
THE REINFORCEMENT LEARNING FOR AUTONOMOUS

ACCELERATORS COLLABORATION

A. Santamaria Garcia ∗, L. Scomparin, C. Xu

Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

S. Hirlaender, S. Pochaba, Paris Lodron Universität Salzburg, Salzburg, Austria

A. Eichler, J. Kaiser, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany

M. Schenk, CERN, Geneva, Switzerland

Abstract

Reinforcement learning (RL) is a unique learning

paradigm that is particularly well-suited to tackle complex

control tasks, can deal with delayed consequences, and can

learn from experience without an explicit model of the dy-

namics of the problem. These properties make RL methods

extremely promising for applications in particle accelera-

tors, where the dynamically evolving conditions of both

the particle beam and the accelerator systems must be con-

stantly considered. While the time to work on RL is now

particularly favorable thanks to the availability of high-level

programming libraries and resources, its implementation in

particle accelerators is not trivial and requires further con-

sideration. In this context, the Reinforcement Learning for

Autonomous Accelerators (RL4AA) international collabo-

ration was established to consolidate existing knowledge,

share experiences and ideas, and collaborate on accelerator-

specific solutions that leverage recent advances in RL. Here

we report on two collaboration workshops, RL4AA’23 and

RL4AA’24, which took place in February 2023 at the Karl-

sruhe Institute of Technology and in February 2024 at the

Paris-Lodron Universität Salzburg.

THE MISSION OF THE RL4AA

COLLABORATION

Machine learning (ML) has significantly increased in pop-

ularity over recent years within the particle accelerator com-

munity. However, RL remains relatively unknown, as in-

dicated by the low number of related publications, shown

in Fig. 4. This is partly due to the complex design of these

algorithms and the substantial time required to understand,

engineer, and deploy them.

Given the increasingly stringent beam parameters and per-

formance metrics in frontier particle accelerators, the precise

control and real-time optimization of beam parameters in a

dynamically changing environment will be crucial for the

efficient operation of future facilities [1]. In this context,

the primary aim of the RL4AA collaboration is to consol-

idate RL efforts in the particle accelerator community by

establishing a unified platform that:

1. Connects RL enthusiasts within the particle accelerator

community to foster collaborative projects across insti-

tutions and facilitates interaction with other RL experts

for the exchange of ideas.
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2. Educates on both fundamental and advanced RL con-

cepts and demonstrates practical applications in acceler-

ators, offering valuable resources such as programming

tutorials, lectures, and educational events.

3. Facilitates discussions on the challenges of developing

and deploying RL algorithms in particle accelerators

and other large-scale infrastructures.
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Figure 1: Number of publications featuring the terms "artifi-

cial intelligence" or "machine learning" versus "reinforce-

ment learning" in their abstracts, sourced from the JACoW

database.

These objectives are realized through annual workshops,

details of which are discussed in the following sections. The

communication and dissemination platforms provided by the

RL4AA collaboration include a website [2] that aggregates

news, relevant links, and RL-related publications; a GitHub

organization [3] that compiles the RL programming tuto-

rials offered by the collaboration; a Discord server [4] for

general announcements, meetings, and broader community

engagement; and a YouTube channel with recorded talks [5].

CHALLENGES IN RL

The challenges of applying RL algorithms to particle ac-

celerators are consistent with those encountered during their

deployment in any real-world system. The most relevant

challenges include:

• Partial observability: This refers to situations where

the state is not directly observable and must be inferred



from limited and/or noisy observations, a common sce-

nario in real-world environments. For example, during

accelerator operation, complete phase space informa-

tion is unavailable, relying on partial observations or

derived quantities such as beam position readings and

synchrotron radiation measurements. Some measure-

ments are destructive and can disturb the current state,

making them sparse and asynchronous compared to

non-destructive ones. With partial observability, the

agent must effectively infer the necessary information

from incomplete data to make optimal decisions, which

can make learning stable policies more challenging and

computationally intensive.

• Sample complexity: This term refers to the number of

interactions with the environment required to achieve

a certain level of performance during the decision-

making process. Improving sample efficiency is crucial

when applying RL methods to particle accelerators, as

the cost of beam time for gathering real-world interac-

tions can be prohibitive. This depends on the accel-

erator’s repetition rate and the diagnostics available.

Reducing sample complexity can decrease the train-

ing costs of RL algorithms, enhance their scalability

and accessibility, facilitate real-time learning, and even

increase their safety.

• Safety: In RL, safety ensures that measures are in

place to prevent an agent from taking dangerous actions

during both training and deployment. For accelerator

physics applications, safety involves protecting against

injury or loss of life, damage to machine equipment,

and loss of beam time. The level of importance placed

on safety heavily depends on the accelerator facility’s

purpose, the beam energy and particle type, and the

complexity and extent of the machine interlocking sys-

tem. Although soft safety using negative rewards has

been demonstrated in other fields, such as fusion reactor

control [6], hard safety remains an unsolved challenge

in the RL community at large, including within the

RL for accelerator community. Ensuring safety during

training is particularly challenging, making training on

certain particle accelerators unfeasible, even with avail-

able beam time and sample-efficient RL algorithms.

• Robustness: This refers to the ability of an RL algo-

rithm to perform effectively across a variety of environ-

mental variations that were not specifically accounted

for during the training phase. This is particularly impor-

tant when transferring an agent trained on simulations

to the real world (sim2real), in the presence of parame-

ter drifts, or more generally, in non-stationary problems.

It is closely related to the concept of generalization.

• Generalization: This refers to the ability of a trained

agent to perform effectively in an environment other

than its training environment. Developing generaliz-

able or transferable RL agents is especially valuable, as

particle accelerators share common design principles

and control tasks.

The RL4AA collaboration’s founders actively work on

these topics, for example, by developing high-speed, differ-

entiable optics simulations for faster training [7], exploring

domain randomization for lattice-agnostic algorithms [8],

implementing novel meta-RL solutions [9], designing sys-

tems for online training and control on hardware [10], and

comparing RL to other ML solutions [11]. Other challenges

such as algorithmic stability, theoretical guarantees, and hy-

perparameter tuning are also relevant and actively considered

by the community.

FIRST WORKSHOP: RL4AA’23

The RL4AA collaboration was officially launched with

the first RL4AA workshop, which was held at the Karl-

sruhe Institute of Technology (KIT) on the 20th-21st Febru-

ary 2023 [12]. With 31 registered participants, the event

targeted mostly scientists in Germany and Switzerland and

focused on connecting the attendees through introductory

speed talks about their work in RL and through targeted dis-

cussion sessions. These discussion sessions were split in four

groups to address the third goal of the RL4AA collaboration

in a structured manner, namely:

• Community: group to discuss the origins of RL, have

a broader perspective on its evolution, and understand

the current trends.

• Modeling, methods, and limitations: group to dis-

cuss the origins and mathematical meaning behind RL

problems and methods so that we can use these tools

efficiently to solve relevant problems (if solvable at all).

• Challenges I & II: groups to address the particular

challenges that arise in applying RL to real particle

accelerators.

Figure 2: The RL4AA’23 workshop participants on the

bridge of the Karlsruhe Research Accelerator (KARA) stor-

age ring at the KIT during the accelerator facility tour.
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