












Abstract

Modern high energy physics experiments fundamentally rely on large quantities of simulated
data, placing significant demands on the available computational resources. Machine learning
methods based on deep generative models promise to reduce the compute time required to
simulate particle showers in the calorimeter system, which constitutes the most computationally
intensive part of a full detector simulation.

This work focuses on the development of a first simulation tool based on deep generative
models for shower simulation in highly granular calorimeters, and subsequently studies its
performance in a realistic detector geometry. In order to apply these models in a general
simulation, they must provide a suitable detector response for particles incident under various
angles to, and at various positions in, the detector. Crucially, the physics performance after
reconstruction must remain high, which is the ultimate target of such a simulator.

We initially extend the performant Bounded Information Bottleneck Autoencoder (BIB-
AE) to simulate showers from photons with varying incident energy and angle to the surface of
the electromagnetic calorimeter of the International Large Detector (ILD), before studying the
single particle performance of the model in terms of key calorimetric observables, both before
and after reconstruction. We then further extend the model to handle an additional angle of
incidence, as well as taking steps to deal with geometry irregularities in order to allow the use
of the model at different positions in the calorimeter.

As a next step, we describe a generic library that enables the use of generative models with
Geant4 and DD4hep, allowing a full integration into standard software ecosystems used in
high energy physics. We outline the integration of the BIB-AE into this library, allowing a
fair benchmark of the computational performance of the model. We then simulate showers at
different positions with the model, in order to investigate the effects of performing simulations
in an irregular calorimeter geometry.

Finally, we study the performance of the BIB-AE when used to simulate photons from
neutral pion decays in the process e+e− → τ+τ− in terms of key physics observables. We find
that while some deviations from Geant4 occur, they are typically comparable to the Monte
Carlo uncertainty, estimated from the performance differences between Geant4 versions.
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Zusammenfassung

Für moderne Experimente der Hochenergiehysik sind große Mengen simulierter Daten ein
wesentlicher Bestandteil, was erhebliche Anforderungen an die verfügbaren Rechenressourcen
stellt. Methoden des maschinellen Lernens, basierend auf generativen Modellen, haben das
Potential die Rechenzeit zu reduzieren, welche für die Simulation von Teilchenschauern im
Kalorimetersystem erforderlich ist, die den rechenintensivsten Teil einer vollständigen Detek-
torsimulation darstellt.

Diese Arbeit fokussiert sich auf die Entwicklung einer ersten Simulationsanwendung, die auf
generativen Modellen für die Schauersimulation in hochgranularen Kalorimetern basiert, und
untersucht anschließend dessen Leistung in einer realistischen Detektorgeometrie. Um diese
Modelle in einer allgemeinen Simulation anwenden zu können, müssen sie eine geeignete De-
tektorantwort für Teilchen liefern, die unter verschiedenen Winkeln zum und an verschiedenen
Positionen im Detektor einfallen. Entscheidend ist, dass die Güte physikalischer Observablen
nach der Rekonstruktion hoch bleibt, was das eigentliche Ziel eines solchen Simulators ist.

Wir erweitern zunächst den leistungsstarken Bounded Information Bottleneck Autoen-
coder (BIB-AE), um Schauer von Photonen unterschiedlicher Einfallsenergien und -winkel zur
Oberfläche des elektromagnetischen Kalorimeters des International Large Detector (ILD) zu
simulieren, bevor wir die Einzelteilchensimulationsgüte des Modells im Hinblick auf entschei-
dende kalorimetrische Messgrößen sowohl vor als auch nach der Rekonstruktion untersuchen.
Anschließend wird das Modell so erweitert, dass es einen zusätzlichen Einfallswinkel verar-
beiten kann, und es werden Schritte unternommen, um geometrische Unregelmäßigkeiten zu
berücksichtigen, damit das Modell an verschiedenen Positionen im Kalorimeter eingesetzt wer-
den kann.

Als nächsten Schritt beschreiben wir eine generische Programmbibliothek, die die Verwen-
dung von generativen Modellen mit Geant4 und DD4hep ermöglicht und eine vollständige
Integration in die üblichen in der Hochenergiephysik verwendeten Softwareumgebungen er-
laubt. Wir beschreiben die Integration des BIB-AE in diese Bibliothek, was einen angemessen
Benchmark der Rechenleistung des Modells ermöglicht. Anschließend simulieren wir mit dem
Modell Schauer an unterschiedlichen Positionen, um die Effekte der Durchführung solcher
Simulationen in einer irregulären Kalorimetergeometrie zu untersuchen.

Schließlich untersuchen wir die Leistungsfähigkeit des BIB-AE, wenn es in Simulationen von
Photonen aus Zerfällen neutraler Pionen im Prozess e+e− → τ+τ− in Bezug auf die wichtig-
sten physikalischen Observablen verwendet wird. Wir stellen fest, dass gewisse Abweichungen
von Geant4 auftreten, diese aber typischerweise mit der Monte-Carlo-Unsicherheit vergle-
ichbar sind, die aus den Ergebnisunterschieden zwischen den Geant4-Versionen geschätzt
wird.
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Chapter 1

Introduction

Decades of experimental and theoretical advances have gradually illuminated the fundamental
forces and particles which underpin our universe, culminating in the Standard Model of Particle
Physics (SM) [8–10]. This model represents a triumph of modern physics, and has withstood
rigorous experimental testing. However, evidence of phenomena including the presence of
dark matter [11–14], neutrino oscillations [15, 16] and the asymmetry between matter and
anti-matter [17] indicate that the SM is not a complete description of Nature. Despite this,
experiments including those operated at the Large Hadron Collider (LHC) [18] have thus far
been unable to find new physics beyond the standard model.

For this reason, various future collider projects are planned or under consideration. This
includes upgrades to the existing experiments for the High-Luminosity phase LHC (HL-LHC)
[19], and proposed experiments at future high energy e+e− colliders [20–23]. A core com-
ponent of the physics programmes of these experiments is making precision measurements of
observables. Looking for small deviations in these measurements from the predictions made
by the SM provides a means to search for new physics, and requires significant amounts of
data to be collected.

In order for a comparison to be drawn between theoretical predictions and experimental ob-
servations, high energy physics experiments crucially rely on detailed and realistic simulations,
which incorporate our best understanding of the complete physics involved. This procedure
includes a generator which simulates the hard interaction in the initial collision and the hadro-
nisation of any final state partons produced. Subsequently, detector simulation models the
interactions of particles which fly through, and interact with, the detector systems. This work
will focus on detector simulation.

Traditionally, particle physics experiments have relied on Monte Carlo (MC) methods to
design physics-based simulation tools for use with realistic detector geometries. This approach
underpins the foremost simulation toolkit used throughout particle physics, Geant4 [25–27].
This full simulation approach relies on individually tracking particles through the volumes of
the detector geometry in order to simulate interactions between a particle and the materials
and fields present in the detector.

Full simulation is therefore resource intensive. To illustrate this, Figure 1.1 shows the
fraction of the total CPU usage by the ATLAS experiment spent on various tasks in 2018.
Around 40% of the total compute time was spent on detector simulation [24]. This is a major
challenge for precision measurements, which are facilitated by reducing statistical uncertain-
ties. As a result, the amount of simulated data required can be an order of magnitude larger
than the amount of experimental data collected. In particular, full simulation creates a major
bottleneck when used for the calorimeter subsystems of the detector, which rely on creating
a spray of secondary particles in a shower in order to make a destructive measurement of the
energy of a primary particle.

3







Chapter 1. Introduction

sis. Studies will be performed using the International Large Detector (ILD) [64], a detector
proposed for use at the International Linear Collider (ILC) [20] which features highly granular
calorimeters.

This thesis is structured as follows. We begin by describing the theoretical background
and methodological details relevant to this work. Chapter 2 provides a brief overview of
the SM together with the motivations for, and fundamentals of, experiments at future high
energy e+e− colliders. The physics of the tau lepton is also reviewed. In Chapter 3 the
physics underpinning the development of calorimeter showers is described, together with the
principles behind calorimeter designs and measurements. Chapter 4 introduces the particle flow
reconstruction paradigm, and provides an overview of the detector systems, software ecosystem
and reconstruction scheme employed for ILD. In Chapter 5, the ML techniques adopted in this
thesis will be introduced, including the components used to build the network architectures,
the optimisation algorithms and the generative models. Chapter 6 addresses simulation in high
energy physics, with a focus on detector simulation. Particle transport Monte Carlo, which
forms the basis of full simulation is introduced, before descriptions of the Geant4 simulation
toolkit and the DD4hep detector description toolkit are provided. An overview of classical
approaches to fast simulation is given, followed by a review of the current state of the field of
fast calorimeter simulation using generative models.

We then turn to the development of a fast simulation tool for showers in high granularity
calorimeters using generative models. In Chapter 7, the BIB-AE model will be extended by
means of conditioning to provide an appropriate detector response for a varying incident angle
to the calorimeter surface. Additionally, the single-particle reconstruction performance of the
model after calorimeter clustering with a state-of-the-art particle flow reconstruction algorithm,
will be investigated. In Chapter 8, the BIB-AE model will be extended to accept conditioning
on an additional incident angle, and thus be fully conditioned for a general simulation of
electromagnetic showers. In Chapter 9, the development of a software library which allows the
integration of generative models into Geant4 via DD4hep will be described. Additionally,
the steps taken to integrate the BIB-AE model for electromagnetic shower simulation in the
barrel and endcap regions of the ILD electromagnetic calorimeter will be detailed. In Chapter
10, the implications of using the BIB-AE model to simulate showers in an irregular calorimeter
geometry will be investigated, and approaches to handling the irregular geometry explored.
Finally, in Chapter 11, the performance of the BIB-AE will be benchmarked in comparison to
Geant4 for the simulation of photons from π0s produced during hadronic tau decays in the
process e+e− → τ+τ−.

Unless otherwise stated, natural units of h̄ = c = 1 will be used throughout this thesis.

6



Chapter 2

Particle Physics

Particle physics seeks to unravel the structure of our universe at the most fundamental levels.
In Section 2.1 An overview will be provided of our best current understanding of elementary
particles and their interactions, which is formulated in the the Standard Model of Particle
Physics. While this model has withstood rigorous experimental scrutiny, it is known to not be
a complete theory of Nature. Some of the motivations to look for physics beyond the Standard
Model will be addressed in Section 2.2. A promising means of searching for this new physics
is to build a high energy e+e− collider. Section 2.3.1 will outline the advantages provided by
such a machine, while Section 2.3.2 will summarise some of the key measurements that could
be made. In Section 2.3.3, one option for such a machine, the International Linear Collider
will be described. Section 2.4 will focus on the physics of the tau lepton, which displays a
rich variety of behaviours and provides experimental challenges, as well as being a key tool for
physics at a future e+e− collider.

2.1 The Standard Model of Particle Physics

The Standard Model of Particle Physics (SM) [8–10] describes a broad range of phenomena
and has provided numerous predictions that have been precisely tested and validated by ex-
periments. It therefore represents our best current understanding of fundamental particles and
forces, and constitutes one of the most successful physical theories ever created.

The particle content of the SM is as follows, with an overview shown in Figure 2.1. It
is composed of twelve spin-12 fermions, each with its own corresponding anti-particle with
the same mass but opposite quantum numbers. Interactions can occur by means of the
electromagnetic, strong and weak forces, which are mediated by four spin-1 gauge bosons.
Finally, the existence of a scalar Higgs boson is necessary to allow the vector gauge bosons to
acquire a mass.

The SM is a quantum field theory (QFT) which is renormalisable and provides a unified
description of the three forces by means of an SU(3)C⊗SU(2)L⊗U(1)Y local gauge symmetry.
The SU(2)L ⊗ U(1)Y component describes interactions in the electroweak sector, which are
mediated by the photon and the Z0 and W± bosons. The Higgs field provides the mech-
anism by which spontaneous symmetry breaking (SSB) occurs, resulting in the breaking of
electroweak symmetry to the electromagnetic subgroup [66],

SU(2)L ⊗ U(1)Y → U(1)QED. (2.1)

While the photon remains massless, this process imbues the Z0 and W± bosons with a mass,
as well as generating the appropriate fermion masses and mixings. It additionally gives rise to
the Higgs boson [67–69].

The SU(3)C component is the symmetry group which underlies the description of the
strong force provided by the non-abelian gauge theory Quantum Chromodynamics (QCD)
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A final example of phenomena which the SM cannot explain is the matter-antimatter asym-
metry observed in the universe, which is mostly composed of baryonic matter. No mechanism
to cause such an asymmetry exists in the SM [17].

While this is by no means an exhaustive list of the problems with the SM, it serves to
motivate searches for new physics beyond the standard model (BSM). These may be direct
searches, which seek to directly produce and measure new particles that would be a source of
new physics, or indirect searches, where precision measurements are made to look for deviations
in the predictions or parameters of the SM.

2.3 Future High Energy e
+
e
− Colliders

With the discovery of the Higgs boson in 2012 [72, 73], the final particle in the SM was
observed. Given the shortcomings of the SM outlined in Sections 2.2, the Higgs also provides
an excellent means by which to probe the SM and search for new physics. Searching for new
phenomena requires both an appropriate physics environment and particle detectors suited to
that environment.

2.3.1 Collider Experiments

Colliding beam experiments rely on particle accelerators to accelerate bunches of many parti-
cles, and bring them into collision, resulting in individual interactions called events. This allows
such experiments to reach higher center-of-mass

√
s energies than experiments in which a beam

of particles is fired into a fixed target, as the full energy of the two beams is available. This
gives a better scaling with the energy of the colliding beams of

√
s = 2Ebeam, for two beams

with equal energies Ebeam. Since having more energy available in a collision allows the pro-
duction of heavier, potentially new particles and the probing of structures on smaller scales,
machines operating on the energy frontier adopt this approach.

Another important property of an accelerator is the rate at which events occur. The
expected number of events for a given process per unit time is given by

Nproc = L · σproc, (2.2)

where σproc is the cross section of the process and L is the instantaneous luminosity provided
by the accelerator, an important parameter of the machine. The total luminosity delivered
over the life-cycle of an accelerator, known as the integrated luminosity, is given by

Lint =

∫

L(t)dt. (2.3)

Differences between Linear and Circular Colliders

Linear and circular accelerator layouts are the two key designs for particle colliders. A circular
collider in the form of a synchrotron has the advantage that it is possible to circulate particles
multiple times through the accelerator. This makes it possible to achieve a higher rate of
collision, and thereby luminosity, as particles which do not interact in a given bunch crossing
can be re-circulated in the machine. This is in general1 not possible at a linear collider.
Circular machines, however, suffer from synchrotron radiation, which arises from a charged
particle following a curved trajectory in a magnetic field. The energy loss scales as

∆E ∝ E4

m4R
, (2.4)

1R&D efforts are attempting to mitigate this form of inefficiency [74]
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where E is the energy of the particle, m is its mass and R is the bending radius. This means
that significant energy loss occurs when trying to accelerate lighter particles, and limits the
maximum energy achievable with a circular e+e− collider.

Motivations for a High Energy Lepton Collider

Currently the highest energy collider in operation is the Large Hadron Collider (LHC) at CERN
[18]. It is a circular machine with a circumference of 26.7 km, a center-of-mass energy of up
to

√
s = 14 TeV for proton-proton collisions and a design luminosity of L = 1034cm−2s−1. An

upgrade to the LHC, the High-Luminosity LHC (HL-LHC), plans to increase the luminosity by
approximately a factor of 5 [19].

A key advantage of hadron colliders such as the LHC is that they are able to reach high
center-of-mass energies, as a result of the high mass of the particles that they collide. However,
the physics environment at a hadron collider presents a number of challenges.

At a hadron collider, the total cross section is dominated by soft QCD processes, which
cannot be described perturbatively and make precision measurements challenging. These QCD
processes create many soft jets, resulting in a high detector occupancy and the production of
huge backgrounds. Additionally, the high event rates necessitate the use of complex trigger
systems, potentially introducing biases into the data collected and possibly missing new physics.
Conversely, at a lepton collider electroweak interactions govern the production, resulting in
much lower backgrounds and cleaner detector environments. In addition, the lower event rates
offer the potential for triggerless operation, depending on the machine.

Finally, hadron colliders do not collide fundamental particles. Instead, hadron collisions
involve not just the valence quarks, but also a sea of quarks and gluons. This means that
the partons involved in the initial hard scattering carry an unknown fraction of the proton
momentum, which leads to an unknown partonic centre-of-mass energy. As the initial collision
energy is not known, a probabilistic description through the use of parton distribution functions
(PDFs) [75] is necessary. In contrast, lepton collisions involve fundamental particles, and as
such the initial state of the colliding particles is well known. This enables direct control of
properties of the beam, which can be used to constraint the outgoing particle kinematics.

These factors, combined with the fact that Higgs physics has never been studied at a
lepton collider, motivate a future high energy lepton collider. This makes a Higgs factory, a
lepton collider which would produce Higgs bosons with a high rate, a priority machine in high
energy physics. While numerous proposals of varying levels of maturity exist for e+e− Higgs
factories, with both linear [21, 76–78] and circular [22, 23, 79] footprints, this work will focus
on the International Linear Collider (ILC) [20, 76, 80–82], which will be described in more
detail in Section 2.3.3.

Particle Detectors

Collider experiments rely on complex detector systems to identify and perform measurements
of the particles produced in collision events. Modern general purpose detectors are composed
of multiple sub-detector systems arranged in separate layers around the interaction point (IP).
A cylindrical or polyhedral barrel region is placed around the IP with its length parallel to
the beam axis, and with endcaps closing its ends in order to provide coverage down to the
beam pipe. The detector is immersed in a strong axial magnetic field ~B, which causes charged
particles to follow a helical trajectory due to the Lorentz force.

The innermost subdetector is the tracking system, devoted to measuring charged particles
while introducing as little material into the detector as possible. Around the tracking vol-
ume sits the calorimeter system split in an electromagnetic calorimeter (ECAL) and hadronic
calorimeter (HCAL), which aim to stop particles and make a destructive measurement of their
energy by creating a shower of secondary particles. This sub-system will be the primary focus
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of this thesis, and will be described more in Chapter 3. Outside of these regions a dedicated
system is placed for making muon measurements, as they typically escape the previous detector
elements.

2.3.2 Measurements at a Future High Energy e
+
e
− Collider

A high energy e+e− collider would provide an excellent means by which to perform precision
measurements, as well as direct searches. In the following, we provide an overview of some of
the salient measurements that can be made in the Higgs, electroweak and top sectors.

Higgs Physics

Many open questions remain about the nature of the Higgs boson, which a future e+e− collider
would be well suited to address. Examples include whether the Higgs is truly a fundamental
scalar or whether it is a composite particle, whether the Higgs is self-interacting, and whether
it connects to a dark sector. Since deviations of new physics from the standard model are
expected to be at most of the order of 5− 10%, the desired precision of 1% or less makes an
e+e− collider an ideal physics environment [83].

The golden channel at a Higgs factory is the so called Higgs-strahlung process e+e− → ZH,
which is the dominant Higgs production mode at

√
s = 250 GeV. By reconstructing the decay

of the Z boson, which can be done very precisely using the leptonic decays Z → e+e− and
Z → µ+µ−, the Higgs mass MH can be computed directly from the recoil mass via

M2
recoil = M2

H = s− 2EZ

√
s+M2

Z , (2.5)

where
√
s is the center-of-mass energy, EZ is the energy of the Z and MZ is the reconstructed

mass [84]. Since only measurements of the Z boson decay are made, this provides a very
precise and model-independent means by which to study the properties of the Higgs, including
its mass, decay width and couplings [85]. In particular, it allows a precise determination of the
Higgs to invisible branching fraction, making it a powerful means by which to conduct dark
matter searches.

Another opportunity provided by a high energy, and therefore linear, e+e− collider is the
potential to discover and subsequently study the Higgs self-coupling. This would provide direct
insights to the shape of the Higgs potential and provide a key test of the standard model.
With a collision energy of 500 GeV or greater, the Higgs self-coupling can be accessed through
di-Higgs production, with the dominant production modes being either di-Higgs-strahlung
(e+e− → ZHH) or WW fusion (e+e− → νeν̄eHH), depending on the center-of-mass energy
[86–88].

Opportunities to test for CP violation in H → τ+τ− decays will be discussed in more detail
in Section 2.4.

Precision Electroweak Physics

Given the challenging physics environment at a hadron collider, the sensitivity of electroweak
measurements at the LHC is limited [89]. In contrast, a future e+e− collider would be able to
probe the electroweak sector with unprecedented precision. These high precision measurements
of the properties of the Z and W bosons would provide access to new physics at a scale well
above the energies directly probed through higher order loop corrections [90, 91].

Such results may be obtained from dedicated runs, such as at the Z pole. Alternatively,
for the ILC running at

√
s = 250 GeV, there is a high-cross-section for so called radiative

return to the Z events, via the process e+e− → Zγ. In this case, the photon is radiated from
the incoming electron or positron as initial state radiation (ISR). The Z and the ISR photon
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are therefore produced in very forward yet opposite directions, but the Z can often still be
reconstructed with the proposed detectors [83].

Top Physics

The top quark is the heaviest particle in the SM, and hence has the strongest coupling to
the Higgs boson. This makes it a key probe of electroweak symmetry breaking, as well as
being an important means by which to search for new physics. At an e+e− collider, a scan
of the top quark pair production threshold can be conducted around

√
s = 350 GeV, whilst

at higher energies the process e+e− → tt̄H becomes accessible [83]. This will make precision
measurements of the top quark properties, including its mass, width and electroweak and
Yukawa couplings, possible [92, 93].

2.3.3 The International Linear Collider

The International Linear Collider (ILC) [20, 76, 80–82] is one of the foremost proposals for a
Higgs factory and a high energy e+e− collider. The layout proposed for the ILC is shown in
the schematic in Figure 2.2

Figure 2.2: Schematic illustrating the layout of the ILC. Illustration not to scale. Figure from
[20].

The baseline design for the ILC has a total length of 31 km, with two linear accelerators
(linacs) based on superconducting RF cavities designed to facilitate the collision of longitu-
dinally polarised electron and position beams. A staged approach has been proposed [94], in
which a center-of-mass energy of 250 GeV would be initially selected for the machine, with the
potential to upgrade the machine beyond this up to a center-of-mass energy of 1 TeV. The
beams at the ILC would consist of bunch trains composed of 1312 bunches, each separated
by 554 ns and containing ∼ 2× 1010 particles. The temporal separation between bunch trains
is 200 ms, corresponding to a repetition rate of 5 Hz. At

√
s = 250 GeV, an instantaneous

luminosity of 1.35 × 1035cm−2s−1 is expected. The beams have a crossing angle of 14 mrad
at the collision point, and can additionally feature polarisation of up to 80% for electrons and
30% for positrons.

Two multi-purpose detector systems are envisioned for use at the ILC: the Silicon Detector
(SiD) [82] and the International Large Detector (ILD) [64]. The ILD will be the focus of this
thesis, and is described in more detail in Section 4.2.
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2.4 Physics of the Tau Lepton

The tau lepton was discovered by the Mark I experiment conducted at the Stanford Linear
Accelerator Center (SLAC) in 1975 [95]. As a third generation fermion, the tau is the heaviest
known lepton with a mass of 1776.86 ± 0.12 MeV [96]. The mean lifetime of the tau is
(290.3 ± 0.5) × 10−15 s, meaning it can travel on the order of 10s of µm at relativistic
velocities before decaying [96].

As a result of its high mass, the tau is the only lepton which decays to hadrons. The
decay of the tau is mediated by the weak interaction, resulting in the production of a virtual
W boson and a tau neutrino. The dominant decay modes of the tau are shown in Table
2.1. Approximately 65% of the time, the tau will undergo a decay involving hadrons, with the
remainder of decays including either an electron or a muon, and usually being purely leptonic.
The leptonic decay modes involve multiple neutrinos, which pass through a detector without
leaving a signature and therefore result in less information being available to reconstruct the
event. For this reason, the hadronic decay modes are prefered for precise measurements.

The majority of the hadronic decays of the tau occur via the intermediate resonances ρ(770)
or a1(1200), and frequently involve one or more neutral pions. Additionally, the particles
produced in the decay are typically highly boosted, and therefore more collimated than those
present in QCD jets of a comparable energy [97]. This makes separating the particles in
the detector, and therefore reconstructing the particles, challenging. In particular, incorrectly
reconstructing the number of photons produced from any π0s created (π0 → γγ occurs in
99% of cases [96]) means the number of π0s produced is incorrectly reconstructed and the
decay mode of the tau therefore mis-identified. For this reason, reconstruction performance
for hadronic tau decays is a classic benchmark of the performance of an electromagnetic
calorimeter (see Chapter 3) [97, 98].

Table 2.1: Branching ratios of the dominant decay modes of the tau lepton, separated into
purely leptonic and hadronic decays and including intermediate resonances where appropriate.
Decays modes of the τ− are listed, with decay modes of the τ+ being identical under charge
conjugation and h± standing for π± or K± [96].

Category Decay mode Resonance Branching ratio (%)

Leptonic τ− → e−ν̄eντ 17.82± 0.04
τ− → µ−ν̄µντ 17.39± 0.04

Hadronic τ− → h−π0ντ ρ(770) 25.93± 0.09
τ− → h−ντ 11.51± 0.05
τ− → h−π0π0ντ a1(1200) 9.48± 0.10
τ− → h−h+h−ντ a1(1200) 9.80± 0.05
τ− → h−h+h−π0ντ 4.76± 0.05

A key physics motivation for studying tau decays at a future e+e− collider is to investigate
the CP2 nature of the Higgs boson. In the SM, the Higgs boson is predicted to be a CP-even
scalar, so the detection of any CP-odd structure in its interactions would be a clear indication
of new physics. The decay H → τ+τ− is well suited as probe of the CP properties of the Higgs
as it has a relatively large branching ratio of ∼ 6.3% [99], and the lifetime of the tau is large
enough such that it is possible for a decay vertex to be reconstructed. A precise reconstruction
of the tau decay mode therefore makes it possible to use the spin of the τ lepton to investigate
the CP structure of the Higgs sector [100].

2the combination of charge conjugation symmetry and parity symmetry
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with denser materials featuring shorter radiation lengths. X0 can be related [104] to the atomic
number Z and atomic mass A by the approximation

X0 ≈
716A

Z(Z + 1) ln (287/
√
Z)

[gcm−2]. (3.1)

The continuation of the shower is contingent on interactions that produce particles, mean-
ing that the number of particles in the shower increases. However, with each subsequent
interaction the energy is reduced. This gives rise to a second key parameter- the critical en-
ergy Ec. This is the energy for electrons or positrons at which the contribution to the energy
loss from bremsstrahlung (which results in the production of a photon) is equal to the energy
loss from ionisation (which does not produce a new particle) [105]. According to this defini-
tion 2, an empirical approximation [101] for Ec, with material dependence through the atomic
number Z, is given by:

Ec ≈
800

Z + 1.2
[MeV]. (3.2)

This provides a means by which to characterise the approximate extent of a shower. Longi-
tudinally, if the depth t in the material is measured in units of radiation length (i.e. t = x/X0,
where x is the physical depth), when the average energy per particle is less than or equal to
Ec the maximum shower depth tmax will have been reached. For a given incident energy E0,
this can be shown [101] to be given by

tmax ≈ 1.4 ln

(
E0

Ec

)

. (3.3)

The transverse extent of a shower is characterised by the Molière radius RM . It does not
have the same physical meaning as the interaction lengthX0, but typically contains ∼ 85−90%
of the shower energy [105]. It is given by the approximate empirical expression [104]

RM ≈ 21MeV

Ec
X0. (3.4)

Parameterising showers in terms of their longitudinal and radial development has been used
as an approach for fast simulation of calorimeter showers, and will be discussed in Section 6.2

3.2 Heavy Charged Particle Interactions with Matter

In comparison to positrons and electrons where the primary form of energy loss is radiative as
a result of bremsstrahlung, for heavier charged particles such as muons and charged hadrons,
energy loss is dominated by ionisation to much higher energies. This is due to the cross section
for bremsstrahlung being inversely proportional to the fourth power of the mass, resulting in a
strong suppression of the process for particles with higher masses. The mean energy loss per
unit distance travelled due to ionisation is described by the Bethe-Bloch equation [105]

−
〈
dE

dx

〉

= Kz2
Z

A

1

β2

[
1

2
ln

2mec
2β2γ2Tmax

I2
− β2 − δ

2

]

, (3.5)

where γ is the Lorentz factor, β is the velocity of the particle, me is the mass of the
electron, I is the mean excitation energy of the absorbing material, Z and A are the atomic
number and atomic mass respectively, z is the charge of the particle traversing the material,

the photon no longer existing after pair production, whereas an electron or positron can undergo subsequent
bremsstrahlung interactions.

2There is an alternative definition of the critical energy- the energy at which the ionisation loss per radiation
length is equal to the energy of the electron [104] [105]
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3.4 Calorimeter Designs and Measurements

The task of calorimetry is typically divided between two sub detectors; an electromagnetic
calorimeter (ECAL), which is placed in front of a hadronic calorimeter (HCAL). The ECAL
aims to make a measurement of particles interacting purely electromagnetically, while the
HCAL aims to make a measurement of particles which also interact hadronically (in practice,
since the ECAL has a non-zero hadronic interaction length (see Section 3.2), showers initiated
by hadrons can also start in the ECAL). These detectors consist of an absorbing material which
is typically dense in order to increase the frequency of interactions between the particles in
the shower and the material, thereby maximising the containment of the shower in as small a
volume as possible. In the ECAL, the exact type and amount of material is chosen as a balance
between maximising the number of radiation lengths of the material (see Section 3.1.3), and
minimising the number of hadronic interaction lengths (see Section 3.3).

The precision of the energy measurement provided by a calorimeter is characterised by the
resolution. This is defined by the ratio of the uncertainty on the energy measurement σE
to the energy of the primary particle incident on the calorimeter Emes. The resolution of a
calorimeter can be expressed [104] as the sum of three contributions in quadrature

(
σE
Emes

)2

=

(
a√
E

)2

+

(
b

E

)2

+ c2. (3.7)

The first term, involving a, is the so called stochastic term. This results from the fact that
shower evolution is not a deterministic process. The 1√

E
dependence arises from assuming

Poisson statistics, and that the number of particles created N is approximately proportional
to the energy of the incident particle E [105]. The second term, which involves b, is the noise
term. It arises from electronics noise, and thus is independent of the energy of the incident
particle. Finally, the constant term c provides a contribution that does not vary with the
incident energy. It represents limitations that are inherent to the detector, such as incorrect
calibrations and material inhomogeneities.

Calorimeters are broadly divided into two main categories. Homogeneous calorimeters are
detectors with a completely sensitive volume, which also serves as the absorbing medium. The
technology for these calorimeters can rely on numerous different physical processes, for exam-
ple collecting ionisation charge from liquid Nobel gases, Cherenkov light from a transparent
medium (e.g. lead glass) or scintillation light from materials such as BGO, CsI or PbWO4
crystals [104] [101]. An example of the latter in use is for the electromagnetic calorimeter of
the CMS experiment, where lead tungstate (PbWO4) crystals are coupled to avalanche photo-
diodes for the detection of scintillation light [107] [108]. The key advantage of homogeneous
calorimeters is that they can provide outstanding energy resolution, as the entire energy of a
shower is deposited in the sensitive material. However, the cost of these detectors is typically
high, and crucially for particle flow reconstruction (see Section 4.1), it is difficult to produce a
highly granular and longitudinally segmented homogeneous calorimeter [104].

The second main category of calorimeter is the sampling calorimeter. These calorimeters
consist of layers of sensitive detector material interleaved with passive absorber material. This
gives sampling calorimeters a natural longitudinal segmentation. A characteristic quantity
of a sampling calorimeter is the so-called sampling fraction fs. In this work, we define fs
as the ratio of the visible energy deposited in the sensitive layers of the calorimeter to the
total energy deposited in both the sensitive and passive materials of the calorimeter. This
means that sampling calorimeters tend to have a worse energy resolution than homogeneous
calorimeters, as the sampling fraction has to be folded into the stochastic term given in
Equation 3.7. Fluctuations in whether energy is deposited in the sensitive or absorber material
increase fluctuations in the visible energy of the shower, and thereby degrade the resolution.
A key advantage of sampling calorimeters is that they can typically be more compact than
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homogeneous calorimeters, as removing the requirement for the material to be sensitive allows
denser materials such as tungsten to be used. This factor, along with the fact that passive
materials are less expensive, makes sampling calorimeters much more cost efficient. It is for
this reason that sampling calorimeters are used almost exclusively for hadronic calorimeters in
detectors for collider-based experiments, as the large volume that has to be covered prohibits
the use of a homogeneous calorimeter [104]. Examples of sampling calorimeters include the
Calorimeter Endcap Upgrade for the CMS experiment for the upcoming High Luminosity phase
of the LHC [109] and the calorimeters developed by the CALICE collaboration for use at future
Higgs Factories [110–113]. In particular, these examples of sampling calorimeters feature a
highly-granular transverse segmentation of the sensors, giving them a high spatial resolution
and allowing detailed information about a shower’s substructure to be recorded. In the case of
calorimetry at a Higgs Factory, this is essential for the particle flow approach to reconstruction
(see Section 4.1), and at a hadron collider it allows for pile-up rejection. The two calorimeter
designs used in this thesis will be discussed in more detail in Section 4.2.1.
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is shown in Figure 4.1 a), the energy measured for a jet ETrad is based on a purely calorimetric
measurement

ETrad = EECAL + EHCAL, (4.1)

where EECAL and EHCAL are the energy measurements made in the ECAL and HCAL respec-
tively. In this case, the HCAL would therefore be used to measure most of the energy of the
hadrons, which compose approximately 70% of the jet. Since the energy resolution of the
HCAL is poor due to the complex physics governing hadronic showers (see Chapter 3), with
a typical resolution of & 55%/

√

E(GeV) [116], this makes achieving the required jet energy
resolution with this approach very challenging.

In the particle flow approach to reconstruction, which is illustrated in Figure 4.1 b), the goal
is to perform the measurement for a given particle in the detector subsystem which provides
the best resolution. This means the energy measurement of a jet EPFlow is decomposed as
follows

EPFlow = Ep± + Eγ + Eh0 (4.2)

where Ep± is derived from the momentum measurement of charged particles in the tracking
detector and Eγ and Eh0 are energy measurements of photons and neutral hadrons in the
calorimeters. The advantage of this is that now only about 10% of the jet constituents are
measured in the HCAL.

The key challenge is that the particle flow approach requires the reconstruction of the
four momenta of each individual particle in an event. The energy depositions in the detector
must therefore be correctly assigned to the particle which caused them. This means a cor-
rect clustering of hits in the calorimeters, including a clean separation of energy depositions
originating from different particles, and the association of clusters with correctly reconstructed
tracks where appropriate. This requires sophisticated clustering algorithms and calorimeters of
a sufficiently high granularity to allow a separation of the showers of particles produced.

Confusion in the reconstruction procedure is a key cause of a reduced performance in
terms of jet energy resolution. This confusion can take several forms, and can relate to the
association of individual hits in the calorimeter to clusters, as well as the association of tracks
to clusters. For instance, a loss in energy can occur if a neutral particle, be it a photon or
a neutral hadron, is not properly separated from a nearby charged hadron in the calorimeter.
This would result in the energy from the neutral particle being combined into the calorimeter
cluster associated to the charged hadron, which is then discarded during the measurement in
favour of the track. Conversely, a double counting of energy will occur if a fragment of the
calorimeter shower caused by a charged particle is reconstructed as a separate, neutral particle,
since the original charged particle will still be reconstructed from its track [116].

The current state-of-the-art Particle Flow Algorithm (PFA) is PandoraPFA [115, 119],
which consists of a complex hierarchy of pattern recognition algorithms in order to reach the
required performance in terms of jet energy resolution. Of particular relevance in this thesis
will be the reconstruction of photons.

In total, there are five different dedicated algorithms applied in PandoraPFA to tackle
photon reconstruction, following developments in [120, 121]. The first is the main algorithm for
photon reconstruction, which clusters hits in the ECAL into a photon candidate and attempts
to verify the identity of the candidate, with additional checks performed if the photon is
in proximity to one or more charged particles. The next three algorithms aim to remove
fragments created by energy depositions being split off of the photon when they should not
be. These fragments can occur around the edges of a shower once the highly energetic core has
been identified as a photon, incorrectly creating additional neutral particles. Additionally, if a
photon has enough energy leakage will occur, meaning that the shower is not fully contained
in the ECAL and continues into the HCAL, producing a fragment in the HCAL that often
creates a neutral hadron. Finally, a splitting procedure is applied to separate any photons
that were incorrectly merged during fragment removal. This can happen when the spatial
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particle passing through the insensitive volumes at the edge of a wafer in consecutive layers.
The ECAL subsystem is composed of an octagonal barrel, two endcaps and two rings which
plug into the apertures around the beam pipe in each endcap. The octagonal barrel, assembled
together with the two endcaps, is shown in Figure 4.4. These will be the principal detector
regions used in this thesis. The barrel consists of 8 staves running along its length, with each
stave being made of 5 trapezoidal modules. Each endcap consists of 12 modules divided into
4 quadrants [125]. The modules in the endcap have similar structure to those present in the
barrel, but a different shape [124]. The implementation of the ECAL in the ILD detector
simulation chain features a detailed geometry implemented in DD4hep detector description
toolkit (see Section 4.2.2), including the aforementioned geometrical structures and a realistic
material composition.

The Analogue Hadronic Calorimeter

Two proposals for the ILD hadronic calorimeter exist. The first is the Semi-Digital Hadron
Calorimeter (SDHCAL) [113], and the second is the Analogue Hadron Calorimeter (AHCAL)
[112]. The AHCAL will be the design used in this thesis. It consists of 48 layers of stainless steel
absorbers, each with a thickness of 17.2 mm resulting in a total of ∼ 4λI . The active layers
consist of 3 × 3 cm2 scintillator tiles with a thickness of 3 mm, and silicon photomultipliers
which read out the tiles individually. As with the ECAL, a detailed detector model of the
AHCAL is implemented in DD4hep.

Very Forward Detectors

A number of dedicated detectors are placed in the very forward region of the ILD. This includes
a calorimeter with a keystone layout designed for a precise measurement of the luminosity using
the pairs of electrons from Bhabha scattering (LumiCal), a calorimeter to provide additional
hadronic calorimeter coverage in the forward region (LHCAL) and a system to provide calorime-
ter coverage down to 6 mrad, as well as bunch-by-bunch monitoring of the beam. A very similar
technology to that used in the electromagnetic calorimeter will be used, with adaptions for the
environment in the forward region [64].

4.2.2 Software Ecosystem

ILD makes use of the iLCSoft [126] 1 software ecosystem for the full chain of detector
simulation, reconstruction and analysis. The LCIO [128] framework provides the event data
model and handles data persistency. The detector description toolkit DD4hep [129] is used to
create a realistically detailed detector model, in terms of the material composition, structure
and readout geometry. Within DD4hep, DDG4 [130] is used to interface with Geant4 [25]
(see Chapter 6 for more details on simulation), and DDRec [131] is used as the geometry
interface during reconstruction. The Marlin [132] application framework is used for both
reconstruction and analysis.

4.2.3 Reconstruction Scheme

The full reconstruction scheme used by ILD consists of a chain of separate steps [133]. These
steps are described in the following.

1Note that key components of this software framework are also integrated into Key4hep, the common
turnkey software stack under development for future colliders [127].
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Digitisation and Calibration

Initially, a digitisation procedure is applied to the simulated hits created in the detector. This
involves emulating effects stemming from the detector, such as features which are intrinsic
to a given sensor, as well as those caused by the readout electronics. Additionally, for the
calorimeters a calibration composed of two steps is applied. Firstly, the energy deposited in
each cell is converted into units of MIPs (a unit system based on the most probable energy
deposited by a minimum ionising particle, see Chapter 3). Secondly, the energy of the hit
in MIPs is converted into a value in GeV. After the calibration procedure, the total energy
deposited by a given particle in the calorimeter system corresponds to the the incident energy
of the particle. An additional gap hit correction is applied in regions of the calorimeter with
additional insensitive volumes, and hence a reduced sampling fraction which is specific to that
region of the calorimeter.

Reconstruction

The first step of reconstruction is tracking. This involves reconstructing the trajectory of
charged particles, as well as the kinematics of the trajectories. This procedure uses several
different algorithms for the different regions of the tracking system [134]. The tracking is
complemented with dedicated algorithms. In particular, specific algorithms are applied to
reconstruct kinks in tracks, which may arise from bremsstrahlung or multiple scattering. In
addition, specific algorithms are applied to reconstruct V 0s, which are secondary vertices which
may, for example, arise form the conversion of a photon into an e+e− pair (gamma conversion).

In the second step, PandoraPFA is applied to digitised inputs, which include tracks,
kinks, V 0s and calorimeter hits, as well as information from DDRec about the geometry
[133]. The procedure then involves algorithms applied to cluster hits in the calorimeters,
and subsequently to associate tracks and clusters where appropriate. A preference is given
for splitting clusters initially rather than incorrectly merging them. Re-clustering algorithms
are applied later in the chain based on topological and kinematic information [115]. An
identity can then be assigned to the particle type. A dedicated procedure called software
compensation [135] is also applied to correct for the unequal detector response between the
electromagnetic and hadronic shower components. The final output is a list of reconstructed
particles called Particle Flow Objects (PFOs), which contain important information associated
with the particles including their energy, momentum and particle ID.

Finally, high-level reconstruction is applied. This involves primary and secondary vertex
finding, as well as jet clustering and tagging using the LCFIPlus package [136]. A wide range
of additional dedicated algorithms for various analysis specific applications also exist. This
includes tools for particle identification (PID), which are under active development [137] and
may make use of dE/dx, shower shape and time-of-flight (TOF) [138] information, as well
as various event shapes. Additionally, γγ-finders allow the identification of π0 and η mesons.
Candidates are identified by means of a constrained kinematic fit using the MarlinKinfit

[139] package.
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Machine Learning

Machine Learning (ML) is a broad term used to describe a class of algorithms that can learn
from data in an automated, typically iterative, fashion [140]. ML algorithms have long been
explored for various tasks in High Energy Physics, including tracking, jet tagging and triggering
[141–143].

However, recent advances in specialised hardware enabling significant parallelisation of
computational operations (most notably with Graphics Processing Units (GPUs)) have lead
to major strides in the performance achievable with ML algorithms, such that they are now
routinely used.

ML algorithms can be generally split into three broad categories: supervised learning, un-
supervised learning and reinforcement learning. Algorithms using reinforcement learning are
beyond the scope of this work. Supervised learning approaches rely on the use of a label or
target for each data example that guides the algorithm towards a given goal. Examples of this
task include classification, where an algorithm seeks to correctly label a given example, and
regression where an algorithm attempts to predict a target value. By contrast, unsupervised
learning approaches typically aim to model the underlying probability distribution of a given
dataset by learning to extract salient information contained within its structure. [140]. Gener-
ative modelling is an example of an unsupervised task, and will be the principle ML application
explored in this thesis.

In Section 5.1, a brief overview of the basics of deep learning will be given, including a
definition of key terms that will be used throughout this thesis. In Section 5.2, the building
blocks of the architectures explored in this thesis, including network layers and activation
functions, will be described. Section 5.3 will discuss the optimisation algorithms that will be
employed to facilitate learning. Finally, Section 5.4 will provide an overview of the various
generative models that will be important for this thesis.

5.1 Neural Networks and Deep Learning

Artificial neural networks (NNs) were originally inspired by networks present in biological sys-
tems, and their ability to display complex emergent computational capabilities [144]. NNs
consist of a network of nodes (or neurons) that can interact with other nodes with a certain
weight. It is neural networks that are the foundational components of modern deep learning.
A network is deep if it consists of multiple layers of nodes- the first layer is called the input
layer, while the final one is termed the output layer. The layers that lie in between these two
are so-called hidden layers. The presence of depth in a network (see Section 5.2 for more
detail), as well as the addition of non-linear activation functions (see Section 5.2.5) between
layers, are key drivers of a networks’ expressiveness.

Networks are typically not fed an entire dataset at once, but rather subsets of the data-
referred to as mini-batches or batches. This helps to improve training times and efficiency.
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The simplest layer that can be used in an NN consists of a linear mapping (i.e. affine
transformation) by means of a weight matrix W applied to an input vector ~x, plus a constant
bias vector ~b, that produces an output y:

~y = W~x+~b. (5.1)

The parameters contained in W and ~b are trainable parameters that are learnt and updated
during training. The operation of a fully connected layer is illustrated in Figure 5.1. When
multiple such layers are combined, the nodes in a layer are connected to all nodes in the next
layer by the respective weight given in the matrix W. As such, these layers are often referred
to as fully connected layers.

5.2.2 Convolutional Layers

Convolutional neural network layers are widely known to provide a performant base for building
an algorithm operating on data with a regular grid-like structure (e.g. an image [145]). These
layers have several advantages over fully connected layers for this type of data structure. These
advantages arise from exploiting weight sharing and the spatial symmetry present in the data.
The presence of weight sharing in the algorithm means that the number of trainable parameters
does not depend on the number of inputs, so the number of parameters exhibits a much better
scaling with the dimensions of the regular grid. This results in a more efficient algorithm. In
the case of spatial symmetry, the network should ideally respond in a similar fashion to the
presence of a given feature in the data independent of its position in the grid. This is known
as translational invariance [146].

Convolutional layers operate by passing a kernel (or filter) over the grid. The kernel
operates over a number of grid points, that is usually defined to be a subset of the overall
size of the grid. This is called the kernel size. At each position of the kernel in the grid, the
dot product is taken between each element in the input and the corresponding element of the
kernel. These are then aggregated by means of a sum, producing a single scalar value for the
given kernel position. Convolutional layers therefore act in a similar manner to that defined
in Equation 5.1, however they use a convolution in the place of general matrix multiplication
[140]. The output of a kernel once it has been passed over the grid is called a feature map.
In practice, data often contains a vector of values at each point, which are called channels.
A common example are the RGB pixel values in a colour image. For this reason, multiple
independent convolutional filters are usually learned in parallel in a given layer.

Since only a subset of the total input is covered by the kernel, each node in a convolutional
layer only receives information from a local region of the input. This is termed the receptive
field. If multiple convolutional layers are applied one after the other, the effective receptive
field on the input data gradually grows, as each kernel operation combines information from
neighbouring grid points. This means that earlier layers in the network are restricted to learning
local correlations, while later layers can learn correlations over larger length scales. This effect
is illustrated in Figure 5.2.

The convolutional operation can be augmented to control the size of the feature map
output by a layer. The stride defines the step size between grid positions where the kernel is
applied. This means that the kernel is not applied to every position in the grid, and results in
downsampling such that the size of the output feature map is reduced compared to the input
size to the layer. If the size of the output needs to be kept the same as the input, padding
can be applied to the data. This adds values around the edge of the grid, to allow the kernel
to be applied to the very edge points of the grid. Typically, zero padding is used, which is the
addition of zeros. Convolutional layers can be applied to regular grid-like data over varying
dimensionality. In this thesis, 1D and 3D convolutions will be used.
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5.2.5 Non-linearities

Thus far, the network layers discussed have applied linear mappings. However, a key part of
a networks’ expressiveness, and ability to model complex, nonlinear functions, is the use of
activation functions. These are nonlinear mappings that are applied to the output of a linear
layer, such as that defined in Equation 5.1, that modify the function to be inherently nonlinear.
The important activation functions used in this thesis are defined as follows.

The Rectified Linear Unit (ReLU) [151] [152] is the most popular activation function. It
maps negative values to zero, and applies the identity transformation for positive values. It is
defined as

ReLU(x) = max(x, 0). (5.3)

The main disadvantage of this function is that zero gradients for negative input values can
produce ’dead’ neurons. This means that no gradients (see Section 5.3) are backpropagated
through the neuron, resulting in a reduction in the capacity of the network. The leaky ReLU
[153] function seeks to solve this problem by introducing a slight slope for negative input
values, the gradient of which is controlled by a fixed (i.e. non-trainable) parameter α. The
leaky ReLU is defined as

LeakyReLU(x) =

{

x, x ≥ 0

αx, x < 0.
(5.4)

In some applications, the output of a network must lie between zero and one. A sigmoid
activation can be used in these cases, which is defined as

sigmoid(x) =
1

1 + exp(−x)
. (5.5)

5.3 Learning and Optimisation Algorithms

In Section 5.2, the basic components of neural networks that will be employed in this work were
outlined. However, in order to enable networks to be able to learn from data, the parameters
of a network must be modified depending on how the network output compares to a specific
target. This requires two components:

• A target for the optimisation L — this is the loss function defined in Section 5.1. The
loss of an architecture is minimised in order to improve the performance of a network.
Since these functions are highly task specific, the loss functions used in this thesis will
be discussed in Section 5.4.

• A method for improving the network’s performance on this optimisation target. This can
be achieved by descending gradients of the loss function. The process of calculating these
gradients is called backpropagation and will be discussed in Section 5.3.1. How these
gradients are actually used for learning is addressed by the optimisation proceedure. The
basics of optimisation will be discussed in Sections 5.3.2 and 5.3.3, while the algorithm
that will be employed for optimisation in this thesis will be discussed in Section 5.3.4.

5.3.1 Backpropagation

Forward propagation of information from an input x through each layer of a network produces
a network output y. This can be used to compute the loss defined for the problem L. In order
to filter information backward through the network, backpropagation performs an iterative
procedure starting from the final output layer of the network and working back to the input
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layer. The aim is then to compute, in an efficient manner, the gradient of L with respect to
the ith parameter of the network θi,

∇θ,iL =
∂L

∂θi
. (5.6)

The key component of backpropagation is the chain rule from calculus.
To illustrate this, suppose we have a single neuron performing a simple linear mapping

of input x with weight w and bias b, as defined in Equation 5.1, to produce an output z1,
followed by a non-linearity σ (see Section 5.2.5), to produce an output z2. Let the loss be
some function of z2, L(z2) [146]. The forward propagation is then defined as

z1 = w · x+ b (5.7)

z2 = σ(z1) (5.8)

The gradient with respect to w is then given by

∂L

∂w
=

∂L

∂z2
· ∂z2
∂z1

· ∂z1
∂w

(5.9)

By recursively applying the chain rule in this fashion, ∂L
∂θi

can be calculated. Having calculated
the gradients, they can then be used to optimise the model.

5.3.2 Gradient Descent and Stochastic Gradient Descent

Having calculated the gradient ∇~θ
L(~θ), which defines the direction of the steepest gradient in

L, the simplest approach to optimisation is to move in the direction of the negative of gradient
(i.e. the gradient of steepest descent). For a training dataset consisting of n examples, this
means updating the parameters ~θ to new values ~θ′ by

~θ′ = ~θ − ǫ∇~θ
L(~θ) = ~θ − ǫ

n

n∑

i=1

∇~θ
Li(~θ). (5.10)

This algorithm is therefore called gradient descent. The parameter ǫ is a positive scalar value
called the learning rate, which determines the size of the step taken. The learning rate therefore
has a significant impact on the performance of the optimisation. If ǫ is too large, the step
might take parameters past a global minimum, whereas if ǫ is too small, the convergence of
the training will be slow and there is a risk of the algorithm becoming stuck in a local minimum
[140]. More sophisticated optimisation algorithms therefore typically seek to adjust the learning
rate during training by using information from the previous steps in the optimisation [146].
Strategies to deal with this will be discussed in Section 5.3.3.

Gradient descent relies on calculating the gradient across the entire training dataset. Equa-
tion 5.10 implies that the computational cost therefore scales linearly with the size of the train-
ing dataset for each independent variable. This means that gradient descent does not scale
well to models with a large number of trainable parameters and for large datasets. For this
reason stochastic gradient descent (SGD) [154] has become the standard approach. Instead of
using the full training dataset, a batch of m samples is drawn from the training set {x1...xm}.
This means that equation 5.10 is now computed on a single sample

~θ′ = ~θ − ǫ∇~θ
Li(~θ). (5.11)

This can then be used to estimate the gradient by

E [∇Li(~θ)] =
1

m

m∑

i=1

∇Li(~θ). (5.12)
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5.3.4 ADAM: Adaptive Moment Estimation

The ADAM algorithm [158] is the optimisation algorithm that will be employed in this thesis.
It combines the components of RMSProp and momentum with SGD. This involves taking
exponential moving averages of the first and second moments of the gradient

~m′ = β1 ~m+ (1− β1)∇Li(~θ) (5.15)

~s′ = β2~s+ (1− β2)[∇Li(~θ)]
2. (5.16)

The decay of the moving averages of the two terms are controlled by β1 and β2 respectively.
Typically an initialisation of ~m0 = ~s0 = ~0 is applied, which introduces a bias that is corrected
for by applying

~̂m =
~m′

1− β1
(5.17)

~̂s =
~s′

1− β2
. (5.18)

The parameters can then stepped according to

~v′ = −ǫ
~̂m

√

~̂s+ δ
(5.19)

~θ′ = ~θ + ~v′, (5.20)

where the parameter δ > 0 prevents division by zero or steps that are too large. The combina-
tion of momentum and adaptive learning rates allows ADAM to converge quickly, and adapt
the step size taken based on the fluctuations in gradient updates, making it rather robust to
the selection of hyperparameters [140].

5.4 Generative Models

A class of machine learning model that has been developing rapidly in recent times is the so
called generative model. These models aim to learn the underlying distribution p(x) for a
training dataset x, such that samples can later be drawn from the model, thereby enabling the
generation of new data samples. In practice, this is achieved by the generative model learning
a mapping from some form of noise onto the data space. This task is highly non-trivial and
the exact components of the architecture and training procedure depend heavily on the chosen
approach.

In this Section, focus will be restricted to the network architectures relevant to this thesis.
In Section 5.4.1 the Variational Autoencoder will be described, followed by an overview of
Generative Adversarial Networks in Section 5.4.2. In Section 5.4.3 the Bounded Information
Bottleneck Autoencoder, which incorporates components from a number of different generative
models, will be described. This model with be the main generative model that will be studied
in this thesis. Section 5.4.4 will describe Normalising Flows, a fully invertible generative model.
Finally, in Section 5.4.5, conditioning of these various models will be discussed.

5.4.1 Variational Autoencoders

The Variational Autoencoder (VAE) [159] [160] is a generative model that inherits directly from
autoencoder architectures which are widely used for numerous unsupervised tasks [140]. An
autoencoder consists of two key components — an encoder network that performs a mapping
of input data sample x ∼ p(x) onto a lower dimensional latent representation z, and a decoder
network which, attempts to reconstruct samples x̃ from z. The loss function minimised during
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the training of an autoencoder is then the reconstruction loss which is often chosen to be a
Mean Squared Error (MSE), defined as

LMSE = E [(x− x̃)2] =
1

N

N∑

i=1

(xi − x̃i)
2, (5.21)

for an N dimensional real input.

However, if we wish to be able to later use the model for generation, the distribution of
the intermediate representation p(z) must be known so that samples can be drawn and passed
to the decoder for generation. Using just the MSE loss in Equation 5.21 does not provide any
such restriction. Therefore the loss of a general VAE1 contains an additional term to constrain
the latent representation, and is given by

LVAE = LMSE(x, x̃) + β · DKL[q(z|x)||p(z)] (5.22)

= LMSE(x, x̃) +
β

M

∑

x

∑

z

q(z|x) log
[

p(z)

q(z|x)

]

, (5.23)

where M is the batch size, β is a hyperparameter and DKL denotes the Kullback-Leibler
divergence (KLD), which provides a measure of the similarity between q(z|x) and p(z) [146].

The Kullback-Leibler divergence between probability distributions p and q is defined as

DKL(p||q) =
∑

x

p(x) log

(
p(x)

q(x)

)

. (5.24)

The encoder provides the mapping denoted by the variational posterior q(z|x), which
approximates the true posterior p(z|x), while the conditional likelihood p(x|z) represents the
task of the decoder. The latent space distribution p(z) is usually chosen to be an uncorrelated
multivariate Gaussian. This can be achieved by producing two vectors (with size equal to that
of the latent space), the first ~µ describing the means of the Gaussians and the second ~σ their
standard deviations.

However, in order to allow for a stochastic sampling process in the model without in-
creasing the variance of the gradient too much during backpropagation [162], a so called
reparameterisation trick has to be employed to obtain the vector encoding ~z

~z = ~µ+ ~σ · ~ǫ, (5.25)

with the independent random variable ǫ ∈ N (0,✶). It is therefore ~z that is input to the
decoder.

With the choice of an uncorrelated multivariate Gaussian for p(z), this means that Equa-
tions 5.22 and 5.23 reduce to

LVAE = LMSE(x, x̃) + β · DKL[N (µ, σ)||N (0,✶)] (5.26)

= LMSE(x, x̃) +
β

M

∑

x

1

2
(1 + log(σ)− µ2 − σ2) (5.27)

While the MSE component of the loss governs the reconstruction quality, the second term
represents the regularisation of the latent space towards a multivariate Gaussian. This trade
off, governed by β, will be explored in more detail in Section 5.4.3.

1The definition given here is technically that of the beta-VAE [161], for which the term VAE will be used
synonymously.
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5.4.2 Generative Adversarial Networks

Another popular class of generative model is the Generative Adversarial Network (GAN) [163].
This model consists of a generator network G with parameters θ which is trained in competition
with a discriminator network D with parameters φ. The generator G tries to learn a mapping
Gθ(z) from random noise variables z ∼ p(z) onto the target distribution of the training data
x ∼ p(x). The discriminator D acts as a binary classifier which tries to distinguish real data
x from the generator output x̃ = Gθ(z), by outputting a probability Dφ(x) of a given sample
being real data.

The training follows an adversarial approach, in which D tries to maximise the probability
of a correct classification by means of maximising the cross entropy

LD = max
D

Ex∼pdata [ log (Dφ(x))] + Ez∼p(z)[ log (1−Dφ(Gθ(z)))]. (5.28)

The feedback from the discriminator can then be used to train the generator, which seeks to fool
D by minimising the probability of D (with parameters φ fixed) performing the classification
correctly,

LG = min
G

Ez∼p(z)[ log (1−Dφ(Gθ(z)))]. (5.29)

The combination of the two losses in Equations 5.28 and 5.29, gives the loss of the GAN

LGAN = min
G

max
D

Ex∼pdata [ log (Dφ(x))] + Ez∼p(z)[ log (1−Dφ(Gθ(z)))]. (5.30)

From a game theoretic perspective, this amounts to zero sum game. This permits an optimal
solution to be reached in an idealised scenario called a Nash Equilibrium [164]. In the case of
a GAN, this corresponds to G producing samples so similar to the training data that D can no
longer distinguish generated data from training data, resulting in Dφ = 0.5 i.e. D randomly
guessing whether a given sample is real or generated.

In reality, the inherent fluctuations induced by the adversarial nature of the training tend
to make GAN trainings rather unstable, and achieving convergence can be challenging.

Wasserstein GANs

One popular modification to the traditional GAN is the Wasserstein GAN (WGAN) [165]. This
approach adopts the Wasserstein-1 distance metric between the training data distribution and
the generated distribution, as the target for optimisation. This metric is rooted in optimal
transport theory, and is commonly referred to as the Earth Mover’s Distance due to an intuitive
interpretation of the metric as the minimal cost to transform one mass of earth into another
[146]. The Kantorovich-Rubinstein duality [166] can be used to write the Wasserstein distance
between distributions px and py in a tractable form

W (px, py) = sup
||f ||L≤1

Ex∼px [f(x)]− Ey∼py [f(y)], (5.31)

where the supremum runs over all 1-Lipschitz functions. This means that rather than the binary
classification task given to the discriminator in the original GAN, the adversarial network in
the WGAN, called a critic C, now attempts to estimate the Wasserstein distance between the
real data pdata distribution and the generated distribution pg. Hence, the loss function for the
Wasserstein GAN with Generator G can be written as

LWGAN = min
G

max
C∈C

Ex∼pdata [Cφ(x)]− Ez∼p(z)[Cφ(Gθ(z))], (5.32)

where C ∈ C denotes that the critic is required to be a 1-Lipschitz function. This constraint
requires the norm of the gradients of a differentiable function to be less than or equal to one
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everywhere. Practically, this can be enforced by adding a so called gradient penalty term
[167] to the loss function of the critic. This term is calculated by defining a new distribution
l ∼ pl, which is created by random sampling uniformly along straight lines connecting generated
samples x̃ and data samples x [146],

l = ǫx+ (1− ǫ)x̃, (5.33)

with (0 ≤ ǫ ≤ 1). The critic gradient with respect to samples from pl can then be calculated.
This results in a critic loss term for the WGAN of

LC = Ez∼p(z)[Cφ(Gθ(z))]− Ex∼pdata [Cφ(x)] + λEl∼pl [(||∇lCφ(l)||2−1)2]. (5.34)

The third term in Equation 5.34 is the additional gradient penalty term, with the penalty
coefficient λ acting as the hyperparameter for scaling the gradient penalty. This is typically
set to a value of 10 [167]. In this thesis, the WGAN Critic with gradient penalty will be used.

5.4.3 The Bounded Information Bottleneck Autoencoder

The Information Bottleneck Principle

The Information Bottleneck (IB) Principle [168] was formulated to provide a theoretical means
by which the information from a given random variable X ∈ X , relevant for the prediction of
another random variable Y ∈ Y, could be extracted. It has since played an important role in
approaches seeking to gain an information-theoretical understanding of Deep Learning [169].

The IB principle is defined in terms of mutual information, which provides a measure of the
amount of information that one random variable contains about another. It is defined between
random variables X and Y , jointly distributed by p(x, y) and with marginals p(x) and p(y)
respectively, as [170]

I(X;Y ) = Ep(x,y)

[

log

(

p(x, y)

p(x)p(y)

)]

. (5.35)

In the framework of the IB, a purely unsupervised (U) task in which no labels are provided
can be considered to be a compression from the data space X to a lower dimensional latent
space Z, which seeks to maximise the mutual information I between Z andX, while minimizing
information irrelevant for the task. The problem can be formulated as a minimization of

LU (φ) = Iφ(X;Z)− βI(Z;X) (5.36)

over model parameters φ, with Lagrange multiplier β parameterising the trade-off between
compression and retention of useful information, which forms the central part of the optimisa-
tion. This kind of problem can be seen explicitly in a generative autoencoder such as the VAE
discussed in Section 5.4.1, which features an intermediate bottleneck representation.

The Bounded Information Bottleneck Autoencoder

The Bounded Information Bottleneck Autoencoder (BIB-AE), first proposed in [171], provides
a theoretical framework that unifies many of the features present in common GAN and VAE
architectures. The BIB-AE optimisation target is defined as

LBIB-AE(θ, φ) = Iφ(X;Z)− βIθ,φ(Z;X), (5.37)

where φ are the encoder parameters, and θ are the decoder parameters. By means of a
variational decomposition [171], the BIB-AE loss can be written as
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LBIB-AE(θ, φ) =Epdata

[

DKL(qφ(z|X = x)||pθ(z))
]

︸ ︷︷ ︸

A

−DKL(qφ(z)||pθ(z))
︸ ︷︷ ︸

B

−β

[

Epdata

[

Eqφ(z|x)[ log (pθ(x|z))]
]

︸ ︷︷ ︸

C

−DKL(pdata(x)||pθ(x))
︸ ︷︷ ︸

D

]

,
(5.38)

where data samples x are distributed according to pdata(x), latent samples z are distributed
according to p(z) and, as in Section 5.4.1, the encoder task is represented by qφ(z|x) and the
decoder task is represented by pθ(x|z).

Each of the four components denoted in Equation 5.38 serve a particular purpose. The
first two terms (A) and (B) drive the the distribution of the encoded latent space to match the
target distribution pθ(z), thereby reducing the information contained in the latent space. The
second two terms (C) and (D) ensure that the fidelity of the reconstructed samples x̃ is high,
i.e. that they are distributed in a similar manner to the training data x ∼ pdata. For this to
be achieved, sufficient information must be contained in the latent space. The optimisation of
the BIB-AE is therefore a balance between these two opposing objectives. The interpretation
of the two components in each of the two objectives are similar. Components (B) and (D)
both rely on a sampling based method, such as from adversarial feedback or a kernel-based
Maximum Mean Discrepency loss (see Section 7.3.1) in order to approximate the KLD —
in the first case between encoded latent space (qφ) distribution and the target distribution
(pθ(z)), and in the second case between the distribution reconstructed by the decoder (pθ(x))
and the data distribution (pdata(x)). In contrast, components (A) and (C) rely on an explicit
computation of either the KLD in the first case or the log-likelihood in the second.

This allows for the interpretation of numerous generative models by means of these compo-
nents. For example, the GAN described in Section 5.4.2 uses only component (D) in the form
of the adversarial feedback from the discriminator/critic, while the VAE described in Section
5.4.1 makes use of component (A) for the KLD-based latent space constraint, and component
(C) through the MSE reconstruction loss.

5.4.4 Normalising Flows

Normalising Flows (NFs) [172] [173] are a type of generative model that aim to learn a series
of invertible mappings that allow the transformation of a simple distribution into a much more
complicated distribution and back. This can be considered to be a special case of a VAE, with
the constraint that the decoder applies exactly the inverse mapping to that of the encoder.
Additionally, while a VAE usually encodes information into a lower dimensional latent space,
NFs operate on a base distribution that has the same dimensionality as the data [146].

This base random variable z ∈ Z has a known and tractable probability density function
pz(z), while the target random variable x ∈ X has some unknown probability density function
px(x). NFs then aim to learn a bijective mapping X = g(Z) between the two, with inverse
f := g−1. Under the change of variables formula, px(x) can then be computed from pz(z) via

px(x) = pz(f(x))

∣
∣
∣
∣
∣
det

∂f(x)

∂x

∣
∣
∣
∣
∣

= pz(z)

∣
∣
∣
∣
∣
det

∂g(z)

∂z

∣
∣
∣
∣
∣

−1

,

(5.39)

where ∂g(z)
∂z

is the Jacobian of g, Jg and ∂f(x)
∂x

is the Jacobian of f , Jf . In practice, designing
an arbitrarily complex non-linear function which is also invertible is highly non-trivial [173].
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Since it is desirable for a network to be deep and hence consist of multiple layers, another
important property arises from considering a set of N bijective functions {g1...gN}, each with
inverse {f1...fN}. The composition g

g = gN ◦ gN−1 ◦ ... ◦ g1, (5.40)

is also bijective and has inverse

f = f1 ◦ ... ◦ fN−1 ◦ fN . (5.41)

Additionally, the determinant of the Jacobian of f can be calculated by taking the product
of the individual Jacobian determinants

det Jf =
N∏

i=1

det Jf,i. (5.42)

This means that multiple invertible layers can be stacked together to form an NF, which will
result in a network that still obeys Equation 5.39.

An important consequence [162] of Equation 5.39 is that the logarithm of px(x) is directly
calculable for the sequence of transformations {g1...gN} starting from the base distribution
pz(z) via

log px(x) = log pz(z)−
N∑

i=1

log
∣
∣
∣ det Jgi,(i−1)

∣
∣
∣. (5.43)

This means that NFs can directly calculate the negative log-likelihood, allowing for an explicit
optimisation, rather than an implicit one that is often present in other generative models e.g.
GANs.

Components of Normalising Flows

Designing layers of NFs is a non-trivial task, as they must be invertible (which is not generally
the case of a standard network layer), expressive enough to model a given distribution, and
computationally efficient [173]. While there are a number of different approaches, this thesis
will make use of the coupling layer [174].

A coupling layer operates by first splitting the d-dimensional input x ∈ R
d into two parts

xa and xb. The most common method of dividing the input is to split it into two halves.
A number of different transformations can then be applied. A simple example is the affine
coupling layer. In the case of an affine coupling layer, the transformation g in the forward
direction is,

ya = xa (5.44)

yb = exp(s(xa))⊙ xb + t(xa), (5.45)

where s and t are arbitrary neural networks (for example a fully connected network) that apply
scaling and transition respectively, and ⊙ represents element-wise multiplication [162]. In the
backwards direction, the inverse transformation g−1 can then be applied

xb = (yb − t(ya))⊙ exp(−s(ya)) (5.46)

xa = ya. (5.47)

Note that since s and t are always applied in the same manner in both the forward and backward
pass, they do not need to be invertible [146]. Multiple coupling layers can then be applied
one after the other. However, since only half of the input is processed in g, a permutation
layer is normally applied after each coupling layer. Since this permutation is applied in a
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together with the training data to the encoder, and together with the encoded latent repre-
sentation to the decoder. The conditioning label is provided explicitly to the decoder in order
to create a robust conditioning scheme during later sampling.

In the case of the GAN and WGAN discussed in Section 5.4.2, the generator can be
passed the label by concatenation with the noise vector used for generation, while the dis-
criminator/critic is passed the label in addition to the training data sample. In this manner,
the discriminator is able to learn to correlate a given training sample with its corresponding
label. This means that if the generator produces a sample which does not fit a given label,
the discriminator/critic will be able to recognise the discrepancy. The addition of the label
to the generator input allows the generator to make use of the adversarial feedback from the
discriminator/critic by connecting it to the label.

Since the BIB-AE discussed in Section 5.4.3 features components from both the VAE and
the GAN/WGAN, the conditioning of the model inherits directly from those models. The
autoencoder at the core of the BIB-AE is conditioned in the same manner as the VAE, with
both the encoder and the decoder being provided the conditioning label as additional input.
The adversarial elements of the BIB-AE are also provided the conditioning labels as in the
GAN/WGAN.

Finally, in the case of NFs described in Section 5.4.4, the base distribution is passed through
a series of bijections that are conditioned on the label, in order to create the more complex
transformed distribution. A given normalising flow bijection g can be made conditional by using
a hypernetwork [177], which is conditioned on the given labels, to generate the parameters of
g. By providing the conditioning labels to the transformations in this manner during training,
the same conditioning scheme can be used to generate conditional samples when mapping
from the base distribution to new data during inference.
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Chapter 6

Simulation in High Energy Physics

Simulation in high energy physics is broken down into a chain of separate simulation steps,
which can broadly be divided into event generation and detector simulation. The first step
of event generation is the simulation of the hard scattering process between the initial state
particles. This is performed by building the matrix elements and integrating across the phase
space to calculate the appropriate cross sections. Since these integrals are not analytically
tractable, event generators make use of MC techniques. The partons (quarks and gluons)
that are produced during the process must then be evolved through a process termed parton
showering, whereby they are successively spilt into pairs of partons. This splitting emulates the
radiation of gluons or quark-antiquark pairs from a particle with colour, and continues down to
a given momentum transfer scale, after which point the splitting is terminated. However, the
partons in the final state of the parton shower may not exist in isolation as a result of colour
confinement, and undergo a processes termed hadronisation. This involves non-perturbative
QCD, and hence phenomenological models are used to create the final state, colourless hadrons,
as well as decay short lived resonances [178]. These final state colourless hadrons appear in
the detector as a collimated stream of particles in a jet.

To model the physics conditions at the ILC, ILD uses the event generator WHIZARD

[179] to generate final state partons and leptons, and the event generator PYTHIA [180]
to model the hadronisation process. The beam conditions are simulated with the Guinea-
Pig [181] package, which provides a dedicated simulation tool for beam-beam interactions at
linear colliders [64]. Note that an important part of a complete simulation scheme is also
the simulation of background processes. At the ILC, the dominant effects arise from beam-
beam interactions. This includes beamstrahlung which affects the luminosity and produces
a γγ → hadrons background, and incoherent e+e− pairs. These are typically overlaid to
the simulated event after the detector simulation of the hard process, and will thus not be
considered further in this work.

The second step in the simulation chain in high energy physics is detector simulation, which
will be the focus of this thesis. This simulation stage takes the output of the event generation
as primary particles, which are then propagated through the detector with their interactions
with the materials and fields in the detector being simulated. This results in the creation of
hits which represent the energy deposited in the sensitive parts of the detector. ILD uses the
state-of-the-art simulation toolkit Geant4 [25], which is interfaced through the DD4hep

[129] geometry description toolkit.

Detector simulation can be accomplished in a number of ways. Full simulation involves
a physics-based approach relying on MC techniques to track individual particles through the
detector and record their interactions. The principles behind this approach and its imple-
mentation in Geant4 will be described in Section 6.1.1. However, given the large amount
of simulated data required by high energy physics experiments and the high computational
cost of full simulation, fast simulation techniques are now wide spread. Geant4 therefore
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additionally provides an interface for fast simulation models.
Classical approaches to fast simulation will be described in Section 6.2, with a particular

emphasis placed on those designed for calorimeter simulation, which constitutes the most
computationally intensive part of a full simulation of a detector. Subsequently, a review of
approaches to fast calorimeter simulation based on generative models will be given in Section
6.3. Particular attention will be paid to models for simulating high granularity calorimeters,
which are the principle focus of this work.

6.1 Particle Transport Monte Carlo

Particle transport Monte Carlo aims to simulate the passage of individual particles through
matter, from their creation until they either are destroyed or leave the detector volume. This
approach breaks down the simulation of the particles’ propagation into individual steps, with
a number of potential interactions considered at each step.

Consider the general case of a particle of energy E traversing a compound material with
density ρ consisting of numerous different elements, where the ith element composes a fraction
fi of the mass. The number of atoms per unit volume of that element is

ni =
NAρfi
Am,i

, (6.1)

where NA is the Avagadro constant and Am,i is the molar mass of the ith element. The
interaction of the particle via a given process is characterised by the mean free path λ(E)
[182], which can be written in terms of the total cross-section of the process per atom of
element i, σi(E), as

λ(E) =
1

∑

i ni · σi(E)
. (6.2)

In order to establish the interaction point for a particle passing through a medium which
consists of numerous different materials, a quantity which is material independent is required.
This requirement is fulfilled by using the number of mean free paths nλ [182] that a particle
traverses when moving a distance x

nλ(x) =

∫ x

0

dx′

λ(x′)
. (6.3)

The probability of an interaction occurring within a distance x is then given by the cumulative
probability

c(x) = 1− p(x) = 1− exp(−nλ(x)). (6.4)

nλ can then be sampled [183] by drawing a random number η from a uniform distribution
between 0 and 1

nλ = − log(η). (6.5)

The step size s(x) = nλ · λ(x) is then calculated for each possible process. The shortest
step size is selected, with the particle undergoing the corresponding process during the given
step [182].

In practice it is not just discrete processes such as this that have to be considered — in
the case of Bremsstrahlung, for example, this is because of the large number of low energy
secondaries produced [102]. In this case, below a selected energy threshold Et the interactions
are treated collectively with cross-section σcontinuous, and do not contribute to limiting the
step, only altering the particle kinematics. Therefore only the interactions with energy E
resulting in secondaries above threshold are simulated individually (i.e. treated discretely),
resulting in cross-section

σdiscrete =

∫ ∞

Et

dσ

dE
dE, (6.6)
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primary particles. This removes dependence on the specifics of a given event generator, and
allows for the use of primary particles that cannot be handled with Geant4.

The geometry of the detector through which particles propagate can be constructed from
a hierarchy of volumes. A logical volume can contain other volumes, and holds information
about the volume that is independent of its physical position, such as the material composition.
The physical volume represents the placement of a logical volume within the mother volume
that contains it [25]. Information about interactions is collected if they occur in a sensitive
region, denoting an active element of the detector.

The definition of a particle in Geant4 contains static information about the particle
such as its name, mass, charge etc. Geant4 typically only tracks particles with macroscopic
lifetimes, with particles such as quarks and gauge bosons being handled by the generator.
Full simulation in Geant4 involves a detailed physics-based simulation procedure based on
particle transport Monte-Carlo. At the core of this scheme is tracking. The manner in which
tracking proceeds in Geant4 is represented in Figure 6.1. A track represents a snapshot of
the information relevant to a given particle for each step, such as the current position and
momentum of the particle. During tracking, the track is moved in individual steps. The length
of a step arises from a competition between processes, with the user being able to limit the
maximum step size directly. An additional limit on the step size arises when particles from a
secondary process need to be created, and also typically if a step crosses a boundary between
geometry volumes. Each physics process has three allowed actions, which may be combined
to formulate the process:

• at rest, which is used for particles at rest, such as in the case of particle decay

• along step, which describes a continuous interaction that occurs along the path of the
particle, such as ionisation

• post step, which represents a point-like interaction at the end of a step, such as in-flight
decay

The particles that will be used in a given simulation application and the allowed pro-
cesses for each particle are defined in a physics list. These may include different models for
interactions, with a transition between the models occurring across energy ranges. For electro-
magnetic physics, a standard electromagnetic package provides the complete set of processes
for charged particles and photons down to 1keV. As discussed in Section 3.3, hadronic physics
is significantly more complicated, and therefore difficult to fully describe with a single list. For
this reason, several different hadronic physics models are available. In this thesis, the QGSP -

BERT physics list will be used, which uses the Quark-Gluon String precompound model [185]
for higher energies, and the Bertini Cascade model [186] for lower energy regions.

Since the full step-based simulation procedure described above involves tracking individ-
ual particles, in detectors where large numbers of particles are present in the simulation the
computational cost can become significant. This is in particular true in a calorimeter, which
relies on the production of many secondary particles as described in Section 3. Since the
full simulation procedure also relies on the sequential production of secondaries, it cannot be
easily parallelised. This motivates the use of parameterised models, which can provide a faster
yet typically less accurate, emulation of the detector response. In Geant4, a given detec-
tor region can be assigned a parameterisation envelope. This allows a user to terminate the
full simulation of a particle which fulfils certain criteria (such as the type of particle and its
energy). Information about the particle can then be passed to the relevant parameterisation
model in order to emulate the response of the sub-detector in question. Once the output of the
parameterisation model has been produced, it can be handed back to Geant4 for placement
back into the detector geometry. These can then be treated as if they were produced by the
conventional full simulation procedure.
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6.1.2 The DD4HEP Detector Description Toolkit

The DD4hep detector description toolkit [129] provides a generic array of different tools
which can be used coherently to provide a single source of information about a detector, in
a manner which is sufficiently flexible to enable its use throughout the complete lifecycle of
an experiment. Of particular relevance to this thesis is the DDG4 [130] component, which
provides an interface to Geant4.

This interface enables complex detector geometries to be implemented in a straightforward
fashion in Geant4, with an automatic mechanism provided for translating between geometry
representations [187]. The sensitive regions of the detector can additionally be segmented in
order to emulate the readout geometry of the detector, thereby allowing the information about
physical interactions to be accumulated into hits. Hooks are also provided to allow the use of
the fast simulation mechanism present in Geant4.

6.2 Classical Approaches to Fast Simulation

One approach to fast simulation is to attempt to emulate the entire detector response and,
at least partially, the reconstruction chain. Examples of such tools are Delphes [188] and
SGV [189], which has been used as a fast simulation tool for the ILD concept. In the case
of Delphes, a detector parameterisation is used which involves a smearing being applied
to generator level quantities in order to emulate the detector response. In the case of the
calorimeter component of the simulation, this smearing is used to model the energy resolution of
the calorimeter, producing a single calorimeter ’object’ (cluster). While SGV uses a significantly
more advanced method for simulating tracking detectors based on the full covariance matrix
of the track, the simulation of the calorimeters is similar. The main difference is that SGV
can optionally provide a rough parameterisation of confusion in associating energy between
clusters produced by charged and neutral particles (see Section 4.1). While these detector
simulations are typically very fast, the fact that a reconstruction level output is produced for
the calorimeters means that it cannot be used in conjunction with the real reconstruction chain
of an experiment, since there are no hits produced.

An alternative approach to fast simulation is to directly target the calorimeter component of
the simulation by attempting to simulate the hits in a shower. One method is to use a shower
library. Such a library consists of a large number of showers simulated with Geant4 for
different particle types with various energies and incident positions on the calorimeter surface
[33]. During the detector simulation, an appropriate shower for a given particle incident to the
calorimeter is selected from the library. A slight modification to this approach was adopted
by the ATLAS experiment [34], where full simulation was used for electromagnetic particles
above a certain energy threshold, while a frozen shower from a library was used in place of full
simulation for electromagnetic particles that fell below the threshold.

Another classical approach to fast calorimeter shower simulation is a parameterisation [31,
32]. For electromagnetic showers, the spatial distribution of energy E is broken down into
three components

dE(~r) = Ef(t)dtf(r)drf(φ)dφ, (6.8)

where the probability density functions f(t), f(r) and f(φ) represent the longitudinal, radial
and azimuthal components respectively. The longitudinal shower depth t is represented in
units of radiation length, while r denotes the radial distance perpendicular to the shower axis
in units of Molière radii. The parameter φ describes the azimuthal angle around the shower
axis, with the assumption that the energy is symmetrically distributed in φ. An additional
distribution must be folded in to emulate the sampling fluctuations in a sampling calorimeter.
An implementation of this parameterisation for calorimeter shower simulation called GFlash

is available in Geant4 [31].
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6.3 Generative Models for Fast Calorimeter Simulation

Following the seminal work of Paganini et al. [44, 53], which proposed the use of GANs for
fast calorimeter simulation, a multitude of advances have been made in the application of
generative models to calorimeter simulation. The vast majority of this work has focused on
exploring various different generative models for this task, including GANs and their variants
[57–62], VAEs and their variants [4, 45–47, 63] and Normalising Flows [48–51]. Towards the
end of the work presented in this thesis, Diffusion Models [6, 7, 52, 54] have also begun to be
explored. The field is now sufficiently advanced that the ATLAS experiment has deployed a
GAN-based model as part of their fast simulation chain for the detector in its current form [55].
This tool involves training 300 GANs, one for each particle type and regions of the detector in
bins of pseudorapidity η.

However, as described in Chapter 3, several upcoming experiments plan to use calorimeters
of a significantly higher granularity. The higher granularity present in these calorimeters poses
a much greater challenge for a generative model-based fast simulation tool for a number of
reasons:

• Greater structure in the shower can be resolved, increasing the requirement in terms of
physics fidelity of the generative model.

• The generative model must simulate the detector response across more channels. This
typically means that any given network will require more parameters and therefore more
computational operations.

The increased number of channels in a calorimeter subsystem also poses challenges in
terms of integrating a generative model into a simulation chain, as training a large number of
generative models for different regions of the detector and operating them during simulation
time becomes impractical. The approach taken for integrating models into the simulation
chain in this thesis will be described in Chapter 9.

Prior to the work presented in this thesis, the potential for generative models to be used
as fast simulation tools for highly granular calorimeters has been explored across a range of
models. Buhmann et al. [45, 63] investigated the performance of several generative models for
simulating photon showers with varying energy in the highly granular ECAL present in the ILD.
In particular, a BIB-AE model (see Section 5.4.3) specifically adapted to the task of calorimeter
simulation was found to perform well across a range of calorimeter observables. Subsequently,
Buhmann, P.M. et al. [4] applied the BIB-AE model to the significantly more challenge physics
case of hadronic shower simulation in the form of charged pions with varying energy in the
ILD HCAL. The improved performance of the BIB-AE in describing the cell energy spectrum
of hits in the shower relative to a WGAN and a GAN (for photons in the ECAL) and a WGAN
(charged pions in the HCAL) is shown in Figure 6.2. The BIB-AE has also been shown to
provide an accurate description of data collected at a test beam, with various calorimetric
observables being described well by a BIB-AE in comparison to two different physics lists
provided by Geant4 [190].

However, so far work on this topic has focused on the specific case of a particle incident
orthogonal to, and at a fixed position on, the calorimeter surface. A notable exception is the
work of Khattak et al. [56], who investigated the performance of a GAN at generating showers
in an idealised highly granular ECAL for particles incident under varying polar angles uniformly
distributed in the range of 60 to 120 degrees. In order to generalise these proof of concept
studies to a complete detector simulation, an appropriate detector response must be simulated
for particles incident to the face of the calorimeter with various energies and incident angles.
A minimum complete conditioning for a generative model given a fixed particle type in this
case therefore involves the incident energy and two angles.
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Chapter 7

Multi-parameter Conditioning of

Generative Models

The work presented in this Section has previously been published in [1] in collaboration with
Sascha Diefenbacher, Engin Eren, Frank Gaede, Gregor Kasieczka, Anatolii Korol, Katja Krüger
and Lennart Rustige. As such, this section includes numerous figures and tables, as well as
significant amounts of text that are similar or identical to parts of that work. This author’s
contribution to the work included the implementation and optimisation of the BIB-AE model,
the implementation and optimisation of the flow model, parts of the dataset production, the
application of the reconstruction algorithm, the study of the model’s performance, writing
sections of the paper, coordination of the peer review process and correspondence with the
journal, as well as the addressing of referee comments.

This Chapter focuses on extending the BIB-AE model for which the proof of concept
application to highly granular calorimeter showers was already demonstrated, as described in
Chapter 6. Previously, the performance of the BIB-AE was successfully demonstrated for the
restricted case of a particle incident with varying energy, but fixed incident angle to, and
position on, the calorimeter face. In this Chapter, as a first step towards creating a more
general generative model for calorimeter simulation, the model will be extended to handle
conditioning on an angle of incidence as well as the incident energy, with a fixed incidence
position in the calorimeter. Additionally, a detailed study of calorimetric observables before
and after applying PandoraPFA for single-particle reconstruction will be performed.

Section 7.2 will address the creation of the data set and the approach adopted for recon-
struction. Section 7.3 will then focus on the set up of the generative model used, including the
extension to the BIB-AE architecture and the necessary change in approach for latent space
sampling. The model performance will then be assessed before and after reconstruction in
Section 7.4, before conclusions are drawn in Section 7.5.

7.1 Coordinate System Convention

Throughout the work presented in this thesis, two key coordinate systems will be used. The
first is the global ILD coordinate system, which will be represented by primed coordinates.
The origin of the coordinate system is placed at the IP and it is orientated such that the z′

axis points along the beam axis in which the initial e+e− collisions occur. The y′ − x′ plane
lies orthogonal to the beam axis, with the y′ axis pointing vertically and the x′ axis pointing
horizontally. It is a right-handed coordinate system. The polar angle θ′ represents the angle
measured from the z′ axis. The azimuthal angle φ′ represents the angle in the x′ − y′ plane,
as measured from the x′ axis.

The second coordinate system is the local calorimeter coordinate system. The origin is
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placed at the incident position of a particle to the calorimeter face. It is orientated such
that the z axis points into the depth of the calorimeter, perpendicular to the orientation
of the calorimeter layers. The x and y axes therefore lie paralled to the calorimeter face.
The coordinate system is right-handed. The angle θ from the z axis therefore represents the
direction of a particle with respect to the layers of the calorimeter, while the angle φ represents
the orientation with respect to the cell geometry in the x− y plane.

7.2 Dataset and Reconstruction Scheme

The dataset used in this study was produced using the iLCSoft [126] ecosystem (see Section
4.2.2), with full simulation performed with Geant4 [25] version 10.4 using the QGSP BERT
physics list and DD4hep [129] version 1.11. The datasets used consist of electromagnetic
showers in the ILD ECAL (see Section 4.2.1). The showers are initiated by photons produced
by a particle gun placed directly at the face of the calorimeter. In this study the position of
the gun is fixed to be (x′, y′, z′) = (0.0 mm, 1810 mm,−50 mm) in the global ILD coordinate
system. To create the training dataset, the incident energy E was varied uniformly in the
range of 10 to 100 GeV simultaneously with the global polar incident angle, which was varied
uniformly from 90 to 30 degrees. The global azimuthal angle (corresponding to the angle in
the x− z plane in local calorimeter coordinates) was fixed to be 90 degrees. A total of 500k
showers composed the training dataset 1. Since a simulator based on a generative model will
be used to produce showers initiated with particular energies and angles, fixed combinations
of energies and angles are used to evaluate the performance of the model. A total of 9
datasets, each consisting of 1900 showers with fixed combinations of incident energies ({20,
50, 90} GeV) and polar angles ({40, 60, 85} degrees). These points were chosen to cover a
broad range of the phase space, while avoiding any edge effects that might be introduced right
at the boundaries of the training ranges. Another 9 independent datasets with an identical
number of showers and combinations of incident energies and angles were used as validation
datasets to select the best performing state of the model. A fixed calibration factor was applied
to scale the hit energies in the last 10 layers of the calorimeter to account for the modification
of the sampling fraction caused by the absorber layers being twice as thick in this region (see
Section 4.2.1).

Importantly, since the BIB-AE model that will be used relies on the use of 3D convolutions,
the data provided to the model must be in the form of a regular grid. Calorimeter shower images
are created by projecting the cells in the ECAL into a regular grid of (x, y, z) = 30× 60× 30
in the local calorimeter coordinate system. This means that each plane of voxels for a given z
position corresponds to one of the 30 calorimeter layers present in the physical ECAL. The size
of grid was chosen such that on average approximately 99% of the visible energy deposited in
the detector was contained for the highest incident energy and most inclined incident angle
present in the data. In the grid that results from the projection, the photons are incident at a
fixed cell with index (ix, iy, iz) = (15, 12, 0).

A key problem of this projection to a regular grid arises from the irregular nature of the
physical readout geometry present in the detector. These irregularities include staggering ef-
fects between layers, and insensitive volumes within an active layer arising for example from
dead material such as readout electronics or gaps between detector elements, which are neces-
sary for the construction of the detector. The effect of the staggering between layers appears
in the z − x plane, as shown in Figure 7.1. These irregularities tend to cause artefacts that
appear in the regular grid as empty lines of cells. These are corrected for in the datasets such
that each voxel in the regular grid corresponds to exactly one sensor in the calorimeter.

1The training dataset and the workflow for creating the test/validation dataset and running reconstruction
were provided by Engin Eren. The training dataset has been published and is available at [191]

56







Chapter 7. Multi-parameter Conditioning of Generative Models

LMMD = MMD(NE(x),N (0, 1)). (7.2)

The second sampling-based method comprises a Wasserstein-GAN-like latent critic CL (see
Section 5.4.2), which learns to distinguish the latent space from a standard Normal distribution,
resulting in a loss of

LCriticL = E[CL(NE(x))]. (7.3)

Another WGAN-like critic network, the reconstruction critic C, acts on the output shower
images reconstructed from the latent space by the decoder. This critic serves a dual purpose,
providing feedback as to the quality of the latent-reconstructed showers directly, but also by
comparing the input to the autoencoder to its output by means of a difference between the
two. The loss contribution of this critic is denoted as

LCritic = E[C(ND(E(x)), x)]. (7.4)

Following developments in [4], each of the latent and reconstruction critic networks repre-
sented in Figure 7.2, actually consist of two identical networks with independent weights. One
network is trained continuously in the standard fashion, while the second has its weights and
optimiser reset after each epoch. This was originally introduced in [4] to deal with the higher
sparsity present in hadronic showers, where a continuously trained critic could become blind to
the outer regions of a shower, and focus only on the shower core. However, we find that the
approach of using dual critic networks also aids the network training with the increased sparsity
present in the photon shower data in this case, due to the larger grid size used. Additionally,
the minibatch discrimination [194] introduced for the BIB-AE in [4] is retained for this study.
This involves additionally providing the model with information pertaining to the composition
of the batch. This is achieved by producing a set of difference matricies between the output
and input shower images, as well as with logarithmic scaled versions of both. This information
is then incorporated into the reconstruction critic via an embedding [190].

These individual losses result in a total architectural loss for the main BIB-AE of

(7.5)LBIB-AE = βKLD · LKLD + βMMD · LMMD

+ βCriticL · LCriticL + βCritic · LCritic,

where the strength of the contribution from each term is controlled by an independent hyper-
parameter βi. The values of these hyperparameters were chosen such that each loss term has
a similar order of magnitude, as described in [4]. The values for each of these hyperparameters
were therefore set as follows: βKLD = 0.1, βMMD = 100, βCriticL = 100 and βCritic = 1.

Once the main BIB-AE model has been trained the weights of this model are frozen and a
separate Post Processor (PP) network is trained according to the developments described in
[4]. This network is specifically designed to tune the model to better describe the cell energy
spectrum (see Section 6.3), by applying a series of 3D convolutions with kernel size one in order
to encourage the adjustment of individual voxel energies, rather than creating or removing a
hit. The PP network is trained for one epoch with only an MSE loss term between the input
and output showers, as defined in Equation 5.21. Subsequently, the training is continued with
this MSE term, along with another 5 loss terms.

The first two are Sorted Kernel Maximum Mean Discrepancy (SK-MMD) loss terms, which
were introduced in [63]. This loss computes the MMD (Equation 7.1) only on the Nhits =
1, 000 most energetic hits in the shower, avoiding wasted computation on hits with very low
energies. Two vectors are created from these 1, 000 hits — the first sorted by decreasing
energy, and the second without any sorting applied. The MMD is then computed between
corresponding vector entries lying in a window of m hits, which is passed along all 1, 000 hits
with a stride s, before a final loss term is computed by means of an addition over all of the
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MMD losses calculated. The values are set to m = 150 and s = 25. A Gaussian kernel k
given by

k(x, x′) = eα(x
2+x′2−2xx′), (7.6)

is used, with the scale factor α governing the size of the feature which the loss is sensitive
too [190]. Two separate SK-MMD loss terms LSK-MMD1 and LSK-MMD2 are used with kernel
factors α1 = 40 and α2 = 4 respectively. The difference in sensitivity of these two terms allows
a broader range of the cell energy spectrum to be covered.

The second two Post Processor loss terms operate on the input and output shower hits
sorted by energy in vectors. The first term computes an MSE between the sorted vectors, with
loss contribution LS-MSE and the second computes a Mean Absolute Error (MAE) loss, given
by

LMAE = E |x− x̃|, (7.7)

which also operates on the sorted vectors, and results in a loss contribution of LS-MAE.

A final contribution to the Post Processor loss is provided by an MSE loss computed
between batches of input and output shower images, making the loss sensitive to artefacts
that only appear across multiple showers. This term provides a contribution to the Post
Processor loss of LBatchComp..

These individual losses result in a total loss for the Post Processor network of

(7.8)
LPP = βMSE · LMSE + βSK-MMD1 · LSK-MMD1

+ βSK-MMD2 · LSK-MMD2 + βS-MSE · LS-MSE

+ βS-MAE · LS-MAE + βBatchComp. · LBatchComp.,

where the strength of the contribution from each term is controlled by an independent hyperpa-
rameter βi. The values of these hyperparameters are set as follows: βMSE = 1, βSK-MMD1 = 5,
βSK-MMD2 = 5, βS-MSE = 10, βS-MAE = 10, βBatchComp. = 0.0001.

Structure of the Networks

In order for the BIB-AE model to be useful as a simulation tool, it must be able to provide
an appropriate detector response for given characteristics of the incident particle. Therefore,
as shown in Figure 7.2, all networks composing the architecture except the latent critic are
conditioned on the energy (light blue pipes) and angle (lilac pipes) of the incident particle.
The Post Processor network is additionally conditioned on the visible energy sum of a given
shower. How this visible energy is determined during inference time will be discussed in Section
7.3.2. The networks are built around combinations of 3D convolutions and fully connected
layers. The structure of each network is as follows.

The encoder-decoder pair uses a total of eleven 3D convolutional layers, two transpose
3D convolutional layers and seven fully connected layers. Layer normalisation is applied after
each convolution except for in the final layer of the decoder, and LeakyReLU activations are
applied to each layer except for the final encoder and decoder layers, where linear and ReLU
activations are applied respectively.

The critic network uses a total of six 3D convolutional layers, each followed by a normalisa-
tion layer, eleven fully connected layers and a further twelve 1D convolutions for the minibatch
discrimination. LeakyReLU activations are applied throughout, except for in the final layer.

The latent critic is a purely fully connected architecture, consisting of four fully connected
layers followed in each case by LeakyReLU activations, except in the final layer.

The Post Processor network uses a total of six 3D convolutional and three fully connected
layers. No layer normalisation is used, while LeakyReLU activations are applied throughout
except in the final layer. Unlike in previous implementations of Post Processing for the BIB-AE
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Table 7.1: Key hyperparameters used in the training the BIB-AE model, separated into the
training of the main model and the Post Processor network.

Category Hyperparameter Value

Batch Size 64
No. Epochs 50

βKLD 0.1
Loss βMMD 100

Main Terms βCriticL 100
BIB-AE βCritic 1

LREncoder 0.5× 10−4

Initial LR LRDecoder 0.5× 10−4

LRCriticL 0.5× 10−4

LRCritic 2.0× 10−4

Batch Size 32
No. Epochs 53

Nhits 1, 000
SK-MMD m 150
Loss s 25

α1 40
α2 4

Post βMSE 1
Processing βSK-MMD1 5

Loss βSK-MMD2 5
Terms βS-MSE 10

βS-MAE 10
βBatchComp. 0.0001

Initial LR LRPP 0.5× 10−4

[4, 63], no layer normalisation is used between layers, as this was found to reduce the networks’
ability to learn the inclination of showers.

More details on the architectures of each network are provided in Appendix A.

Training and Validation

The ADAM optimiser [158] was used for training all networks in the BIB-AE, with an ex-
ponential learning rate decay. A common initial learning rate (LR) of 0.5 × 10−4 is used for
the encoder, decoder, critic and Post Processor network, while the initial learning rate for the
latent critic is set to 2.0 × 10−4. The learning rate is decayed by a factor of 0.97 after each
epoch. A batch size of 64 was used during the training of the main BIB-AE, while this was
reduced to 32 during the training of the Post Processor network. The BIB-AE architecture
was trained for a total of 50 epochs, after which the model was frozen and the Post Processor
trained for a further 53 epochs. The Geant4 showers used for training all have a threshold
applied to map hits below 1×10−4 MeV to zero. The key hyperparameters used in the training
procedure are summarised in Table 7.1.

Due to the adversarial nature of the training, the performance of the network can fluctuate
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significantly between epochs. The best epoch of the training was selected by means of a
fidelity scan over epochs. At each epoch, the validation data was split into two, with the first
half being run through the encoder-decoder pair of the BIB-AE, and the remaining half being
retained for comparison. Passing the data through the autoencoder was necessary to avoid the
computational infeasibility of modelling the latent space (see Section 7.3.2) for every epoch
individually, since the structure of the latent space varies during the course of training. For
each epoch, seven key calorimetric observables (angular response, energy response, cell energy
spectrum, number of hits above threshold, center of gravity, longitudinal profile and radial
profile — see Section 7.4) were used as the criteria for selecting the best model. For each
observable, a single value quantifying the network performance at that epoch was produced
by means of a bin-wise area difference 3 between the Geant4 distribution and the output of
the autoencoded showers. This approach was used to determine the best performing epoch of
the main BIB-AE training, with particular emphasis being placed on the quality of the energy
and angular response modelling. Post Processing was then trained starting with this state of
the main BIB-AE as a base, and the best epoch of Post Processing selected via a similar scan
over epochs.

7.3.2 Latent Space Sampling

As described in Section 5.4.3, the optimisation of the BIB-AE represents a trade-off between
information retention and compression. This means that relaxing the regularisation constraint
on the latent space allows more information to be retained. However, this comes at a cost —
the less regularisation is applied, the more the latent space variables will deviate from standard
Normal distributions. While this more flexible latent space contains more encoded information,
in order to be able to use the BIB-AE as a simulator it must be possible to draw samples from
the latent representation z. Since the latent space variables no longer perfectly follow a
standard Normal distribution, using latent samples drawn form this distribution degrades the
performance of the network. It is for this reason that previous BIB-AE studies [4, 45] have
employed Kernel Density Estimation [195] to provide an improved modelling of the latent space
variables and their correlations. For a set of N data points {x1, x2, ..., xN} drawn from the
latent space, the KDE is given by

f̂h(x) =
1

nh

N∑

i=1

K

(
x− xi

h

)

, (7.9)

where h > 0 is a smoothing parameter called the bandwidth andK is the kernel function. Once
the KDE has been fitted to the latent distribution, it can be sampled from during inference
time to provide input to the decoder.

However, a problem arises with the conditioning scheme in this approach. Previously, in
order to generate a sample of a given incident energy, the energy label E was concatenated
with the latent sample prior to fitting the KDE. This meant that sampling from the KDE
also provided a corresponding energy label for a given sample. This allowed the use of a
rejection sampling technique, whereby repeated sampling was performed until a sample was
found to lie within a narrow window around the desired incident energy. While this sampling
technique was adequate for a single conditioning parameter, it scales poorly to the general
case of multi-parameter conditioning.

For this reason, the density estimation approach adopted for latent space sampling must
be improved. We therefore use a Normalising Flow (NF) model, which is well suited to this
low-dimensional density estimation task, and can be conditioned in a straightforward manner as
described in Section 5.4.5. The model is implemented using the PYRO [196] deep probabilistic

3This metric is calculated with a normalisation applied such that a value of one means the distributions do
not overlap at all and a value of zero corresponds to perfect overlap.

62



























Chapter 7. Multi-parameter Conditioning of Generative Models

to reduce the level of mismatch that occurs.

7.4.2 Computational Performance

Since the ultimate usage of a generative model for fast simulation relies on being able to provide
a reduction in the time required to generate showers, we finally benchmark the computational
performance of the model in terms of the inference time per shower in comparison to Geant4.
Due to the sequential nature of the Monte Carlo simulation approach used in Geant4, the
computational performance of this approach is only benchmarked on CPU hardware, while
the performance of the BIB-AE can be benchmarked on both CPU and GPU hardware. It
should be noted that the timings for Geant4 additionally include navigation and placement
in the detector geometry and additional computational effects that cannot be replicated in the
BIB-AE timings, which at this stage are performed in a pythonic software environment and in
the (30× 60× 30) regular grid which is produced by the BIB-AE.

Table 7.2 shows the average time to generate a shower with energy uniformly distributed
in the range of 10− 100 GeV and angles in the range of 90− 30 degrees using Geant4 and
the BIB-AE. The generative model offers a significant speedup relative to Geant4, reaching
up to three orders of magnitude on a GPU.

Table 7.2: Comparison of the computational performance of the BIB-AE generator and
Geant4 on a single core of an Intel® Xeon® CPU E5-2640 v4 (CPU) and an NVIDIA®

A100 with 40 GB of memory (GPU). For the BIB-AE, the best performing batch size is se-
lected. The value shown is the mean obtained for a set of 2000 showers with uniform energy
from 10− 100 GeV and 30− 90 degrees, with error arising from the standard deviation. Table
and caption reproduced from [1].

Hardware Simulator Time / Shower [ms] Speed-up

CPU Geant4 4417 ± 83 ×1

BIB-AE 362 ± 2 ×12

GPU BIB-AE 4.32 ± 0.09 ×1022

7.5 Conclusions

In this Section, we have developed generative models for highly granular calorimeter simulation
in two key directions. In the first instance, we have extended the BIB-AE which is one of
the best performing models for the task of calorimeter simulation, to a generalised scenario
which requires conditioning on both incident particle energy and angle. In a second step, we
have additionally performed a detailed study into the effects on key physics observables after
interfacing with the full reconstruction pipeline used in ILD.

Importantly, the model has been shown to not only provide an accurate description of key
physics observables in this generalised simulation scenario, but to also maintain this perfor-
mance after reconstruction is applied. The energy conditioning performance of the model was
shown to be particularly strong thanks to the per-shower re-scaling that was afforded by the
use of an NF to model the latent space. The angular conditioning was, while somewhat weaker
in comparison, still found to provide a good description of the distributions. The ability of the
BIB-AE to describe the cell energy spectrum was retained across the range of incident energies
and angles, as was the description of the different shower shapes. A notable exception to this
final remark are the differences that appear at larger radii for more inclined showers.
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The extensions to the model, notably the modelling of the latent space with an NF have
also allowed the computational performance of the model to remain strong even with the larger
regular grid required to contain the showers incident under the the most inclined angles.

While this indicates a strong performance from the model in the scenario presented, in
order to broaden the scope of the study, a number of key limitations must be noted. Firstly,
this Section has only investigated the conditioning of the model on a single angle of incidence.
In order to produce a general tool, conditioning on a second angle of incidence will be required.

Secondly, all the showers investigated were generated at a fixed point in the calorimeter.
Since the calorimeter geometry is not perfectly regular, this means that at different incidence
points the local geometry will appear different. Generalising to different incidence points would
also make the use of the map look-up that was used in this Section to place the shower back
into the detector geometry impractical, as an individual muon sample and corresponding map
would have to be created for each possible incidence point.

Thirdly, while the performance of the model after reconstruction was found to be strong,
only single particle reconstruction has been studied. This is in part restricted by the aforemen-
tioned map look up. In a real physics simulation, showers from different particles will overlap,
and the reconstruction problem becomes significantly more challenging. Notably, when sepa-
rating overlapping showers, one can imagine the radial profile of showers being crucial, meaning
that the deviations observed for more inclined showers at larger radii could have significant a
significant impact.

Finally, the computational benchmark presented in this Section, which is also routinely used
in the literature, is not a fair comparison between Geant4 and the BIB-AE, as the Geant4

timings necessarily also include additional effects from running in the full simulation pipeline
and in the real detector geometry. In order to provide a realistic computational benchmark, and
to also investigate the more complicated reconstruction scenarios present in real physics events,
generative models will have to be incorporated into the full simulation pipelines commonly used
in high energy physics.

Tackling these challenges will be the focus of the remainder of this thesis.

76



Chapter 8

A Fully Conditioned Generative

Model for Electromagnetic Shower

Simulation

Having established a robust conditioning scheme for the BIB-AE in Chapter 7, we now turn our
attention to the development of a fully conditioned model. This means that the model must
be conditioned on two angles, as well as the energy of the incident particle. Varying another
incident angle to the calorimeter face also has implications for the size of the regular grid, which
must be large enough to contain maximally inclined showers of the highest incident energies.
To maintain the increased simulation speed of the generative model, the grid size must be kept
as small as possible. As this model will ultimately be used in a complete calorimeter subsystem,
it must also be able to simulate different incident positions in the calorimeter, meaning steps
must also be taken to handle the irregular geometry present in the calorimeter. This chapter
will focus on minimising the effects of an irregular geometry for training a model, while the
effects of using a regular grid model to simulate showers in an irregular grid will be studied in
Chapter 10.

Section 8.1 will address the creation of the dataset, including the creation of a regular
detector geometry and the method employed to minimise the size of the grid while retaining
information about the incidence position. In Section 8.2, the extension of the BIB-AE to allow
conditioning on an additional incident angle will be described, while the performance of the
model will be studied in Section 8.3.

8.1 Dataset

8.1.1 Creation of a Regular ECAL Geometry

In order to create an appropriate dataset for training a fully conditioned generative model, a
different approach to that taken in Chapter 7 must be adopted. Consider the physical geometry
present in the ILD ECAL, a visualisation of which is shown for two layers of active material
in the left of Figure 8.1. The detector geometry is irregular, and features insensitive volumes
arising from readout electronics, as well as gaps in the detector and structural supports which
are necessary to build a realistic physical detector, as described in Chapter 3. Insensitive
volumes arising from the construction of the detector can be aligned between layers, while
the position of the insensitive volumes at the edges of wafers varies between layers, with a
staggering effect causing an offset between the placement of cells from one layer to the next.
This was the geometry used to create the training dataset used in Chapter 7.

In that case, the irregular geometry could be projected to a regular grid because a fixed
incident position to the face of the calorimeter was chosen. The procedure of removing
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best performing state of the model. As in Chapter 7, a fixed calibration factor was applied to
scale the hit energies in the last 10 layers of the calorimeter to account for the modification
of the sampling fraction caused by the absorber layers being twice as thick in this region (see
Section 4.2.1).

Calorimeter shower images were again created by projecting the physical cells in the active
layers of the calorimeter into a regular grid of size (x, y, z) = 30×49×30. Since the dataset was
created using an ECAL geometry with a regular segmentation in the active layers, no corrections
for artefacts were necessary. The grid size was chosen such that on average approximately 99%
of the visible energy deposited in the detector was contained for the particles incident with the
highest energies and most inclined angles in the dataset.

8.2 Extensions to the Generative Model

The adaption of the BIB-AE to handle an additional conditioning parameter constitutes a
straightforward extension to the model developed in Chapter 72. The conditioning of the
components of the model is identical, but now the second angle is appended to the vector
of conditioning parameters used. The Post Processor network is again also conditioned on
the visible energy sum. Due to the different range of energy and angle values in this fully
conditioned scenario, a different scaling was necessary for the conditioning labels provided to
the normalising flow. In this case, the incident energy labels were divided by a factor of 126, and
the incident polar and azimuthal angles were divided by a factor of 1.658063. These factors
correspond to the maximum values for the respective conditioning parameters. The visible
energy, which was concatenated with the latent variables modelled by the NF, was divided by
a factor of 3300. All models were trained in the same manner, and with the same optimiser
parameters, as described in Chapter 7. The best epoch of the training was again selected by
means of a scan over epochs using the validation datasets, with half of the validation data being
passed through the encoder-decoder pair of the BIB-AE, and the remaining half being retained
for comparison. For each epoch, eight key calorimeteric observables were considered (polar
angle response, azimuthal angle response, energy response, cell energy spectrum, number of
hits above threshold, center of gravity, longitudinal profile and radial profile). A bin-wise
area difference was again used to quantify the performance of the network in modelling each
observable at each epoch. This approach was used to determine the best epoch of BIB-AE
training, after which training of the Post Processor network was started. A similar procedure
was adopted to ascertain the best performing epoch of Post Processing. The BIB-AE was
trained for a total of 51 epochs, after which the model was frozen and the Post Processor
trained for a further 49 epochs. The NF model was trained for a total of 199 epochs, with the
best epoch being selected from the lowest loss value.

8.3 Results

We now perform an evaluation of the physics performance of the fully conditioned BIB-AE
model in comparison to Geant4. This comparison will be performed at simulation level, and
focus on the key calorimetric observables already investigated in Chapter 7 for the BIB-AE
model conditioned on energy and a single angle.

2The implementation of the model and the hyperparameters used for training are available at https:

//github.com/FLC-QU-hep/Two_Angle_BIBAE
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The only processing applied to the showers is the mapping of hits with an energy deposition
of less than 0.07875 MeV, which corresponds to an energy deposition of less than half a MIP,
to zero. As stated in Chapter 7, this emulates the processing applied in a real calorimeter,
where hits with energy less than this threshold lie below the noise floor of the detector. The
comparison between the BIB-AE and Geant4 involves each of the 27 test points consisting of
fixed combinations of incident angles and energies, as described in Section 8.1.2. Due to the
large number of test points considered, only a subset of distributions for each observable will be
shown. Additional test points are included in Appendix B. A comparison of the computational
performance of the BIB-AE to Geant4 will be presented in Chapter 9, after the model has
been integrated into the software chain, and a fair comparison can be made. In this section,
a consistent colour scheme will be used to represent the various fixed incident angles. For the
polar angle (theta), the test points are 40 degrees (orange), 60 degrees (green) and 90 degrees
(blue). For the azimuthal angle (phi), the test points are 70 degrees (purple), 80 degrees
(cyan) and 90 degrees (red).

Angular Response

The angular response is again characterised by applying a principal component analysis (PCA)
to obtain the principal axis of the showers. The resulting angular distributions of the angle
in theta for photons incident with 50 GeV and a phi angle of 90 degrees (left) and photons
incident with 10 GeV and a phi angle of 70 degrees (right) are shown in Figure 8.5. The quality
of modelling of the theta angle is quite variable — for example the angular response for the
theta 40, phi 90 degree, 50 GeV showers is modelled well by the BIB-AE. However, there is
noticeable mismodelling of the sharp peaks that are more pronounced for higher energy photons.
Additionally, at the lower incident energies that are probed in this study, some mismodellings
in the centering of the distributions are clear. This is the case for the theta 90 degree, phi 70
degree, 10 GeV showers where the BIB-AE produces not only a broader distribution, but also
one that exhibit a significant bias towards lower angles. Overall, the modelling of the angle in
theta is not as strong as that observed for the model conditioned on a single angle in the more
constrained problem that was explored in Chapter 7. The angular distributions of the angle
in phi for photons incident with 10 GeV at a theta angle of 60 degrees (left) and with 100
GeV at a theta angle of 90 degrees (right) are shown in Figure 8.6. Some distributions, such
as for the 10 GeV, theta 60 degree photons shown in the left of the figure, are well modelled.
However, biases and mismatches in distribution widths are observed for other test points, such
as for the 100 GeV, theta 90 degree photons shown in the right of the figure.

Energy Response

The energy response of the BIB-AE model is again characterised at simulation level by the sum
of all energy depositions above the 0.5 MIP threshold in the sensitive regions of the calorimeter,
i.e. the visible energy. The distributions obtained for both Geant4 and the BIB-AE for a
theta angle of 90 degrees and a phi angle of 90 degrees, as well as for a theta angle of 40
degrees and a phi angle of 70 degrees are shown in Figure 8.7. Across the range of energies
and angles studied, a strong agreement between the distributions produced by the BIB-AE
and Geant4 is observed. This is similar to what was observed in the single angle and energy
conditioning scenario in Chapter 7, since the task of the NF in terms of modelling the energy
sum is not significantly harder even with a more challenging conditioning scenario.

Cell Energy Spectrum

The cell energy spectrum is the next calorimetric observable studied. The simulation level cell
energy spectra for the best (100 GeV, theta 60 degrees, phi 90 degrees) and worst (10 GeV,
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Chapter 9

Integration into the International

Large Detector Software Chain

The description of the software library presented in Section 9.1 has previously been pub-
lished in [2], in collaboration with Erik Buhmann, Thorsten Buss, Sascha Diefenbacher, Engin
Eren, Frank Gaede, Gregor Kasieczka, William Korcari, Anatolii Korol, Katja Krüger, Thomas
Madlener and Lennart Rustige. As such, this section includes numerous figures, as well as
significant amounts of text that are similar or identical to parts of that work. This author’s
contribution to the work included key involvement in the implementation of inference for
models written in PyTorch in Geant4, implementation of the fast simulation trigger in
DDFastShowerML, conversion of the BIB-AE model into a format suitable for use in C++,
integration of the BIB-AE model and writing sections of the paper.

Having developed a fully conditioned generative model in Chapter 8, we will now focus on
the integration of the model into the existing software chains. The ultimate target will be to
use the fully conditioned BIB-AE model for simulation of electromagnetic showers (photons,
positrons and electrons) in the barrel and endcap regions of the ILD ECAL, with a seamless
transition with full Monte Carlo simulation in Geant4.

In order to achieve this goal, this chapter will focus on the development of a generic library
that combines inference for generative models trained to simulate calorimeter showers together
with DD4hep. Firstly, in Section 9.1 a software library which was developed during the course
of this thesis will be described. In Section 9.2, details will be given on the integration of the
BIB-AE model developed in Chapter 8 into this library, including the numerous steps taken
to tackle the challenges posed by this integration. Finally in Section 9.3, the computational
performance of the library will be studied, with a particular focus on the performance of the
fully conditioned BIB-AE model.

9.1 A Library for Fast Calorimeter Simulation with Generative

Models in Geant4 and DD4hep

The approach adopted for fast calorimeter simulation in this thesis is to use a single generative
model to generate showers that can then be placed into different positions in the calorimeter.
This requires a number of elements to be present in a suitable software library, including
a geometry description and navigation, and a means of handing information from the full
simulation suite to the fast simulation tool in an efficient manner. The software should be
written in C++, which is currently used ubiquitously throughout high energy physics. Since
DD4hep provides an interface to a generic fast simulation tool via the fast simulation hooks
present in Geant4 (see Chapter 6), we choose to make use of these software suites to build
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our library. This has the major advantage of the key machinery required already being present
in the tool. This includes an interface for terminating the detailed physics-based simulation
provided by Geant4 via a trigger mechanism if the particle type and energy satisfy particular
criteria. This automatically provides a seamless means of combining full simulation with a
generative model based fast calorimeter simulation tool.

Our prototype library, called DDFastShowerML1, is therefore built upon Geant4 and
DD4hep. The library is designed to be generic so as to allow different types of generative
models, in terms of their composition, input and output, to be used for fast calorimeter
simulation in a detector geometry implemented in DD4hep. This library has to provide
interfaces for several key components.

The first set of components concern the generative model. These include the implementa-
tion of the specific model that will be used, as well as an implementation for model inference
with the particular software library that the model was designed for. Since different models
are foreseen, the interface used for the model must be sufficiently flexible and general so as
not to bind the interface to a particular kind of model in terms of the input or output that it
requires. The inference interface on the other hand must allow for different inference libraries
to be used, depending on what is required by the model.

Once the model inference has been run and the output obtained, it must be placed back
into the detector geometry. In order to obtain an appropriate detector response, a correct hit
placement must be given within the specific geometry used. Finally, since realistic geometries
are not perfectly regular in order to allow for a physical construction, as we have seen in
the case of the ILD ECAL, a means must also be provided to prevent the fast simulation
running in specific regions of the detector. This is an essential component, as these regions of
the detector will have a geometry with a significantly different structure to the region used for
training. This means that the model will not be able to provide a physically meaningful detector
response. Since different detectors can have drastically different structures, the interface must
be sufficiently flexible to allow different regions of a detector to be excluded depending on its
structure. This interface could also be used to allow different generative models to be run
in different regions of the detector, meaning an appropriate model with a dedicated training
could also be used to reproduce a correct response for a specific detector region. However, in
this work we focus on generating the response in the bulk of the detector and simply exclude
these regions, leaving a generative modelling of these more complex detector regions to future
studies.

Algorithm 1 Pseudocode illustrating the order of operations for the core components of the
DDFastShowerML library.

1: if Trigger.checkTrigger(track) == True then

2: Kill full simulation of particle
3: localDir = Geometry.getLocalDir(track)
4: inputs = Model.prepareInputs(track, localDir)
5: outputs = Inference.runInference(inputs)
6: localSPs = Model.convertOutput(track, localDir, outputs)
7: globalSPs = Geometry.localToGlobal(track, localSP)
8: for (sp in globalSPs) do
9: HitMaker.makeHit(sp, track)

10: end for

11: else

12: Full simulation of particle with Geant4

13: end if

1The code is available at https://gitlab.desy.de/ilcsoft/ddfastshowerml
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to the model to generate a specific shower. For this reason, information related to the incident
particle kinematics has to be accessible. The position and energy of the incident particle can
be obtained from the FastTrack — the Track object (see Section 6) used by Geant4 for the
particle being handled by fast simulation. In order to provide the information about the incident
angle, it is necessary to introduce information from the Geometry component of the interface.
This is given in terms of the localDirection (localDir) object, defined in the Geometry interface.
The second component of the Model implementation is the interpretation of the model output,
such that it can be converted into local space points. This interpretation is done per layer of
the calorimeter in local coordinates, using the convention that the origin is placed at the entry
point into the calorimeter. For this reason the FastTrack and localDirection objects are also
provided to allow a uniform interpretation across different forms of model output.

Inference

The Inference interface provides a simple means of passing input to, and obtaining output
from, the implementation of the inference library called for a specific model. The implemen-
tation for a specific library also includes the declaration of any plugin properties. Currently,
DDFastShowerML supports the LibTorch [192] andOnnxRuntime [198] libraries for model
inference. While PyTorch models can be used with both inference libraries, we observed a
better inference performance with LibTorch for the use case of a batch size of one on CPU

hardware for the PyTorch models that are currently in use in the library. This inference
library is therefore the one that is used in this thesis.

Geometry

The role filled by the Geometry interface is two-fold. In the first instance, the localDirection
is calculated to provide the flight direction of the particle in local calorimeter coordinates (see
Section 7.1), which can be used in the Model interface in order to provide a consistent basis
for model conditioning. The second role of the Geometry interface is to allow the placement
of the space points produced as the output from the Model interface back into the detector
geometry. This includes for example the positioning of calorimeter layers, and the conversion
between global (envelope) and local calorimeter coordinates. Currently, implementations are
provided for endcap and polyhedral barrel calorimeter geometries.

HitMaker

The helper class provided by Geant4 to allow placement of energy deposits produced by a
fast simulation model into the detector geometry, given that their position lies within a sensi-
tive region of the detector. The energy deposits should be in the form of space points.

Currently, the DDFastShowerML library only supports single shower generation with a gener-
ative model (i.e. inference with a batch size of one) on a CPU. While there is considerable
ongoing effort to make GPU hardware, and corresponding software tools, more widespread
in high energy physics computing infrastructure, CPU hardware is still dominant [199]. This
makes benchmarks of the computational performance of the prototype library in its current
form a realistic, albeit pessimistic measure of the speed up provided by generative models for
fast calorimeter simulation with current computing infrastructure. Future work should aim
to extend the library to support batching of shower generation within an event, allowing the
number of sequential passes through the model to be reduced, hence improving the per-event
simulation time for a given model. This would allow another key development to be made,
which would be the addition of GPU support. The most significant speed-ups would then be
accessible via parallelisation.
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The library has been tested using the Key4hep [200] ecosystem, with Geant4 version
11.1 using theQGSP BERT physics list andDD4hep version 1.27. Note that it was necessary
to update both the Geant4 and DD4hep versions from those used in Chapters 7 and 8, as
updates to these libraries which were introduced during the course of this thesis were necessary
to use generative models within these ecosystems.

9.2 BIB-AE Integration

Currently, the fully conditioned model developed in Chapter 8 has the most complete imple-
mentation in DDFastShowerML. A 20 GeV photon shower in the barrel of the ILD ECAL that
has been simulated with the BIB-AE is shown in Figure 9.2. We will now focus on the steps
taken in order to integrate this particular generative model into the library.

Figure 9.2: 20 GeV photon shower simulated in ILD with a BIB-AE model using the DDFast-
ShowerML library. Figure from [2].

9.2.1 Running the BIB-AE Architecture in C++

Since the BIB-AE model is a multi-component model, a custom approach must be adopted for
conversion into a form suitable for use in C++. The model is broken into four components:
the NF for latent space sampling, the main BIB-AE network, the Post Processor network and
the energy sum rescaling of the shower. Each of the components were serialised by tracing or
scripting each of the individual operations that occurred in the functions that were called. For
the main BIB-AE network, the Post Processor network and the rescaling procedure this was
achieved using the utilities provided by TorchScript in PyTorch [192], which provides an
intermediate representation of a PyTorch model that can then be run in C++. For the NF
model which was implemented using the PYRO [196] deep probabilistic programming library,
the Poutine effect handlers provided in PYRO were used to produce a TorchScript

model. The full BIB-AE model consisting of the four components was then converted to
TorchScript by means of a container that was used to wrap the complete sequence of
operations composing the full BIB-AE. This means that when the model is called in C++,
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only the conditioning variables for a given incident particle need to be provided, with the
output being a shower in the regular grid. This was again performed in octants in the local φ
coordinate, and amounted to reflections in the x− y plane.

9.2.2 Implementation of the Model and Geometry Interfaces

Having obtained the model in a suitable format, the implementation of the BIB-AE by means
of the Model interface in DDFastShowerML reduces to the preparation of the conditioning
variables required as input, and the correct conversion of the output. The angular conditioning
variables have to be converted from the local calorimeter coordinate system to the global angles
that were used for conditioning. As the angles used for training the model in Chapter 8 were
only varied in one direction from the normal to the face of the calorimeter, transformations
are applied in octants in φ using the localDirection provided by the interface, with the x and y
coordinates interchanged where necessary. When the output of the model was obtained after
inference, the incident position in the grid was calculated from the incident global angles to the
regular grid, as described in Chapter 8. The grid containing the shower was then transformed
depending on the φ incident angle in the local coordinate system, such that the space points
produced conformed to the coordinate system employed in DDFastShowerML.

In the implementation of the Geometry interface, the exact computation of the localDirec-
tion three vector and the localToGlobal transformation depends on the detector region con-
cerned. In the barrel, a rotation is applied such that all sectors in φ′ are mapped to the sector
which lies in the positive x′ region and parallel to y′. The computations for both the localDirec-
tion and the localToGlobal are performed in this sector, before eventually being rotated back
to the original sector in φ′. The two endcaps are treated in a common implementation. How-
ever, for the endcap in the negative z′ direction, a rotation by π around the y′ axis has to
be applied, while no additional transformation is necessary for the endcap in the positive z′

direction, as the global coordinate system aligns with the local one.

9.2.3 Geometry Exclusions

The final step required to fully integrate the BIB-AE model into DDFastShowerML is to prevent
the model being called in certain regions of the calorimeter sub-system where the detector has
a very different physical structure to that used for training the model. Figure 9.3 illustrates
the issues with using the BIB-AE model, or any such model producing a regular grid output,
in the regions of the ILD ECAL that present a very different physical structure to the majority
of the detector. These regions lie at a transition between detector elements, and as such do
not present the planar calorimeter structure that the model was trained on and that dominates
the majority of the calorimeter. These regions can be excluded from the fast simulation by
means of the Trigger interface described in Section 9.1, with an independent trigger being
implemented for the barrel and endcap respectively. The regions are excluded by selecting a
range of angles in global theta (θ′) and global phi (φ′).

The first type of transition is the region between the edge of the barrel and the endcap,
which is shown in Figure 9.3 a). In this case, there is a gap between the barrel and the
endcap, with the endcap noticeably overhanging the barrel. Additionaly, the orientation of the
calorimeter layers, shown by the orange lines, changes by 90 degrees in the transition. This
means it is not physically meaningful to use the BIB-AE in this region. Two ranges of angles
in θ′ are selected in both the barrel and endcap triggers, depending on whether the transition
is in the forward (i.e θ′ < 90 degrees) or backward (i.e. θ′ > 90 degrees) endcap. In the
barrel, the regions θ′ < 40 degrees and θ′ > 140 degrees are excluded from the fast simulation
trigger. In the forward endcap, the region θ′ > 33 degrees is excluded, while in the backward
endcap, the region θ′ < 147 degrees is excluded. This corresponds to a 7 degree window in
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9.4 Conclusions

In this chapter, we have described the development of a generic C++ library that can be used
to interface generative models with Geant4 and DD4hep, to allow a seamless mixing of full
and fast simulation of detector geometries with a realistic structure and material composition.
Additionally, the integration of the fully conditioned BIB-AE model developed in Chapter 8
has been outlined, which has also served to test all of the various features of the library. This
includes the conversion of the model to a format suitable for use in C++, the implementation
of the model within the software library, and the exclusion of fast simulation in certain regions
of the detector geometry. It should be emphasised that although the principle subject of this
chapter has been the integration of the BIB-AE model into this library, it is sufficiently flexible
to generally allow different types of generative model to be implemented for use with different
detector geometry descriptions in DD4hep. Additionally, while this work has focused on the
integration of a model for electromagnetic shower simulation in the planar regions of the ECAL,
multiple different generative models could be used together within this simulation framework.
This could include, for example, for different particle types and for the regions of the detector
with a different physical structure.

The computational performance of the library has been investigated on CPU hardware.
Since full Monte Carlo-based simulation and fast simulation can be run in the same software
environment in this library, a fair comparison has been drawn between Geant4 and the BIB-
AE generative model, which was previously not possible. Importantly, it has been demonstrated
that the unavoidable overheads which arise from passing information to and from the generative
model and from placing the energy deposits back into the detector geometry are negligible
compared to the BIB-AE inference, indicating that the simulation library developed operates
in an efficient manner. The reduction in simulation time per shower when using the BIB-AE
relative to Geant4 increases with the energy of the incident photon, with the BIB-AE being
×11 faster than Geant4 when simulating 100 GeV photon showers. In the future, the library
should be extended to allow batches of showers within an event to be generated on GPU

hardware, as this is the scenario that will provide the most significant speed-ups offered by a
generative model.
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Chapter 10

Irregular Geometries

With the fully conditioned BIB-AE model integrated into the full simulation chain, it is now
possible to easily simulate showers with the model in different regions of the geometry. This
enables investigations into the effects of projecting showers simulated with a generative model
in a regular grid into the realistic geometry of the ILD ECAL, which is irregular. In Chapter
8, steps were taken to create a purely regular geometry in order to create the training data
for the model. This meant that no artefacts were created by having to project an irregular
geometry into a regular geometry, and that all the energy deposited in the active layers of the
calorimeter was retained. However, it is not clear a priori what the effects of placing showers
created in a regular geometry back into an irregular geometry will be. The task is made more
challenging by the constraints provided by the simulation tool, in that the structure of the
irregular geometry into which the shower will be placed cannot be accessed. This means, for
instance, that the cells in the regular grid cannot be placed directly onto cells in the physical
geometry.

In this chapter, different means of depositing the hits belonging to a shower back into
the irregular detector geometry will be investigated. In Section 10.1 two different approaches
to depositing the output of a regular grid generative model into an irregular geometry will
be described. Two positions in the irregular geometry with differing fractions of insensitive
volumes will be investigated. In Section 10.2, the effects on key calorimetric observables
for showers created by a particle of fixed incident energy and angle will be studied, before
conclusions are drawn in Section 10.3.

10.1 Investigations into the Effects of Simulation with a Regular

Grid Model in an Irregular Geometry

The simplest approach to depositing the output of a regular grid model is by taking the positions
of the cell centers in the regular grid and placing them directly (taking into account the physical
cell size and the distances between layers) into the irregular geometry. One problem that is
encountered with this approach is caused by insensitive volumes in the detector geometry.
If a hit lands in one of these volumes, it is not recorded by Geant4, and this can result
in significantly more energy being lost than would have been the case in a physics-based
simulation of the shower in the detector geometry. One approach that will be explored to
try to combat this issue is to divide the energy of a hit into cells of a size smaller than that
of the physical readout cells, hereafter referred to as sub-cells. This approach is inspired by
that adopted in [6], who used information at the level of Geant4 steps (see Chapter 6) to
learn a much higher resolution representation of showers. This helped the model to achieve a
high degree of independence from the physical readout geometry. It should be noted that the
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in front of the face of the ECAL at a position of (x′, y′, z′) = (0.0 mm, 1810 mm,−209 mm).
It should be noted that having a large insensitive volume near the shower core, as is the case
at position 1, is a much less common scenario, as these irregularities are not as prevalent in
the ILD ECAL. This makes position 2 the more representative scenario for a shower occurring
in the ILD ECAL. For each of the two positions, photons with an incident energy of 50 GeV
were fired orthogonally to the face of the ECAL. As described in Chapter 9, the Geant4

version had to be updated from version 10.4, which was used to train the fully conditioned
model in Chapter 8, to version 11.1, which was necessary to create the DDFastShowerML
library in Chapter 9. For this reason, both Geant4 versions are used to simulate showers in
both positions, in order to gauge the variations between versions and thereby give an estimate
of the uncertainty on the MC simulation tool. Additionally, both methods of placing regular
grid showers generated with the BIB-AE are tested at both positions. These are the cell-level
placing of hits at the center of the regular grid cells, and dividing the hit energies up uniformly
into a higher granular grid of sub-cells.

10.2 Results

For each of the two test positions in the ILD ECAL, 5 calorimeteric observables were inves-
tigated. These were: the visible energy sum, the number of hits, the cell energy spectrum,
the longitudinal profile and the radial profile. In line with the previous studies presented in
Chapters 7 and 8, a fixed calibration factor was applied to scale the hit energies in the last 10
layers of the calorimeter to account for the modification of the sampling fraction caused by the
absorber layers being twice as thick in this region. Additionally, hits with an energy deposition
of less than 0.07875 MeV, which corresponds to an energy deposition of less than half a MIP,
are mapped to zero.

Different procedures for the splitting up of hit energies in the regular grid into a higher
granular grid were explored. Splittings of both 6 × 6 and 8 × 8 were tested, however no
visible increase in the amount of energy retained relative to Geant4 was observed when
increasing the granularity of the splitting. For this reason, the splitting of 6× 6 was preferred.
Additionally, with the 6× 6 splitting adopted, the effect of only applying the splitting to hits
above a threshold of 1.5 MIPs was investigated. This approach showed no major improvement
in terms of the physics observables studied when compared to applying a 6× 6 splitting to all
cells, independent of their energy. More details on these studies can be found in Appendix C.

Position 1

We begin by studying the effect of projecting the showers produced in a regular grid by the
BIB-AE into the ILD ECAL in the first position, with a large insensitive volume near the shower
core.

Figure 10.3 shows the total visible energy above threshold deposited in the calorimeter (top,
left), the number of hits above threshold (top, right) and the cell energy spectrum (bottom,
right) for 50 GeV photon incident perpendicularly to the calorimeter face simulated with the
two Geant4 versions, and with the BIB-AE. The two different approaches for depositing the
showers simulated with the BIB-AE in the regular grid into the geometry are shown in green
for the cell-level approach, and purple for the high granularity sub-cell approach.
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Starting with the total visible energy, a clear reduction in the energy deposited in the
calorimeter is observed when using the cell-level approach to placing the BIB-AE showers
into the calorimeter. This is due to entire hits landing in the insensitive volume near to the
core of the shower, which contains the most energetic part of the shower, resulting in a large
reduction in the total energy deposited. When the output of the BIB-AE is split into the 6× 6
higher granularity sub-cells, the loss of energy in the insensitive volumes of the calorimeter
is significantly reduced, with a much lower shift observed in the distribution. While slightly
less energy is deposited in the calorimeter with the Geant4 version used for training (version
10.4) compared to the version used in DDFastShowerML (version 11.1), this does not account
for the differences observed when using the BIB-AE for shower simulation. While splitting the
hits in the BIB-AE shower into higher granularity sub-cells reduces the energy loss, it is still
the case that significantly less energy is deposited than by the Geant4 simulation.

Turning to the number of hits above threshold, the cell-level approach for depositing hits
from the BIB-AE showers into the geometry shows a reduction in the number of hits due to
them landing in the insensitive volumes. However, splitting the output of the BIB-AE into the
higher granularity sub-cells creates significantly more hits than even that present in Geant4.
This is a result of the energy of the hits present in the shower in the regular grid, particularly
in the regions of lower occupancy toward the edges of the shower, being split over multiple
cells (see Figure 10.1).

The cell energy spectrum is influenced by a number of different factors. The peak observed
for the cell-level projection (green histogram) of the BIB-AE showers in to the ILD ECAL arises
from the fact that the model was trained on showers created in a perfectly regular geometry (see
Figure 8.2). This feature is removed by splitting the hits in the regular grid into high granularity
sub-cells (purple histogram) before depositing them into the irregular ILD ECAL geometry, after
which the high energy tail of the spectrum aligns much more with the Geant4 distributions.
The opposite is true in the region of the spectrum from around 3 MeV down to about 0.3 MeV,
where the cell-level distribution is much more closely aligned with the Geant4 distributions,
while significantly fewer hits created using the high granularity sub-cells have energies in this
range. This a natural consequence of the energy of cells in the regular grid being divided into
high granularity sub-cells, with more lower energy hits being created and the energy of existing
cells in the regular grid being reduced. This effect is clear from the drastic increase in the
low energy tail of the spectrum (below about 0.3 GeV) when dividing the regular grid into
high granularity sub-cells, which extends below the MIP threshold. This explains why the total
visible energy deposited using the high granularity splitting is still reduced with respect to the
Geant4 distributions, as hits with energies below the MIP threshold are lost.

Figure 10.4 shows the longitudinal profile (left) and radial profile (right) for the two
Geant4 versions and the two methods of depositing the regular grid BIB-AE showers back
into the calorimeter. For the longitudinal profile, while both the cell-level and high granularity
sub-cell approaches to depositing showers into the ILD ECAL show less energy in certain layers
than the Geant4 versions, the energy deposited using the cell-level method is systematically
lower than the high granularity sub-cell approach. The relative difference between the cell-level
and high granularity sub-cell approaches varies significantly, with the most pronounced drop
in the cell level distribution occurring around layer 12. The strength of this effect will depend
on the exact position of the edges of wafers, which create an insensitive volume, in a given
layer and whether a cell-level hit lands in that volume. The exact layers in which these drops
in energy occur will be highly dependent on the incident position in the calorimeter, as the
effect will become more pronounced if the insensitive volumes in a layer lie closer to the core
of a shower, where higher energy hits occur more often.

In the radial profile, the high granularity sub-cell approach tends to retain more energy
closer to the core of the shower than the cell-level approach to projecting the BIB-AE shower
in the regular grid. This is partially due to the large insensitive volume close to the shower
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the case for the cell-level approach. This is a result of the energy of the highest energy hits
in the shower being washed out by the splitting. The creation of lower energy hits by the
splitting causes the tail to lower energies, which extends below the MIP threshold, to become
significantly more pronounced.

Figure 10.6 shows the longitudinal profile (left) and radial profile (right) for the two
Geant4 versions and the two methods of depositing the BIB-AE showers created in the
regular grid back into the irregular geometry. In comparison to the observations at position 1,
the differences between the BIB-AE distributions and the Geant4 version 10.4 distribution
are noticeably smaller. In this case, the loss of hits due to the cell splitting dominates the effect
of hits landing in insensitive materials, meaning that in several layers more energy is retained
when using the cell-level approach, as opposed to the splitting into high granularity sub-cells.
Finally, in the radial profile no major deviations are observed between the cell-level and high
granularity sub-cell approaches near the core of the shower, as a result of no major insensitive
volumes being present. However, at larger radii, the loss of hits after splitting due to their
energies falling below the MIP threshold that was observed for position 1 is still present.

10.3 Conclusions

In this chapter, we have investigated two different methods for placing a shower created in a
regular grid with a generative model back into an irregular calorimeter geometry. Two different
approaches to this shower placement were investigated. In the first, the hits in the regular
grid were placed into the irregular geometry at the center of the regular grid cell, while in
the second the energy of each hit in the regular grid was split uniformly into a 6 × 6 higher
granularity regular grid of sub-cells, with the energy being deposited at the center of each
sub-cell. These two approaches were studied at two different incident positions in the ILD
ECAL, each with a different physical structure. In the first position, a large insensitive volume
extending through the calorimeter layers was present near the shower core as a results of a gap
between modules, whereas in the second position no large insensitive volumes that extended
between layers were present. In the first position, an improvement was observed in terms of
the total energy retained during the placement into the geometry by splitting hits into high
granularity sub-cells. This was a result of significant energy loss in the insensitive volumes when
placing hits at the cell-level. However, even with the splitting procedure applied, significant
differences in terms of calorimeteric observables compared to full simulation withGeant4 were
still present. In the second position, the cell-level placement of regular grid showers produced
with the BIB-AE performed significantly better when compared to the splitting of cells into
high granularity sub-cells. This was a result of more energy being retained at cell-level due to
fewer insensitive volumes being present, and the splitting of energy from hits in the regular grid
to create lower energy hits which fell below the MIP threshold and were therefore discarded.
Since the irregularities present in the first position are relatively rare in the ILD ECAL, the
second position is much more representative of the standard case in the ILD ECAL. This means
that having large insensitive volumes very close to the core of the shower is relatively rare. For
this reason, in the remainder of this thesis, the cell-level approach to depositing energy will be
adopted.

While this chapter has focused specifically on the BIB-AE model and the effects of the
irregularities present in the ILD ECAL, the results indicate more general difficulties when using
a generative model producing a regular grid to simulate a highly granular irregular calorimeter
geometry. Other potential options for placing showers created in a regular grid into an irregular
calorimeter geometry could be explored in the future. The most straightforward approach would
be to randomly select the position within a cell in the regular grid used to deposit the hit into
the irregular geometry, as opposed to simply taking the center of the cell as was done here. On
average this would likely reduce the energy loss in an insensitive volume that extends between
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layers, such as that explored in position 1. This is because this approach would prevent a
whole line of hits in consecutive layers from being lost. However, in the more general case of
not having such a drastically different physical structure, if the regular and irregular grids are
not perfectly aligned it would be possible to combined multiple hits in the regular grid into a
single hit in the irreglar geometry. This would therefore likely affect the number hits and the
radial profile. Fundamentally, without access to the positioning of cells and composition of the
local irregular geometry, it is likely not possible to achieve a loss-less placement of a shower
produced in a regular grid into an irregular geometry.

Another option would be to explore the use of a generative model that does not rely on
a regular grid, such as that adopted by Buhmann, P.M. et al. in [6]. The use of such a
point cloud model allows the model to learn the shower at a much higher granularity than
the level of a physical readout cell, as the model is not affected by the significant increase in
sparsity. While this inspired the uniform splitting of hits in the regular grid into a 6× 6 higher
granularity that was explored in this chapter, it is likely to provide a much better description
of observables after placement into an irregular geometry. This is because the model is able
to learn the physical distribution of energy within a cell, rather than the artificially uniform
splitting of energy explored here.

Even with this approach, it may not be possible to achieve a sufficiently high fidelity
description of showers in positions with large gaps in the geometry, and therefore a significantly
different physical structure, such as position 1. This may therefore necessitate the use of the
Tigger interface in DDFastShowerML described in Chapter 9 to exclude this region for the
model trained on the planar calorimeter structure, and the use of a suitable generative model
with a dedicated training in this region. Another possible solution could be to create ’gap
correction’ for the fast simulation in these specific regions of the calorimeter. This is already
applied in the ILD reconstruction chain to account for the difference in sampling fraction
present in full simulation (which is also applied during reconstruction for showers created with
fast simulation, see Section 4.2.3), and an additional but similar, dedicated procedure for fast
simulation would be a method of correcting the total visible energy. This procedure would
therefore be specific to a particular detector geometry.
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Physics Benchmark

With a fully conditioned generative model capable of running seamlessly with full simulation in
Geant4, and of producing showers in the realistically detailed ILD ECAL, it is now possible
to study benchmarks of the performance of the model after reconstruction with full physics
processes. In Section 11.1, the physics process chosen as a first benchmark of the model will
be described, while in Section 11.2 the creation of the dataset will be described. This will
include the selection of samples at the generator level, as well as the approach to detector
simulation and reconstruction. In Section 11.3, a study will be performed into the effects
of using the BIB-AE model for electromagnetic shower simulation on reconstruction and key
physics observables, before conclusions are drawn in Section 11.4.

11.1 Photons from Neutral Pions Produced in the Decay of Tau

Pairs

The physics performance required from a fast simulation tool will depend heavily on the
physics process under study. A natural choice of physics processes with which to benchmark
the performance of a fast simulation tool for electromagnetic showers are the hadronic decay
modes of the tau lepton in the process e+e− → τ+τ−. As described in Section 2.4, such a
decay commonly results in one or more boosted neutral pions, which quickly decay into photons.
These factors make such a process a stringent test of the performance of a generative model
used for fast simulation of photon showers, as to the high overlap of the showers produced
in the calorimeters requires a high degree of simulation fidelity due to the sensitivity of the
reconstruction procedure.

A study into the effect of using a generative model for photon shower simulation in this
process can be broken down into two parts. In the first instance, the effects on the recon-
struction of photons, which are the direct products of the model, can be studied. This can
give more direct indications of which properties of the showers simulated with the model may
cause differences in reconstruction in a realistic physics environment. Secondly, the effects on
the reconstruction of the π0 which produced the two photons can be investigated. As a higher
level reconstructed object, the reconstructed information about these particles feeds directly
into subsequent physics analyses, and as such determines whether or not a model is suitable
for simulation of the given process.

11.2 Dataset Creation

In order to make a direct comparison of the photon showers simulated with the BIB-AE and
with Geant4, an identical set of events from the generator is taken, with only the detector
simulation differing between samples. This removes the effects of different underlying event
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three approaches that would otherwise be difficult to estimate. This correlation arises from
using identical generator level input. For each of these three random seeds used for each of
the three detector simulation approaches, 9, 000 e+e− → τ+τ− events passing the generator
level selection criteria were simulated, each using an identical set of events from the generator.
This resulted in 9 different datasets. All simulated events were then reconstructed using the
standard reconstruction procedure adopted by ILD described in Section 4.2.3.

To understand the drastic effect that using different seeds for the detector simulation can
have on the reconstruction performance for an event, consider the two different events shown
in Figure 11.3. Full Geant4 simulation is used in both cases, and both have an identical input
from the generator, with a tau lepton decaying into a charged pion, two π0s and a tau neutrino
via an intermediate a1 resonance. The particles which have been reconstructed with the ILD
standard reconstruction scheme are labelled, with the exception of the neutrino, which leaves no
signature in the detector and escapes undetected. Each of the two π0s decay into two photons,
with the trajectories of the generator level photons shown by the straight yellow lines. This
results in four highly collimated photons being simulated by Geant4. In a), all four photons
impact upon the calorimeter, creating four overlapping photon showers. The overlapping of the
showers leads to two of the photons being merged into one by the reconstruction procedure,
meaning only three photons are reconstructed. The incorrect reconstruction of the photons
means that no π0s are reconstructed. In b), one of the photons converts into an e+e− pair prior
to hitting the calorimeter. These charged particles bend in the magnetic field of the detector,
and as such the showers they create in the ECAL are clearly separated from the showers created
by the photons. This gamma conversion is identified by the reconstruction procedure, meaning
that all four photons can be correctly reconstructed, and two π0 candidates identified. This
highlights how the different physics processes that occur during the detector simulation can
directly impact whether reconstruction is successful or not.

11.3 Reconstruction Performance Comparison

We now study the reconstruction performance for each of the three detector simulation ap-
proaches, focusing on the reconstruction of the π0s which are produced by the decays of tau
leptons. We begin by investigating the reconstruction performance broadly, by considering all
π0s produced by a tau decay.

A summary of the results is shown in Table 11.1. In total, each of the 9 datasets contain
16693 π0s created by the generator (i.e MC Truth π0s). In the remainder of the table, the errors
are derived from the repeats with three different seeds for each of the three different simulation
approaches, and the value shown is the average over the seeds. In total, 8942 ± 69 π0s are
reconstructed in the sample simulated with Geant4 V11.1, 9021± 119 π0s are reconstructed
in the sample simulated with Geant4 V10.4 and 9192 ± 130 π0s are reconstructed in the
BIB-AE sample. This means that the total number of π0s reconstructed is consistent across
the different samples within errors. A different pattern emerges when looking into the quality
of the reconstruction. To this end we record the number of π0s satisfying four additional
criteria. In each case, a link between MC Truth particles and reconstructed particles is used,
with a weight given by the relative (energy weighted) contribution of an MC Truth particle to
a reconstructed particle. In the case of multiple reconstructed particles being linked to an MC
Truth particle (or vice versa), the relation with the largest weight is used. Firstly, the number
of correctly reconstructed π0s is shown (No. Good). While the BIB-AE sample contains the
highest number of π0s correctly reconstructed, this is consistent with the number of correctly
reconstructed π0s in the Geant4 V10.4 sample within error. Notably, the number of correctly
reconstructed π0s in the Geant4 V11.1 sample is significantly lower than in the Geant4

V10.4 and BIB-AE samples. Secondly, the number of π0s missed (No. Missed) is shown,
meaning that there was no reconstructed π0 linked to a given MC Truth π0. In this case,
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Table 11.1: Table showing the number of π0s under certain conditions for simulation samples
produced using Geant4 V11.1, Geant4 V10.4 and the BIB-AE. In each case, values are
reported for the number of MC Truth π0s (No. True), number of reconstructed π0s (No.
Reco), number of correctly reconstructed π0s (No. Good), number of π0s not reconstructed
(No. Missed), number of π0s reconstructed with one photon correct (No. Confused) and
the number of π0s reconstructed when no MC Truth π0 was present (No. Fake). Values
reported with errors are means over three different random seeds, with the error arising from
the standard deviation.

π0s No. True No. Reco No. Good No. Missed No. Confused No. Fake

Geant4

V11.1
16693 8942± 69 2452± 33 12843± 27 1398± 33 5092± 80

Geant4

V10.4
16693 9021± 119 2545± 35 12789± 35 1359± 10 5117± 96

BIB-AE
PP

16693 9192± 130 2576± 16 12720± 2 1397± 16 5219± 128

the two Geant4 versions are consistent with one another within error, while for the BIB-AE
sample significantly fewer π0s are missed by the reconstruction. Thirdly, the number of π0s
which have been reconstructed incorrectly (No. Confused) is shown. This means that one of
the photons combined into the reconstructed π0 was reconstructed correctly (i.e. linked to an
MC Truth photon), while the other was not. In this instance, the BIB-AE and Geant4 V11.1
agree with one another well, while the number of confused π0s in the Geant4 V10.4 sample
is markedly lower. Finally, the number of π0s that were reconstructed but not linked to an
MC Truth π0 (No. Fake) is shown in the last column. The number of fake π0s is consistent
across all samples within error.

It should be noted that the π0 reconstruction efficiency is observed to be low, with a value
of approximately 54%. Additionally, the disagreements observed between Geant4 versions
indicate that this is a major source of the variations in the reconstruction performance observed,
often dominating the deviations caused by using the BIB-AE.

We now turn to a more detailed comparison of physics observables for reconstructed π0s
between the three different detector simulation approaches. As before, selections are placed
on the MC Truth π0s. It is required that each π0 is produced by the decay of a tau lepton
at the level of the MC Truth particle, that both the MC Truth photons produced by the π0

decay have an energy above 10 GeV and that both photons pass the geometry triggers applied
during simulation, which were described in Chapter 9. It was also required that both of the
reconstructed photons combined into the π0 were correctly linked to an MC Truth photon
from a π0 produced in a tau decay.

We first study the reconstructed photons. Figure 11.4 shows histograms for the number of
reconstructed photons against the difference between the energy of reconstructed and corre-
sponding MC Truth photons. In the main panel, the distributions for Geant4 V10.4 (blue),
Geant4 V11.1 (grey) and the BIB-AE (green) are shown. Each distribution is the average
of the three different random seeds, with an error arising from the standard deviation over the
three seeds. In the sub-panel, the ratio of each of these three distributions to the Geant4

V10.4 distribution is shown. The errors are propagated into the ratio by means of a sum in
quadrature, with no correlation coefficient included. While deviations in the BIB-AE distribu-
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di-photon system was calculated using the reconstructed energy of photon i Ei and photon j
Ej , as well as the opening angle between their reconstructed flight directions η, according to

Mγγ =
√

2EiEj(1− cos(η)). (11.1)

In the main panel, the distributions for Geant4 V10.4 (blue), Geant4 V11.1 (grey)
and the BIB-AE (green) are shown. Each distribution is the average of the three different
random seeds, with an error arising from the standard deviation over the three seeds. In
the sub-panel, the ratio of each these three distributions to the Geant4 V10.4 distribution
is shown. The errors are propagated into the ratio by means of a sum in quadrature, with
no correlation coefficient included. Both the distribution obtained for the BIB-AE sample
and for the Geant4 V11.1 sample show deviations in the rising tail below the peak of the
distribution. In the case of the BIB-AE sample, significantly more π0s are reconstructed than
in the Geant4 V10.4 sample in this region, while in the case of the Geant4 V11.1 sample,
fewer π0s are reconstructed. It should be noted that the excess in the case of the BIB-AE
sample is noticeably more pronounced than the deficit in the case of the Geant4 V11.1
sample. This suggests that the deviations in the BIB-AE sample are larger than the differences
between Geant4 versions.

11.4 Conclusions

In this chapter, we have studied the performance of the BIB-AE model used for electromagnetic
shower simulation in the process e+e− → τ+τ−. The effect on the reconstruction performance
was investigated for photons from π0s produced in hadronic decays of the tau, with both the
reconstruction of the photons directly, and the subsequent reconstruction of the π0s being
studied. This allowed the performance of the model to be studied in a much more complex
and realistic physics environment than could be done previously. A comparison was made
between a sample including BIB-AE shower simulation and two different Geant4 versions,
showing the variation in reconstruction performance between versions and giving an indication
of the MC uncertainty on Geant4. Uncertainties for each sample were also estimated by
means of repeated simulations with different random seeds. These steps allowed the definition
of a clearer target in terms of the simulation quality required of the BIB-AE model. In many
cases, the deviations of the BIB-AE model from the Geant4 version used for training were
on a similar level to the deviations observed between Geant4 versions. This was the case
for the difference between the reconstructed and MC Truth energies for the photons produced
by neutral pion decays and for the separation between the photon clusters combined into
the reconstructed π0. However, deviations that appear larger than the differences between
Geant4 versions were observed in the intrinsic polar angle reconstructed for the most inclined
showers at the edges of the barrel, and in regions of the invariant mass distribution for the di-
photon system. The latter case is particularly significant, as it is a physics observable directly
used in downstream analysis. It should also be noted that the simulation speed-up relative to
Geant4 achieved was low, at only a factor of about ×1.2. This is a result of a large majority
of photons produced in the process having an energy below the threshold at which the BIB-AE
could be used to simulate showers faster than Geant4. If a generative model with better
energy scaling was used instead, thereby providing a speed-up relative to Geant4 for lower
energy photons, this speed-up factor could increased.
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Conclusions

The simulation requirements of experiments in high energy physics place large burdens on
the available computing infrastructure, and present a significant hurdle for the operation of
future experiments. The use of full Monte Carlo based simulation for showers which develop
in the calorimeter systems of detectors are the most computationally intensive components
of a complete detector simulation. These challenges are particularly formidable when seeking
to develop fast simulation tools for showers in high granularity calorimeters, which demand a
high degree of physics fidelity from a simulator. This thesis has sought to address these issues
by developing a fast simulation tool for high granularity calorimeters based on deep generative
models.

To develop such a tool, it is necessary to generalise the scope of initial proof-of-concept
studies which have investigated the performance of generative models for this task in restricted
scenarios. This includes producing a correct detector response for particles incident with vari-
ous angles to the calorimeter, and at different positions on the calorimeter surface.

To this end, in Chapter 7, the performant BIB-AE model was extended to handle photons
incident with a varying angle and energy, but with a fixed position, on the ILD ECAL [64]. We
found that the BIB-AE was able to model key calorimetric observables with a high degree of
fidelity when compared to Geant4, the state-of-the-art simulation tool.

We then took a further step and interfaced the simulation level output with the full re-
construction chain used by ILD, allowing the single particle reconstruction performance of the
model to be studied. Importantly, it was demonstrated that the physics fidelity provided by
the model remained high after reconstruction. This is a major step in the development of a
generative model for fast simulation of showers in high granularity calorimeters, as the ultimate
metric by which a model is judged is the physics performance after reconstruction.

However, this was not yet enough to build a complete simulation tool. Chapter 8 therefore
addressed the development of a fully conditioned model. Firstly, to be able to simulate showers
at different positions, it was necessary to take steps to handle the irregular nature of real
calorimeter geometries. A key problem is that due to the variation in the relative fraction
of insensitive volumes at different positions in the calorimeter, it is hard to place a model
generated shower into different positions in the planar region of a calorimeter. Additionally,
when using a generative model relying on regular grids, such as the BIB-AE, projecting the
irregular detector geometry into a regular grid creates artefacts. A perfect regular version of
the ILD ECAL, with purely sensitive active layers was therefore created.

Secondly, the BIB-AE was then extended to accept conditioning on a second angle, en-
abling a fully conditioned model to be trained for electromagnetic shower simulation. During
the creation of the dataset, the size of the regular grid was minimized in order to maintain a
reduced simulation time per shower. While the fidelity of the BIB-AE’s modelling of certain
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calorimeteric observables remained high, others were less well modelled than when the model
was conditioned on a single angle in Chapter 7. This could be a result of the fact that the
conditioning phase space was significantly expanded, but the number of training samples were
kept constant. Generally, the number of training samples needed to obtain a sufficiently per-
formant model is an open question and could be explored in future work. Additionally, a more
rigorous tuning of the hyperparameters of the BIB-AE for the sample could yield an improved
performance. Nevertheless, this study constitutes the first time a generative model has been
developed with a broad enough conditioning scheme to be used at different positions in the
planar region of a highly granular calorimeter.

With this fully conditioned model developed, Chapter 9 addresses the important task of
running the generative models in the existing software ecosystems. We have developed a
generic library that is capable of seamlessly mixing full and fast simulation with generative
models in realistic detector geometries. The BIB-AE model developed in Chapter 8 was then
integrated into the library, allowing the various features of the library to be tested and enabling
further studies with this model. For example, a fair benchmark of the computational perfor-
mance of the model in comparison to Geant4 was then possible. It was demonstrated that
the per-shower simulation speed-up relative to Geant4 increased with the incident particle
energy, with the BIB-AE being ×11 faster then Geant4 for the simulation of 100 GeV photon
showers.

While this study has focused on the integration of the BIB-AE for use with the ILD ECAL,
it should be noted that the library is sufficiently flexible to support the use of other models
including those which do not rely on a regular grid output. Additionally, the library can sup-
port the use of shower simulation in other detectors, given that they have an implementation
in DD4hep and a correspondingly trained generative model. The library therefore has the
potential to serve future developments in this field by the community.

An important question that has received little attention thus far is the effect of using a
generative model to simulate showers in an irregular geometry. As with the vast majority of
models explored thus far in the field, the BIB-AE was trained to generate showers at the level
of the readout geometry of the calorimeter. The effects of projecting showers generated with
the model into different positions in an irregular detector geometry are therefore not clear
apriori. Chapter 10 therefore investigated the use of the BIB-AE for shower simulation at
different positions in the ILD ECAL. The effect of projecting BIB-AE generated showers into
two different positions were explored. The first position had a large insensitive region running
through layers near the shower core. The second position had no inter-layer large insensitive
volume near the shower core, but the geometry was still irregular, with a staggering effect
between layers. Inspired by broader developments that have occurred during the course of this
thesis [6, 7], two approaches to projecting showers were explored. In the first case, hits in
the shower were deposited at the center of the readout cells. In the second, each hit in the
shower was splitting into a 6×6 higher granularity grid of sub-cells. While in the first position
some effects on the calorimetric observables produced by the model showed improvement by
splitting hits into higher granularity sub-cells, the model performance in the second position
showed was negatively impacted. As the second position is encountered more frequently in the
calorimeter, the projection of shower hits using the center of the readout cell was concluded
to be preferable for the regular grid BIB-AE model used.

Chapter 11 benchmarked the performance of the BIB-AE applied to the task of simulating
the photons from π0s produced in the process e+e− → τ+τ−. A comparison to two different
Geant4 versions provided a means to quantify the uncertainty in our understanding of the
development of electromagnetic showers. This provided a well defined goal for the physics
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performance of the generative model. While the performance of the BIB-AE was within the
deviations between Geant4 versions for several key physics observables, other observables
showed some more significant discrepancies, notably in the intrinsic polar angle and invariant
mass distribution of the di-photon system that was reconstructed. Due to the steep rise to low
energies in the spectrum of the photons produced in this process, a speed-up of only a factor
of ×1.2 relative to pure full simulation was obtained. This constitutes the first benchmark of
a generative model on a full physics process in a high granularity calorimeter with a realistic
geometry.

Outlook

In this thesis, only the application of generative models for fast simulation of electromagnetic
showers has been investigated. However, showers produced by hadrons exhibit significantly
more complex topologies and larger event-to-event fluctuations, as described in Chapter 3.
This makes modelling hadronic showers much more challenging, in particular for high granu-
larity calorimeters, where it is possible to resolve their topological structure to a high degree.
Being able to perform high fidelity fast simulation of hadronic showers across the calorimeter
system would enable the simulation time to be reduced more significantly across a greater
variety of physics processes. As described in Chapter 6, thus far the only study that attempted
to simulate hadronic showers in a realistic high granularity calorimeter with a generative model
was performed in [4]. This work investigated the performance of both a WGAN and a BIB-AE
trained to simulate charged pion showers in the ILD AHCAL (see Chapter 4). However, a
major limitation of this study was that it was only performed in the AHCAL. While this allows
initial investigations into whether a model can learn the more complex structure of a hadronic
shower, in a real detector showers produced by hadrons can start in the ECAL and extend into
the HCAL (see Section 3). Since the geometry of these two detectors is typically significantly
different, for models relying on the use of a regular grid, such as the BIB-AE studied in this
thesis, this poses a significant challenge. For example, the granularity of the ECAL is typically
significantly higher than that of the HCAL (for ILD, the side length of cells in the SiW-ECAL is
almost an order of magnitude smaller than in the AHCAL). Another challenge is that the geo-
metrical irregularities are typically significantly different between these calorimeter subsystems.

While geometry irregularities are particularly challenging when they differ between detector
subsystems, they are still a factor that has to be considered even within a single calorimeter
subsystem. As was demonstrated in the investigation performed in Chapter 10, for a regular
grid based model trained using information at the level of the readout geometry of the ILD
ECAL, the physics performance of the model degrades at positions in the calorimeter with
additional insensitive volumes compared to the geometry used for training. This is partly due
to entire hits being lost in these volumes.

One promising approach to tackling the irregular nature of a geometry is to use a model
operating on a point cloud of energy depositions at a lower level than that of the physical
readout geometry (i.e. clustered Geant4 steps). This approach was proposed in [6], and
improved upon in [7]. While this inspired the splitting of hits explored in Chapter 10, a key
difference is that by directly learning information at the level of clustered Geant4 steps, the
information learnt by the model is decoupled from the readout geometry. This presents the
model with the possibility to learn the distribution of energy that would usually be within a
readout cell, and shows promise as a means for a model to achieve a high degree of geome-
try independence. This would allow showers to be more readily translated within the planar
regions of the ILD calorimeter. A point cloud is also a more flexible form of data structure,
meaning that such a model is well suited to be able to simulate showers in calorimeters with
more irregular geometries, such as the Calorimeter Endcap Upgrade for the CMS experiment
for the upcoming High Luminosity phase of the LHC [109]. A final advantage of a point cloud
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model is that it reduces the wasted computation on cells which are not hit, as these necessarily
have to be simulated by a regular grid based model. This makes it a more computationally
efficient solution, therefore providing the potential to achieve more pronounced speed-ups rel-
ative to Geant4. A key challenge in applying generative models based on point clouds to
fast calorimeter simulation which has yet to be addressed is the incorporation of an efficient
means of local inter-point communication. This locality is naturally incorporated in a regular
grid model based on convolutional operations. While this is not necessarily required for the
simulation of electromagnetic showers, and indeed was not included in the studies performed
in [6, 7], it will be needed to learn the detailed structure present in hadronic showers.

While a point cloud model operating on clustered Geant4 steps provides a promising
avenue to handle irregular detector geometries, it is very likely that this will not be enough
to handle some of the irregularities studied in Chapter 10. In particular, positions in which
the shower core lies close to a gap which extends through not just the sensitive layer, but
also through the absorber layer, present a very different geometrical structure to the regular
planar regions of the calorimeter on which a model would usually be trained. This could be
handled by adding additional exclusion regions to the fast simulation trigger implemented in
DDFastShowerML as described in Chapter 9. An additional dedicated model training could
then be used to allow the use of fast simulation in this region of different geometrical structure.

Future work focusing on extending the functionality of DDFastShowerML would allow faster
simulation speeds with generative models. In particular, adding support for simulation with
GPUs would likely maximise the potential speed-up relative to Geant4. This would bring
further challenges, and may potentially require tailored solutions depending on the hardware
used. Additionally, this would require the batching of showers to gain the most from the parallel
nature of the computation. While in Geant4 this is in principle possible within an event,
inter-event batching is not and would require a major overhaul of the simulation procedure. In
these regards, the addition of GPU support to the library has potential synergies with recently
started efforts to create a particle transport Monte Carlo code base that can utilise GPU-based
hardware acceleration [203–206].

Further extensions of DDFastShowerML could involve the incorporation of different detec-
tor concepts with a geometry description implemented in DD4hep, such as those foreseen
for FCC-ee [22], together with an appropriately trained model. A key future direction for the
development of DDFastShowerML would therefore involve the integration of different genera-
tive models, trained with a conditioning scheme comparable to the one explored in this thesis.
This would allow these models to be run in the full software chain used by ILD, and enable a
comparison between models on benchmark physics processes.

This work has focused on studying the performance of the BIB-AE for simulating photon
showers resulting from π0 decays in the process e+e− → τ+τ−. As this process is a particu-
larly stringent test of the performance of a fast simulation tool for electromagnetic showers,
future work could compare the performance across different generative models applied to this
task. Additionally, the performance of a model used for shower simulation in different physics
processes could be studied. In particular, other processes which more often result in electro-
magnetic showers initiated by particles with a higher energy would result in larger reductions
in per-event simulation times relative to Geant4, assuming that the particles hit a detector
subsystem where the fast simulation model could be applied. For ILD, this may require train-
ing a model to simulate detector systems closer to the beam pipe, such as the LumiCal (see
Chapter 4).
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Appendix A

Supplementary Material:

Multi-parameter Conditioning of

Generative Models

This appendix contains additional details on the work described in Chapter 7 titled Multi-
parameter Conditioning of Generative Models.

A.1 Supplementary Material: Neural Network Architectures

The BIB-AE model consists of five different networks. The architecture for the critic network
is shown in Figure A.1, while the latent critic network is shown in Figure A.2. Figure A.3
shows the architecture of the encoder network, while Figure A.4 shows the architecture of the
decoder network. Finally, the Post Processor network is shown in Figure A.5. All architecture
diagrams were automatically generated using TorchView [207].
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