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1. Introduction

The autofocus problem is a widely known problem in imaging systems and and has already been
studied in literature, especially in the field of optical microscopy [1–8]. In near-field holography
(NFH) with hard X rays as sketched in Fig. 1, the autofocus problem is part of the phase problem,
where only the intensity of a complex wave-field is measured by a detector while the phase
information is lost [9–13]. For the reconstruction of sharp images of the measured objects, the
forward model has to be parameterized very precisely. Otherwise, reconstructions will generate
artifacts or result in a loss of resolution. An example is shown in Fig. 2. In digital holography
applications [14–17], illumination wavelength and the setup geometry are often summarized
into a common scalar, the Fresnel number. However, due to various limitations, an accurate
Fresnel number cannot always easily be determined and has to be fine tuned in a time-consuming
process before the actual reconstruction. Due to the development towards more routine NFH
measurements, the amount of data also increases. Thus, fast reconstruction algorithms and an
automatic optimization of the Fresnel number becomes a necessity. This is especially relevant for
in-situ/operando studies [18–22] at synchrotron radiation facilities with X ray microscopy setups
[23]. With further progress in the development of experimental hardware and reconstruction
algorithms, the complexity of measured objects continuously increases. Recent developments
in lens-less X-ray near-field holography enable the measurement of strong interacting objects
and directly reconstruct the projected refractive index of an object from a single hologram [27]
without a spatial support constraint [28]. The Fresnel number has to be optimized from noisy
holograms for mixed phase- and absorption contrast images.

Fig. 1. Sketch of an experimental setup based on a Fresnel zone plate for near-field
holographic microscopy [23]. The distances are measured from the focal point of the optics,
located at f . The distance of the detector z02 is assumed to be known. The exit wave-field
ψexit is propagated by the distance z12 to the detector, where only its squared magnitude
is measured, which yields the hologram Idet. A perturbation in z01 by ∆01 in the assumed
forward model yields new values ẑ01 and ẑ12. It changes the cone-beam geometry of the
forward model and the effective propagation distance in the equivalent parallel beam.

The required robustness of a numerical focus-error metric challenges autofocus approaches.
Different error metrics to quantify the de-focus have been widely studied in literature, however
either with certain object assumptions, a manual selection of a region of interest or under



Research Article Vol. 33, No. 4 / 24 Feb 2025 / Optics Express 6643

Fig. 2. Reconstructed phase images of a spider attachment hair [24–26] for correct and
de-focused focus-object distances z01 in the forward model (Fig. 1) of the reconstruction:
−5 mm de-focused (left), in focus (middle), +5 mm de-focused (right). The scale bars
indicate 8 µm.

different experimental conditions. Metrics from literature that we will compare in this paper for
single-distance X-ray near-field holography experiments are the image variance measure VAR
[1,7], an analysis of weighted base functions SPEC [1,5,6], a statistical analysis of the gradient of
first order GRA [1,4,7], and the second order gradient or Laplacian LAP [1,4,7] and two gradient
sparsity measures, the Tamura coefficient of the gradient and the Gini index of the gradient,
ToG and GoG [2,8,29]. These methods rely exclusively on the analysis of the reconstructed
object Õ, making them sensitive to reconstruction artifacts that may be induced by the underlying
algorithm. The behavior of metrics may therefore change between reconstruction algorithms,
which is rarely considered in the literature. In this paper, we propose a novel focus criterion based
on a model fit error (MFE). We derive the theoretical concept of this metric that includes the
reconstructed image, the forward model and the measured hologram into the error quantification.
Eventually, we derive a common autofocus framework, based on the downhill-simplex method
for the automatic optimization of the Fresnel number and demonstrate the robustness of our
approach on experimental data, obtained at the nano imaging endstation of P05 at PETRA III
(DESY, Hamburg) operated by Helmholtz-Zetrum Hereon [30–32]. The data and the software
underlying the results presented in this paper are available in Code 1, Ref. [33].

2. Problem statement

We assume a measurement setup according to Fig. 1 under the projection approximation for
measured objects [27,28,34] with thickness d. The measured sample is described in terms of
projected complex refractive indices

Õ (x, y) := −k

∫ d

0
δ(x, y, z) − i β(x, y, z) dz = φ(x, y) + i µ(x, y), (1)

where δ and φ encode the dispersion, i.e., phase shifting properties of the object and β and µ the
attenuation, i.e., absorption properties of the object. The number k = 2π/λ is the wave number
of the illumination. In the following, we omit the spatial coordinates (x, y) for readability. The
propagation of the exit wave-field

ψexit (Õ) = exp
(

i Õ
)

, (2)

behind the object to the detector is then described by the free-space Fresnel propagation. Dz
Fr (Õ)

describes the propagation over a distance z with

Dz
Fr

(

Õ
)

:= F −1 ◦ exp

(

−i · π
(k2

x + k2
y )

Fr (z)

)

◦ F ◦ ψexit (Õ). (3)
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The Fresnel number summarizes the setup parameters into a scalar number. For a parallel
beam setup, it is a function Fr (z) of the propagation distance z with

Fr (z) =
(∆x)2

λz
, (4)

where ∆x is the pixel size and λ is the wavelength of the illumination. To transform the cone-beam
of Fig. 1 into an equivalent parallel beam, we need two magnification factors M1 and M2, rescaling
the pixel size and the propagation distance respectively, according to the Fresnel scaling theorem
[34]. In the setup of Fig. 1, the cone-beam geometry is determined by the two distances z01 and
z02 = z01 + z12 and the physical dimension of the detector pixels, i.e., the pixel size ∆x. The
Fresnel number Fr (z) for this geometry and a propagation distance z with respect to the sample is
then given by

Fr (z) =
(∆x/M1)

2

λ(z/M2)
, (5)

with the magnification factors

M1 =
z02

z01
, (6)

M2 =
z01 + z

z01
, (7)

where M1 is the magnification between the sample and the detector plane and M2 is the
magnification between the sample and the plane at the propagation distance z. In the following,
we assume an experimental condition, where the distance z01 is only known within a measurement
uncertainty ∆M = ±5 mm. A single hologram is acquired and the complex refractive indices are
retrieved as a projection image. The reconstruction is performed by the phase retrieval algorithm
of [28]. Figure 3 shows the impact of a perturbation in z01 by ∆01 and a perturbation in z02 by
∆02 on the Fresnel number Fr. The values are plotted as the relative change of Fr in percent with
the function

ERR(F̂rdet) :=

�

�

�

�

F̂r det

Frdet
− 1

�

�

�

�

, (8)

where Fr det is the correct and F̂r det is the distorted Fresnel number. While small errors in
z02 have a negligible impact, an error of ± 5 mm for the z01 value changes the forward model
significantly and results in a blurry reconstruction of the phase values. The appearance of fringe
artifacts in the reconstructed phase images, as shown in Fig. 2, are caused by a mismatch between
the numerical focus of the reconstruction and the experiment. To optimize the Fresnel number,
we therefore aim to refine the distance z01 before a reconstruction of Õ is performed.

A straight forward way to retrieve a more accurate value for z01 is to reconstruct an image series
with different values for the Fr and eventually choose the visual most appealing result, in the
sense of image sharpness. However, this approach is time consuming and entails a high demand
of computational resources. This makes a manual method impractical for certain applications
like time sensitive in-situ/operando measurements.

We therefore seek an algorithm that is capable of automatically finding the focus-sample
distance z01 for a NFH setup as shown in Fig. 1. The method needs to be robust for a large variety
of measured objects, under in-situ/operando conditions and a high level of noise in the data. To
this end, an error metric needs to be found that is capable of quantifying the de-focus of the
reconstructed result. From this metric, an optimization problem and its solver have to be derived,
which will be the subject of the next section.



Research Article Vol. 33, No. 4 / 24 Feb 2025 / Optics Express 6645

Fig. 3. Comparison of the impact of an inaccuracy ∆01 in z01 (orange) and ∆02 in z02
(blue) on the Fresnel number Fr in the range of ± 5 mm. The relative change of Fr is plotted
in percent over the aberration in mm. While small errors in z02 have a negligible impact
inaccuracies in the z01 value change the Fresnel number and consequently the forward model
significantly.

3. Methods

3.1. Model fit error (MFE) metric for de-focus quantification

We propose a novel focus criterion which aims to quantify the de-focus of a de-focused wave-field
ψ̂ . The quantification is performed by a data-driven approach which measures the fitting of
the forward model Eq. (3), that is used, e.g., in a phase retrieval algorithm for the propagation
from the object plane to the detector plane. In the following, we define ẑ01, which is the correct
distance z01 of the measurement setup plus a de-focus ∆01:

ẑ01 = z01 + ∆01, (9)

and consequently for the object-detector distance ẑ12 with the introduced de-focus ∆01:

ẑ12 = z12 − ∆01. (10)

The parameters are shown in Fig. 1. The de-focused wave-field ψ̂ can be expressed by a
Fresnel-propagation of the in-focus wave-field ψexit to the de-focus-position ∆01. The result is ψ̂
with:

ψ̂ = D
∆01

Fr (ψexit). (11)

We know that the values of ψexit cannot exceed a certain range. The range is given by the
non-negative electron density constraint ΩP that states the following: Under X-ray illumination,
the object in the beam is only negatively phase shifting and does not add intensity. Mathematically,
the constraint ΩP for a wave-field ψ is expressed as

ΩP = {x ∈ ψ : arg(x) ∈ [−∞, 0], |x| ∈ [0, 1]} . (12)

We utilize the property of the constraint ΩP that it is only accurate for an in-focus wave-field
ψexit and invalid for a de-focused wave-field ψ̂. A de-focused wave-field contains always fringes
with values outside of ΩP. The more de-focused ψ̂ is, the stronger the fringes are. Applying a
projector PfΩP

on ψ̂ eliminates these values and thereby makes it impossible to recover ψexit by
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propagation:
ψ̂P = PΩP

ψ̂. (13)

Instead, we obtain a projected wave-field that is inconsistent with respect to a measured
hologram Idet that corresponds to ψexit. We can quantify how inconsistent the values of ψ̂P are
with respect to Idet by calculating the mean squared error MSE. The mean squared error of ψ̂P is
given by a propagation to the detector plane at distance ẑ12 and then by comparing the magnitudes.
We introduce the term model fit error (MFE), which is the MSE of a ψ̂P. It is given by

MFE =
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�

�D
−∆01

Fr

(

D
z12
Fr

(

PΩP
D
∆01

Fr (ψexit)
) ) �

�

� −
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2

2
. (14)

We evaluate the behavior of MFE criterion empirically for different objects in a simulation in
Sec. 4. Phase-retrieval algorithms that use a forward model with wrong distances ẑ01 and ẑ12 will
reconstruct de-focused values as shown in Fig. 2, which means, e.g., ψ̂ or ψ̂P. If only the distance
with de-focus ẑ12 and the de-focused, projected wave-field ψ̂P are known, Eq. (14) becomes
simply:

MFE =
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. (15)

The concept of maximizing the data consistency to find the correct distance can also be found
in ptychography with multi-slicing [35,36], where ψexit is directly reconstructed in the correct
in-focus plane.

3.2. Global optimization problem for z01

In the following, we propose an algorithm for the automatic refinement of the distance z01 in
Fig. 1 in the forward model, based on the optimization of a global inverse problem. We are
aiming to find an approximated solution z01

∗ of the general optimization problem:

z01
∗
= argmin

ẑ01 ∈Ωz

f (ẑ01), (16)

with a constraintΩz on the estimate z01 under an initial guess zest
01 and the measurement uncertainty

∆M:
Ωz =

{

x : x ∈ R, x ∈ [zest
01 − ∆M, zest

01 + ∆M]
}

. (17)

The function f (ẑ01) is a general error metric or distance function that quantifies the de-focus
with respect to the correct value z01. The function f (ẑ01) should have (i) its minimum at ẑ01 = z01

and (ii) increasing function values with increasing distance from the optimum. We split f (ẑ01)

further into two nested functions G and Õ:

z01
∗
= argmin

ẑ01 ∈Ωz

G(Õ (ẑ01)), (18)

where Õ (ẑ01) is the representation of the projected refractive indices Õ of Eq. (1) that corresponds
to the respective wave-field ψ̂P for a given position ẑ01 in the sense of

Õ (ẑ01) 7→ ψ̂P = exp
(

i Õ (ẑ01)
)

. (19)

Because the two functions G and Õ (ẑ01) are nested, there is an implicit interdependence
between the error metric and the method to retrieve Õ. The function G will rely on abstract
features of Õ, which, under variations of ẑ01, must be reliably and self-consistently produced by
the reconstruction to satisfy requirements (i) and (ii).



Research Article Vol. 33, No. 4 / 24 Feb 2025 / Optics Express 6647

3.3. Retrieval of Õ

In the following, we introduce shortly the reconstruction method for Õ that we used to test the
MFE criterion with experimental data. The respective hyper-parameters have been empirically
determined and are shown in the Appendix in Table 3. The parameters have been optimized with
respect to the reconstruction speed and consistency over different ẑ01 values. We evaluate the
behavior of MFE criterion empirically for different experimental datasets in Sec. 4.

The solution of the underlying optimization problem for the retrieval of Õ (ẑ01) is based on the
ASRM algorithm of [28]. We parameterized the Fresnel propagator Eq. (3) with the estimate ẑ01.
The reconstruction algorithm optimizes the target function

Õ
∗
(ẑ01) = argmin

Õ ∈ΩP

1

2
‖D

z02−ẑ01

Fr

(

Õ
)

−

√

S↓ Idet+‖
2
2 + β‖Im

(

Õ
)

‖2 = argmin
Õ ∈ΩP

L(Õ, ẑ01), (20)

under the constraint set

ΩP =
{

x ∈ Õ : Re(x) ∈ [−∞, 0], Im(x) ∈ [− log (A0) ,∞]
}

, (21)

where the symbol A0 is an intensity offset correction. Note that Eq. (21) is the refractive version of
Eq. (12), which can be applied without having to consider phase-wrapping issues. We performed
the reconstruction with a multi-grid approach with the down-sampling operator S↓. We further
stabilized the reconstruction with an L2-regularization applied on the absorption values.

3.4. Automatic optimization of the global optimization problem for z01

Optimization problems such as Eq. (18) are typically solved with iterative algorithms. While it is
in principle possible to optimize Õ and ẑ01 simultaneously [37,38], this is not straightforward for
single-distance X-ray near-field holography, where the experimental conditions are not as well
defined as in visible light holography with weakly interacting samples. The reconstruction of
Õ is already highly ill-posed without an additional optimization parameter. To separate both
optimization problems, we define a nested optimization problem from a combination of Eq. (18)
and Eq. (20) with

z01
∗
= argmin

ẑ01 ∈Ωz

G

(

argmin
Õ ∈ΩP

L(Õ, ẑ01)

)

. (22)

Since the gradient of G is not trivially accessible, we therefore optimize function G of Eq. (22)
numerically with a downhill simplex method. The downhill simplex method, also known as the
Nelder-Mead method, is a gradient-less algorithm to optimize a multivariate objective function,
which can also be non-linear [39,40]. The objective function is sampled by corner points of
a multidimensional simplex, which shrinks with each iteration towards a minimum. In each
probing point, the inner optimization problem has to be solved, i.e., a reconstruction of Õ has to
be performed. The constraint Ωz can be simply implemented by a projection of the corner points
on the valid interval defined by Ωz. If the size of the simplex falls below a predefined threshold,
the algorithm stops. Fig. 4 visualizes how the simplex algorithm traverses an ideal and a noisy
function. The graphs were generated by applying the Nelder-Mead algorithm on a simulated
parabolic function without and with additive noise.

3.5. Simulation setup

To evaluate the MFE error metric, we first created three different phantoms (Fig. 5) that aim to
cover different classes of object complexity: A triangle with strong edges in combination with
a smooth surface. A biological cell with lot of small and sharp features. A ball, covering a
wide range of image gradients. The created phantoms are mixed objects, phase shifting and
absorbing. The phantoms are simulated as single material objects with a fixed δ/β relationship.
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Fig. 4. The Nelder-Mead method applied to an ideal and noisy function. Left: Demonstration
of the underlying principle. The method traverses a function by probing single points. The
first two connected points create an initial simplex that shrinks over time. After some
iterations, the method reaches a minimum. The algorithm terminates when a certain
predefined simplex length is reached. Right: Demonstration of the behavior in the presence
of noise. It can be seen that although the function is corrupted, the Nelder-Mead method
traverses a similar path towards the minimum. This is supported by the probing method
instead of calculating a gradient.

For each phantom Õ, we sampled 201 ẑ01 in the interval of [z0
01 − 2∆M, z0

01 + 2∆M], where z0
01 is

the ground truth and ∆M is the expected measurement uncertainty. For each sampling point, we
calculated the corresponding ψ̂ by propagating the ground-truth wave-field ψexit to a de-focus
position with Eq. (11). We further applied the constraint ΩP of Eq. (12) to retrieve ψ̂P of Eq. (13).
The ψ̂P results are used as an input for each error metric. For the MFE criterion, we assumed a
noise-free and flat-field correction artifact free hologram.

Fig. 5. Simulated objects. The simulated objects are mixed objects, phase shifting (φ) and
absorbing (µ) according to the color bars. We created the following shapes: A triangle with
strong edges in combination with a smooth surface, a biological cell with lot of small and
sharp features, ball covering a wide range of image gradients.
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Fig. 6. Experimental data. The images here show phase images reconstructed in full
resolution by [28] from single-shot near-field holograms. The reference focus plane was
previously manually determined by the method as described in Sec. 3.6. The phase shifting
strength (φ) is described by the color bars.
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3.6. Experimental setup

To evaluate the complete framework, we obtained five experimental datasets at the beamline P05
at PETRA III, located at DESY in Hamburg, operated by Helmholtz-Zentrum Hereon [30–32].
A Fresnel-zone-plate-based setup for NFH as shown in Figure 1 was used [23]. The detector is a
scintillator (10 µm Gadox) sCMOS camera (Hamamatsu C12849-101U) with 6.5 µm pixel size
at 16 bit image depth and 2048 × 2048 pixels.

We chose the following samples for our demonstration (Fig. 6): A spider attachment hair
[24–26], the tip of a cactus needle, a sample of a human tooth prepared by focused ion beam
milling and a partly corroded biodegradable magnesium-based wire [20,41]. Additionally we
placed a magnesium-based wire into a flow-cell for in-situ experiments [20], which we filled with
ethanol. The measurement parameters for each of the samples are shown in Appendix 5, Table 2.

For each object, we manually measured a guess zest
01 of the distance z01 of the setup as shown

in Fig. 1 with an uncertainty of ∆M = ±5 mm. We then determined the reference values z0
01 by

manually focusing the object to the correct position. The manual focusing was done by creating
a series of reconstructions with different values for z01 and choosing the visually sharpest result.
We then sampled 201 ẑ01 in the interval of [z0

01 − 2∆M, z0
01 + 2∆M] and created for each sampling

point a reconstruction Õ (ẑ01) with the algorithm of Sec. 3.3. The results are used as an input for
each focus criterion.

Eventually, we also applied the proposed automatic z01 optimization algorithm of Sec. 3.2 on
the measured objects with the MFE criterion.

3.7. Analysis of the results

In the following we show the generated focus criteria for each simulated object (cell, triangle, ball)
and experimental data (spider hair, cactus needle, tooth, magnesium-based wire, magnesium-
based wire in a flow-cell). The generated curves for the focus criteria are shown in Fig. 7
and Fig. 8 and have the same structure. The large curve at the top shows the results of the
proposed focus criterion MFE as described in Sec. 3.1. The smaller panels at the bottom show
the results for the focus criteria VAR, SPEC, GRA, LAP, ToG and GoG error metrics from
literature [1,2,8,29]. For comparison, we normalized each of the criteria values to an interval
of [0,1]. We analyzed the generated curves with respect to their applicability to the proposed
automatization algorithm in Sec. 3.2. The requirements for focus criteria to be utilizable by
our Nelder-Mead-based optimization approach are: (i) All curves exhibit distinct peaks, (ii) the
peak direction is consistent within each criterion, (iii) the curves are v-shaped or u-shaped in the
uncertainty range around the peak, (iv) to achieve optimal results, the curves should be as smooth
as possible. In Table 1, we show the results of the test runs with the proposed automatization
algorithm of Sec. 3.2 with the proposed MFE criterion.
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Fig. 7. Focus curves that were generated from simulation data. Three different complex
valued objects (Fig. 5) were illuminated by a coherent wavefront of constant intensity. The
exit wave-field was defined to be at position ∆01 = 0 and then propagated to 201 equidistant
sampling points along z01. The respective refractive indices were extracted and projected
onto the non-negativity constraint. The result was then used to calculate one sampling point
in each criterion as stated in Sec. 3.7. For the MFE criterion, we additionally simulated a
hologram of a typical measurement setup, which parameters are given in the Appendix in
Sec. A.
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Fig. 8. Focus curves that were generated from experimental data. The respective setup
parameters of the experiments are listed in the Appendix in Sec. A and the measured objects
are shown in Fig. 6. The reference focus plane was previously manually determined by an
optical analysis of the reconstruction results and then chosen as the central point ∆01 = 0
for the focus curves. For each curve, 201 equidistant sampling points were generated by
performing at each sampling point a reconstruction and using the reconstruction as an input
for each criterion. The reconstruction parameters are given in the Appendix in Sec. B.
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Table 1. Results of the automatic optimization of z01 with the MFE criterion. Upper Table: The
measurements are sorted into two types: Depending on the Fresnel number, the measurements

needed to be padded to two different array sizes [28]. The probing reconstructions of the
Nelder-Mead approach were performed on a 4× down-sampled grid. Bottom Table: We tested the

optimization of z01 for the objects (i) spider hair, (ii) tooth, (iii) cactus needle, (iv) magnesium-based
wire, (v) magnesium-based wire in a flow-cell. The optimization with the Nelder-Mead approach the
simplex was initialized with two corner points shown in the second column. The last column shows
the required sampling points of the focus curve to find the minimum by shrinking the simplex to a

predefined length of 100 µm.

Type Full Grid Size / px Down-sampled Grid Size / px Time / s
Sample

(1) 14336 × 14336 3584 × 3584 16

(2) 8192 × 8192 2084 × 2084 6

Object Type Initial Simplex NM Result Visually Determined Required Samples

i (1) 74.8 mm / 84.8 mm 79.4 mm 79.4 mm 13

ii (2) 77.9 mm / 87.9 mm 80.9 mm 81.0 mm 11

iii (1) 281.1 mm / 291.1 mm 284.2 mm 284.2 mm 12

iv (2) 467.4 mm / 477.4 mm 470.8 mm 470.7 mm 9

v (2) 324.2 mm / 334.2 mm 329.3 mm 329.3 mm 13

4. Results

4.1. Simulation

In the simulation, the focus curves of the simulated objects differ significantly in their respective
shape. The focus curves of MFE, GRA, GoG and ToG show all v-shaped curves with a distinct
peak at the in-focus position. Within each criterion, the curves of the different objects are
consistently similar while the MFE resulted in less similar curves. In total, the criteria MFE,
GRA, GoG and ToG all fulfill the requirements as listed in Sec. 3.7. The VAR criterion produced
curves that are smooth but shaped like cubic functions without distinct peaks and therefore only
fulfills the low signal-to-noise requirement from Sec. 3.7. For the remaining requirements, the
VAR criterion failed to produce satisfying results. The curves of LAP and SPEC have a very
distinct peak at the center. However, instead of continuously approaching the extrema from the
proximal area, the peaks appear very suddenly and the curves heavily distorted by noise. The
LAP criterion hence fails to fulfill three of the four requirements given in Sec. 3.7. The direction
of the peaks in the SPEC criterion additionally change between each objects such that the SPEC
criterion, in total, does not fulfill any of the given requirements.

4.2. Experimental data

Overall, the produced focus curves of each criterion appear to be heavily influenced by the kind
of object measured. Smooth objects like the cactus needle and the two magnesium-based wires
produced more smooth curves than objects that contain more structure in the projection images,
like the spider hair with many fine details and the tooth, which has step-like structures induced by
the focused ion beam. The spider hair and the tooth produced in most of the criteria distinct peaks
at the center. Although the peaks are not all aligned in the center, they are still in a plausible
range, where the visual analysis does not yield a clear result for the sharpest position. In the
range of the overall measurement uncertainty of z01, many of the curves contain very distinct
side peaks that are clearly not at the sharpest position. Specifically, the criteria are LAP, ToG
and GoG, GRA and SPEC. The VAR criterion behaves similar to the simulation, where the
sharpest position only induces a significant gradient in the curve without producing a peak. At
the positions, where the objects produced side peaks in all other criteria, the impact on the MFE



Research Article Vol. 33, No. 4 / 24 Feb 2025 / Optics Express 6654

criterion is more subtle. The MFE criterion appears to be more robust since these positions
produced only minor saddle points in the focus curve.

We also performed a test run to automatically focus the objects of the experimental data with
the proposed autofocus algorithm from Sec. 3.2 and the MFE criterion. The algorithm converged
successful for all given objects to the visually determined reference z01 value. The performance
results are shown in Table 1. The Nelder-Mead approach required between 11 and 13 sampling
points on the MFE curve, each representing a single reconstruction of Õ on a down-sampled
grid. Depending on the array size, a single reconstruction with the parameters of Table 3 needed
between 6 s and 16 s.

5. Summary

We have investigated the autofocus problem of near-field holography data that was acquired under
a measurement setup Fig. 1, with respect to an example from X-ray imaging. In Sec. 2 and Fig. 2,
it was demonstrated that an inaccurate estimation of the focal-point-to-object-distance z01 and
the respective Fresnel number yields blurred images with reconstruction artifacts.

In Sec. 3, we proposed the general constraint optimization problem for an automatic optimization
of z01. The inverse problem consists of two components: (i) A novel focus criterion based on a
model-matching approach, that we called the Model Fit Error (MFE). The MFE metric quantifies
the fitting error of the forward model by using the reconstruction, the forward model and the
measurements as information. This is in contrast to other error metrics, where usually only the
reconstruction result is analyzed, e.g., by a statistical analysis of the pixels. (ii) An ASRM based
reconstruction that was parameterized with the distance z01. Both components were embedded
into a global optimization problem which we optimized with the Nelder-Mead algorithm, as a
gradient-less approach to find a solution for the proposed target function.

In Sec. 4, we compared available error metrics with our proposed MFE approach, with respect
to the existence of distinct peaks in the generated curves and smoothness as described in Sec. 3.7.
We first compared the criteria with simulation data for different objects (Fig. 5). We created
a de-focused wave-field by a simple propagation of a known wave-field. In the simulation,
the GRA, GoG, ToG and MFE criteria created all satisfying curves for an application with a
Nelder-Mead optimization approach. We further tested our approaches on experimental data of
different objects (Fig. 6) that where measured at the beamline P05 at PETRA III, located at DESY
in Hamburg. The objects covered interaction strengths from weakly interacting samples which
do not exceed phase shifts of 2π to multi-material samples that produce a phase range beyond
6π. We also tested an object under in-situ conditions. Here, all statistically based criteria from
the literature either failed to produce clear peaks in the center of the focus curve or produced
significant side peaks, further limiting the feasible measurement uncertainty for z01. Only our
MFE approach exhibited sufficient robustness with simulated as well es with experimental data
to be used in a Nelder-Mead-based optimization algorithm.

We have demonstrated that the proposed autofocus algorithm for near-field holography is
able to focus a wide range of real objects and experimental setup conditions. The autofocus
problem is also not only relevant for this specific setup but also extends to other microscopy
setups and reconstruction algorithms that use the Fresnel free-space propagation in the forward
model. The proposed algorithm can be adapted for any hyperparameter that is part of the Fresnel
number in the forward model of an experimental setup, including propagation distance, energy,
pixel size and others. This flexibility and the demonstrated robustness makes the method highly
useful for in-situ/operando studies. The proposed model-matching-error-based focus criterion
yields a superior robustness compared to the statistical analysis of reconstructed images. The
optimization only needs to be performed once per measurement configuration. With only a few
minutes to converge to an optimum, the computation time is reasonably small for an application
during experiments. This work is a step further towards simplified and automatized processing of
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large amounts of holographic data sets, which could enable an online reconstruction to monitor
and control the state of dynamic measurements.

Appendix

A. Measurement parameters

Table 2. Parameters for the measurement setup as shown in Fig. 1, the calculated effective Fr and
the exposure time t .

Object Energy z01 z02 Fr t

Spider hair 11.0 keV 79.4 mm 19.661 m 7.790 × 10−5 1.0 s

Cactus needle 17.0 keV 284.1 mm 19.652 m 4.347 × 10−4 0.8 s

Tooth 17.0 keV 81.0 mm 19.652 m 1.231 × 10−4 0.8 s

Magnesium-based wire 11.0 keV 470.8 mm 19.661 m 4.678 × 10−4 1.5 s

Wire in flow-cell 11.0 keV 329.3 mm 19.914 m 3.165 × 10−4 1.3 s

Simulation 11.0 keV 100.0 mm 20.000 m 9.331 × 10−5 -

B. Reconstruction parameters of Õ

Table 3. Reconstruction parameters for the iterative reconstruction
algorithm in Sec. 3.3, that were used to reconstruct Õ

∗(ẑ01). Applied
stepwise from left to right. The filter Õ values are given in Full Width at

Half Magnitude (FWHM) for real and imaginary parts in the form of
FWHMreal/FWHMimag. The momentum variance is given as FWHM in

pixels where σ = FWHM/2.35.

Iterations 700 300 500

Down-sampling S↓ 16× 4× 4×

Update Rate η 0.9 1.1 1.1

Momentum Weight γ 1.0 1.0 1.0

Momentum Variance σ 8 16 16

L2 Weight β 10.0 10.0 1.0

Filter Õ 2.0/0.0 2.0/8.0 2.0/8.0
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