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Active energy compression scheme is presently being investigated for future laser-plasma accelera-
tors. This method enables generating laser-plasma accelerator electron beams with a small, ∼ 10−5,
relative slice energy spread. When modulated by a laser pulse, such beams can produce coherent
radiation at very high, ∼ 100-th harmonics of the modulation laser wavelength, which are hard to
access by conventional techniques. The scheme has a potential of providing additional capabilities
for future plasma-based facilities by generating stable, tunable, narrow-band radiation.

I. INTRODUCTION

Nowadays, synchrotron radiation is playing an impor-
tant role in many fields of science and engineering: from
medicine and biology to chemistry, physics, and mate-
rial science. Synchrotron radiation sources are offering
bright, tunable photon beams with wavelengths ranging
from sub-Ångström to hundreds of nanometers. At the
same time, there is a significant interest in employing
compact and energy-efficient sources like laser-plasma ac-
celerators (LPAs), which are making rapid progress to-
wards practical user applications. Both plasma-based in-
jectors [1–4] and Free Electron Laser (FEL) facilities [5–7]
are presently being designed and built.
While there are multiple ways of producing coher-

ent radiation at a desired wavelength from an electron
beam, LPA beams come with peculiar properties that
make many conventional schemes technically challenging.
For example, in a Self-Amplified Spontaneous Emission
(SASE) [8] FEL scheme a combination of low emittance,
high peak current, and low energy spread is required,
otherwise the FEL gain length may become too long for
practical applications. Recently, the first breakthrough
experiments have been done to demonstrate SASE at
27 nm with an LPA [5]. Yet, jitters and energy spread
in the LPA beam might affect the quality of the pho-
ton radiation in terms of its bandwidth and wavelength
stability. The energy spread and jitter can be drasti-
cally reduced by employing an active energy compres-
sion scheme [3, 9] that trades off the reduction in energy
variation against a decompression in time. Consequently,
achieving sufficiently low energy spreads may lead to in-
sufficient peak beam currents, resulting in unacceptably
long gain lengths. In principle, a low-gain FEL [10] could
avoid this limitation by taking advantage of an optical
cavity to build up radiation over multiple passages of the
electron beam, thus decreasing the gain length. But due
to the relatively low, < 100 Hz LPA repetition rates this
scheme seems to be unfeasible.
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Alternatively, synchrotron radiation can be enhanced
by modulating the density of the beam [11], for example
using a seed laser as demonstrated in [6]. However, the
emission wavelength is typically limited by that of the
seed laser to the visible spectrum. In order to signifi-
cantly reduce the emission wavelength, one may consider
high-harmonic generation [12–16]. In this scheme, the
electron beam is modulated by a laser pulse in the first
undulator, passes through a dispersive chicane that con-
verts energy modulation into longitudinal density modu-
lation, and radiates in the last undulator. The key factor
limiting the access to higher harmonics in this scheme
is the uncorrelated energy spread within the bunch σE .
Efficient generation of harmonics requires an energy mod-
ulation amplitude A = ∆E/σE ≥ n, making generation
of high harmonics n ≫ 1 particularly challenging.
Active energy compression allows the LPA beam reach-

ing extremely low levels of energy spread and jitter, down
to ∼ 10−5, employing conventional radiofrequency (RF)
accelerating cavities for active energy compression [3].
This scheme is envisioned for the PETRA IV plasma in-
jector [1] to enable clean and efficient injection in the
storage ring. Once filled, the storage ring needs to be
topped up only once every few minutes to restore a small
fraction (∼ 1 %) of the total charge lost due to Touschek
and residual gas scattering [17]. This opens a window
of opportunity for additional applications of an LPA in-
jector that could take advantage of high quality electron
beams, when they are not required for the storage ring.
Thanks to their small energy spread after energy com-
pression the LPA beams require a relatively small energy
modulation to access high ∼ 100-th harmonics of the seed
wavelength, while a high power laser for the seeding is
naturally present in the LPA setup. Thus, the LPA elec-
tron beams can produce stable, narrow-band radiation
at high harmonics of the driving laser pulse, achieving
wavelengths as small as 10 nm for an 800 nm seed.
Figure 1(a) shows the proposed setup, based on a

500 MeV LPA injector described in Ref. [3]. It consists
of an LPA followed by a quadrupole triplet to capture
the electron beam from the plasma cell, a chicane with
sextupoles for chromaticity correction, a large stretcher
chicane, and finally an RF cavity for suppressing energy
spread and correcting energy deviations.
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driyash and other colleagues for useful discussions on laser systems, numerical simulation of coherent radiation
and its applications.
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