-clinical trials in particular, with low sample numbers the workflow could 
thus provide a valuable, robust analysis method with a very modest number of parameters. With a scan time of 
presently a little more than two hours per sample, studies of large animal cohorts can then also be accomplished 
in an acceptable amount of time. �e subsequent data analysis can be implemented in the automatized workflow, 
minimizing the need for human and computational resources.

Raw data generated at ESRF/DESY will be released and made public two years a�er the beamtime. All treated 
datasets are available from the corresponding author on request. Exemplary data that support the findings and 
code used for data analysis will be openly available in GRO.data upon publication.
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