


grids, fingerprints, 3D points).[14] Due to the large number of tools and

the different noncomparable evaluations based on differing benchmark

data sets, a collection of data sets was developed to comprehensively

and comparably assess binding site comparison performance in various

application areas (ProSPECCTs).[18] Thereby, it aims to facilitate

choosing a suitable tool for a specific application, which is a nontrivial

task given the individual limitations of the tools. Benchmarking binding

site comparison tools revealed that none of the evaluated tools showed

an overall superiority. In consequence, choosing the appropriate tool

depends on the application.

Many recently developed tools use machine learning (ML) and

deep learning methods. Three of them, DeeplyTough,[16] BindSiteS‐

CNN,[27] and DeepDrug3D,[15] use convolutional neural networks.

Site2Vec,[24] a mathematical enhancement of PocketMatch,[30]

considers pairwise distances between representative points of

binding sites, showing good overall performance for the Pro-

SPECCTs[14,18] data sets. However, the applicability of these methods

suffers from the lack of corresponding binding site alignments, which

are fundamental for evaluating the results in the context of SBDD.

PocketShape[22] provides structure alignments by calculating

residue assignments based on the Hungarian algorithm.[31] Since the

authors did not evaluate the method's performance on standard

benchmark data sets, we cannot compare it to the state of the art or

assess its suitability for SBDD applications. In addition, its run time is

much higher than that of the best‐performing tools analyzed in earlier

benchmark studies[14] (seconds vs. nano‐ and microseconds scale).

To find an optimal superposition of points sharing similar

pharmacophoric and topological neighborhoods, ProCare[20] uses

the point cloud registration concept. It was benchmarked on a

balanced version[20] of the Vertex data set.[17] The authors show

pairwise comparison run times in the seconds time scale. Its

performance with an area under the receiver operating

characteristics (ROC) curve (AUC) of 0.811 was significantly lower

than that of the best‐performing tool, ProBiS, with 0.896.

TWN‐RENCOD uses topological water networks obtained by

short molecular dynamics simulations.[29] The aqueous environment

in binding sites from these simulations is compared. The method was

evaluated on a kinase data set comprising only 36 binding site pairs.

Alignments were not reported.

To overcome the drawbacks of missing structure alignments,

insufficiently comparable evaluations, a method choice dependent on

the application field, and restricted availability, we present SiteMine,

a new database‐ and structure‐based alignment‐providing binding

site similarity search tool based on GeoMine.[10,32,33] SiteMine builds

on the NAOMI library with numerous methods for handling and

analyzing biomolecular structures[34] and small organic mole-

cules.[35,36] GeoMine is a tool for searching user‐defined 3D

geometric patterns enhanced with textual and numerical filters

within predicted and ligand‐based small molecule binding sites. A

fully automated workflow calculates all data, populating a classical

relational database. Every binding site atom is converted into a search

point and stored with its properties (source molecule type, element,

atom type, protein residue type, solvent‐exposed surface area,

functional group, and secondary structure type), allowing to custom-

ize the search for 3D geometric patterns. The distances between all

search point pairs below 15 Å are stored to create 3D geometric

search patterns.

SiteMine relies on the TetraScan approach we designed for

complex 3D shape‐matching applications. In short, tetrahedral search

patterns are processed by GeoMine to retrieve binding site matches.

In addition to SiteMine, TetraScan is also used for searching

geometrically similar protein‐protein interfaces (submitted for publi-

cation). All proposed matches are subsequently scored and ranked.

The best‐scored match is superimposed by SiteMine.

TABLE 1 An overview of additional binding site comparison tools published since the ProSPECCTs benchmark study from 2018.14

Year Method Benchmark Identification Modeling Data structure Alignment

2019 DeepDrug3D[15] TOUGH‐C1[15] Ligand Interactions 3D points No

2020 DeeplyTough[16] Vertex[17] and ProSPECCTs[14] without the
ROCS Structures data set[18]

Ligand or fpocket
2.0[19]

Interactions 3D image No

2020 ProCare[20] Balanced Vertex[20] VolSite[21] Interactions 3D points Yes

2021 PocketShape[22] sc‐PDB data set for method evaluation[23] Ligand Residues Matrix Yes

2021 Site2Vec[24] ProSPECCTs without the ROCS Structures data
set, APOCS3,[25] PLIC data set,[26] TOUGH‐C1

Ligand Residues Histograms No

2022 BindSiteS‐CNN[27]a TOUGH‐C1, ProSPECCTs without the ROCS
Structures data set

Ligand or
SURFNET[28]

Surface Graph No

2023 TWN‐RENCOD[29]b Developer‐built kinase data set Ligand Residues Matrix No

Note: Explanation of the column headers: Benchmark—data sets used for method benchmarking; Identification—binding site detection method; Modeling—

binding site representation; Data Structure—data structure used for similarity calculation; Alignment—the ability to provide binding site alignments.
aThe GitHub repository for this method is still under preparation: https://github.com/Jing9558/BindSiteS-CNN.
bThis method is not publicly available.
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Here, we present SiteMine in detail and assess its performance

on the ProSPECCTs benchmark. We applied SiteMine on cathepsin L,

a promising drug target for SARS‐CoV‐2 inhibition,[37] highlighting

the applicability of SiteMine for drug repurposing.

2 | RESULTS AND DISCUSSION

All results on the ProSPECCTs data set will be summarized in the

following. Furthermore, we evaluate SiteMine's performance on the

Balanced Vertex data set and show the impact of using predicted

pockets compared to ligand radius‐defined binding sites. Finally, we

showcase the applicability of SiteMine for the drug target cathep-

sin L.

2.1 | Run time

SiteMine's run times are determined for all‐against‐all comparisons

(10,000) of the Kahraman data set.[38] The test system had Postgres

14.3 (default settings, max_parallel_workers = 8), an Intel(R) Core™

i5‐8500 CPU with 3.00 GHz and 16 GB RAM installed (workstation).

SiteMine was used as a single‐core application with a multi‐threaded

database search. Table 2 shows the run time of SiteMine compared

with other binding site comparison tools for the same data set.

SiteMine Fast has the lowest average run time per comparison within

the tools that model sites as 3D points (18ms). In contrast, the

Precise setting with a run time of 122ms is still faster than the well‐

performing 3D point‐based methods.

2.2 | Benchmark studies

The ProSPECCTs data sets were used to benchmark the Fast and

Precise settings (see Section 4.8) of SiteMine (Table 3). To ensure a

fair comparison for the ROCS Structures data set, pairs used for

optimization (Optimization Structures data sets) were excluded.

Therefore, all AUC and enrichment factor (EF) values were re‐

calculated for the reduced data set with scoring tables produced for

earlier publications.[14,18]

SiteMine Precise achieved the highest mean AUC with 0.835.

With a difference of only 0.029 in the average AUC, SiteMine Fast is

the third‐best method. This difference can be attributed to

performance disparity on the Barelier, Decoy Structures Rational,

Kahraman, and ROCS Structures data sets. This performance loss

regarding the AUC is less than 0.2 with the remaining data sets

(Decoy Structures Shape, Structures with Identical Sequences, NMR

Structures, and Successful Applications). Due to their high sequence

similarity, these structures have strongly conserved structural binding

sites. As a result, atom mappings are obtained even with a lower

distance tolerance. Comparing both methods regarding the EFs

(Supporting Information S1: Tables S1–S8), the trend of the observed

AUC drop does not occur. A considerable difference was only found

for the Barelier data set for which SiteMine achieves the lowest AUC

values. Compared to all other methods, it becomes clear that this is

not a weakness of SiteMine but can be attributed to the design of the

benchmark. The outcomes for this data set should not be over‐

interpreted, as the number of considered pairs is relatively small

(62 pairs), in contrast to the other data sets (Table 8).

The performance differences between the SiteMine parameter

sets are due to the optimization procedure. In particular, a higher

filter number and more permissive tolerances increase the probability

of finding atom mappings for binding site superposing and similarity

score calculation. Going from Fast to Precise increases the

computational cost (Table 2) but leads to significantly more structural

superpositions, making it more likely to find weakly associated

matches. This trend is more evident when examining the NMR

Structures data set results (Supporting Information S1: Figure S1).

Comparing SiteMine's score distributions for similar pairs, the lower

whisker is 0.3 higher with the Precise setting.

Regarding the AUC (Table 3), two other tools stand out

compared to SiteMine: SiteHopper[46] and KRIPO.[39] Although

SiteEngine[49] and SMAP[48] show a high average AUC as well, their

performance is already significantly lower, especially on data sets of

similar binding pockets in unrelated proteins (Kahraman and ROCS

Structures data set). Therefore, we focused on a comparison of

SiteMine with SiteHopper and KRIPO.

SiteHopper is a surface‐based binding site similarity tool.

SiteHopper defines the binding site via a ligand‐based radius. It

calculates residue‐based chemical properties annotated in a 3D

shape calculated by two OpenEye toolkits: Shape[52] and Spicoli.[53]

Alignments and similarities are calculated based on the physico-

chemical and surface shape similarity. For the Successful Applications

data set, the AUC values achieved with SiteMine are 0.12 and 0.14

higher in Fast and Precise mode, respectively. Also, the early

enrichment for SiteHopper is inferior to that for both SiteMine

settings. However, SiteHopper performs similarly to SiteMine on the

ROCS Structures data set. Although there are no considerable

differences in early enrichment (Supporting Information S1:

Table S8), the AUC of SiteMine Fast is 0.05 lower. SiteMine Precise

shows comparable performance to SiteHopper in terms of AUC and

early enrichment. The performance similarities of both methods are

remarkable, given that SiteHopper builds on the ROCS[54] 3D shape‐

and chemical feature‐based ligand comparison application used to

generate the ROCS Structures data set. For the Barelier data set,

SiteHopper and SiteMine show almost identical performance. Only

SiteMine Precise is superior regarding AUC and early enrichment

(Supporting Information S1: Table S1). For both Decoy Structures data

sets, SiteHopper's AUC is slightly higher than SiteMine's AUC.

Regarding early EF for the Decoy Structures Rational data set, the

SiteMine methods are equally well‐performing (Supporting Informa-

tion S1: Table S2).

For detecting minor differences, Spearman's Rho correlation

coefficients were calculated using the Decoy Structures data sets by

ranking the scores for different numbers (1–5) of introduced binding

site mutations (Supporting Information S1: Table S9). While
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SiteHopper's Combo score correlates better with the number of

residue substitutions by similarly sized physicochemically diverse

residues, SiteMine's score shows a better correlation with the

number of residues substituted by differently sized residues. In this

context, SiteMine is also one of the most sensitive tools regarding

minor differences in the binding site. Regarding the Structures with

Identical Sequences and NMR Structures data set, the early enrichment

differences are negligible (Supporting Information S1: Tables S4

and S6). On the Kahraman data set, the SiteMine settings perform

better than SiteHopper (Supporting Information S1: Table S5). In

summary, we can show that SiteMine's performance is comparable

and, for some application domains, even superior to SiteHopper.

KRIPO[39] defines binding sites via a ligand atom radius of 6 Å. An

interaction fingerprint represents the binding site. It encodes residue

interaction features and binned residue distances. A modified

Tanimoto coefficient[55] is the similarity measure.

Concerning the Kahraman data set, the performance regarding

the AUC of KRIPO is similar to both SiteMine settings. The early

enrichment is slightly lower for SiteMine (Supporting Information S1:

Table S5). For the Decoy Structures, NMR Structures, Structures with

Identical Sequences, and the Successful Applications data set, Site-

Mine's performance is superior regarding AUC and EFs (Supporting

Information S1: Tables S2‐S4, S6, S7). For the ROCS Structures data

set, the AUCs of SiteMine Fast and KRIPO are similar. A performance

difference regarding the EFs is apparent: in contrast to SiteMine, the

enrichment of similar pairs by KRIPO decreases with increasing

percentages of screened data (Supporting Information S1: Table S8).

KRIPO's fingerprint‐based approach is faster than SiteMine, but

binding site superpositions are not computed on the fly. Instead, they

are calculated using a clique algorithm. Consequently, KRIPO harbors

the disadvantage that the superposition does not necessarily

correspond to the fingerprint‐based similarity.

TABLE 2 Run times of binding site comparison methods.

Method Data basis

Preparation run
time (s) (number
of structures)

Comparison run
time (s) (number
of comparisons)

Total run
time (s)

Average
pairwise run
time (s)

PocketMatch[30] Distance lists 28.97* 0.28 29.25 0.000028

KRIPO[39] Fngerprint 446.50 0.92 447.42 0.000092

RAPMAD[40] Histogram 71.42 (100) 2.36 (8,281) 73.78 0.000285

FuzCav[41] Fingerprint 399.88 (96) 5.59 (9,216) 405.47 0.000607

FuzCav (PDB) Fingerprint 236.73 (96) 5.64 (9,216) 242.37 0.000612

TM‐align[42] Matrix 25.72* 65.96 91.68 0.006596

SiteMine Fast 3D points 169.56 (100) 186.51 369.09 0.018651

Shaper (PDB)[21] 3D points (grid) 181.16 (96) 364.42 (9,216) 545.58 0.039542

Shaper 3D points (grid) 384.21 (96) 367.21 (9,216) 751.42 0.039845

VolSite/Shaper 3D points (grid) 537.00 (76) 248.77 (5,776) 785.77 0.043070

ProBiS[43] Graph 6.95 479.32 486.27 0.047932

VolSite/Shaper (PDB) 3D points (grid) 259.54 (57) 162.26 (3,249) 421.80 0.049942

TIFP[44] Fingerprint 228.30 (77) 550.88 (5,929) 779.18 0.092913

TIFP (PDB) Fingerprint 194.36 (47) 205.56 (2,209) 399.92 0.093056

SiteMine Precise 3D points 169.56 (100) 1,215.30 1,400.08 0.121530

Grim (PDB)[45] Graph 169.33 (96) 1,714.49 (9,216) 1,883.82 0.186034

Grim Graph 220.17 (95) 2,104.99 (9,025) 2,325.16 0.233240

IsoMIF[11] Graph 752.83 2,561.44 3,314.27 0.256144

SiteHopper[46] 3D points 154.01 3,828.61 3,982.62 0.382861

Cavbase[47] Graph 67.89 (100) 21,823.71 (8,281) 21,891.60 2.635396

SMAP[48] Graph 1.69 42,346.74 42,348.43 4.234674

SiteEngine[49] 3D points 328.81 81,193.54 81,522.35 8.119354

SiteAlign[50] Fingerprint 28.97* 286,326.41 286,355.38 28.632641

Note: The star (*) denotes exemplary run times for separate preprocessing steps. The SiteMine rows are highlighted in light gray. The table and run times of
the other methods are extracted from previous benchmark studies.[14] Note that computing times for SiteMine were recorded on different hardware.
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SiteMine is also applicable to compare predicted binding sites,

representing a considerable advantage over SiteHopper and KRIPO.

The ROCS Structures data set corresponds to common use cases,

finding similar binding sites in unrelated proteins (e.g., off‐target

prediction). Also, IsoMIF[11] demonstrates remarkable performance

but is slower than SiteMine. Considering the total of all data sets

(AUC, EF, Spearman's Rho), SiteMine shows promising performance

(Table 4).

2.3 | Comparison to ML tools evaluated on
ProSPECCTs

Since their publication, the ProSPECCTs data sets have been used

to evaluate three ML‐based methods: DeeplyTough, Site2Vec, and

BindSiteS‐CNN. Therefore, we can readily compare them to

SiteMine (Table 5). Although the methods were not evaluated on

the ROCS Structures data set, the second closest to a real‐world

application scenario, we can assess their general applicability to

realistic use cases employing the Successful Applications data set.

Site2Vec has the highest mean AUC (0.87), while BindSiteS‐

CNN and DeeplyTough rank below SiteMine. The AUC values for

the Decoy Structures data sets are lower for SiteMine. In contrast,

SiteMine's AUC values are significantly higher for the Successful

Applications data set than for the three ML‐based methods. As this

data set represents the most meaningful data set regarding SBDD

studies, the poor performance of Site2Vec for this data set

questions its applicability in SBDD.

Moreover, recent tools do not provide binding site alignments for

proper visual inspections, restricting their usefulness for structure‐based

TABLE 3 Overview of the SiteMine results and the tools of the benchmark studies.14,18

Method Mean Barelier[51]

Decoy

Structures

Rational

Decoy

Structures

Shape

Structures

with Identical

Sequences Kahraman[38]
NMR

Structures

Successful

Applications

ROCS

Structures

SiteMine Precise 0.835 0.61 0.69 0.72 1.00 0.78 1.00 0.91 0.97

SiteHopper 0.813 0.56 0.75 0.75 0.98 0.72 1.00 0.77 0.97

SiteMine Fast 0.806 0.56 0.65 0.71 1.00 0.74 0.98 0.89 0.92

KRIPO 0.794 0.73 0.60 0.61 0.91 0.76 0.96 0.85 0.93

SiteEngine 0.771 0.55 0.82 0.79 0.96 0.64 1.00 0.86 0.55

SMAP 0.766 0.68 0.76 0.65 1.00 0.62 1.00 0.86 0.56

SiteAlign 0.759 0.44 0.85 0.80 0.97 0.59 1.00 0.87 0.55

Shaper (PDB) 0.749 0.54 0.71 0.76 0.96 0.66 0.93 0.75 0.68

Shaper 0.746 0.54 0.71 0.76 0.96 0.65 0.93 0.75 0.67

TM‐align 0.738 0.59 0.49 0.49 1.00 0.66 1.00 0.88 0.79

VolSite/Shaper 0.734 0.71 0.68 0.76 0.93 0.56 0.78 0.77 0.68

IsoMIF 0.733 0.62 0.59 0.59 0.77 0.75 0.70 0.87 0.97

FuzCav 0.720 0.67 0.69 0.58 0.94 0.55 0.99 0.77 0.57

FuzCav (PDB) 0.718 0.65 0.69 0.58 0.94 0.56 0.98 0.77 0.57

PocketMatch 0.714 0.51 0.59 0.57 0.82 0.66 0.96 0.82 0.78

Cavbase 0.711 0.55 0.65 0.64 0.98 0.60 0.87 0.82 0.58

VolSite/Shaper (PDB) 0.698 0.50 0.68 0.76 0.94 0.57 0.76 0.72 0.65

ProBiS 0.686 0.50 0.47 0.46 1.00 0.54 1.00 0.85 0.67

TIFP 0.680 0.55 0.66 0.66 0.66 0.71 0.91 0.71 0.58

Grim 0.665 0.45 0.55 0.56 0.69 0.69 0.92 0.70 0.76

RAPMAD 0.649 0.60 0.61 0.63 0.85 0.55 0.82 0.74 0.39

Grim (PDB) 0.633 0.45 0.57 0.56 0.62 0.61 0.85 0.64 0.76

TIFP (PDB) 0.598 0.56 0.56 0.57 0.55 0.54 0.78 0.66 0.56

Note: For each tool and data set, the area under curve (AUC) is given. The table is sorted according to the mean AUC for all data sets. The SiteMine

methods are highlighted in light gray. The Optimization Structures data set pairs are excluded from the ROCS Structures data set for benchmarking all
methods on this data set.
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TABLE 4 Criteria of importance for choosing a suitable binding site comparison method.

Method
Preparation
(ease)

Preparation
(completeness)

Application to
predicted sites

Run
timea Definitionb

Definition
(ranking)b Flexibilityc

Properties
(ranking)d

ROCS
structures

Successful
applications Visualization

SiteMine + + + / + + + + + + +

Cavbase + − + − + + + + − + +

FuzCav / + + + + / + + − + −

Grim / − − / − − + − / − +

IsoMIF + + + / − − − − + + +

KRIPO + + − + − / + + / + +

PocketMatch − − (+) + − / + − + + −

ProBiS + + (+) + + + + − − + +

RAPMAD + − + + − − − + − − −

VolSite/Shaper / − + / + / − + − + +

SiteAlign − + (+) − + + + + (+) + +

SiteEngine + + − − + / + + − + +

SiteHopper + / (+) / + + + + + + +

SMAP + + (+) − + + + + − + +

TIFP / − − / − − + − − − −

TM‐align − + (+) / + + + n/a + + +

Note: Besides its intermediate run time, SiteMine is superior to other tools investigated previously.[14,18] With respect to run time evaluation, “+,” “/,” “‐” denote comparison algorithms that require several ns,
µs, or s per comparison, respectively. With respect to the scoring, a “+” was assigned to tools if the intervals of upper and lower whiskers of active and inactive pairs do not overlap. A “/” was assigned to tools
whose upper and lower quartiles for the pairs do not overlap. With respect to other factors, tools that were clearly outperformed by many other tools were assigned a “‐.” The table was adapted based on
earlier benchmark studies.[56]

aKahraman data set.
bStructures with Identical Sequences data set.
cNMR Structures data set.
dDecoy Structures Rational & Shape data set.
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studies. The number of applications that solely rely on similarity scores is

considerably low,[12] highlighting that superpositions are indispensable

for evaluating the results to assess their impact on SBDD projects. As

shown in Table 5, the performances of ML‐based comparison methods

are inferior for data sets of active site pairs without sequential

relationships (Kahraman, Barelier, Successful Applications). While detect-

ing sequentially related binding sites can be regarded as solved, further

developments of ML‐based methods should focus on a good perform-

ance on structurally similar binding sites with low sequence similarity.

Future efforts should also focus on reporting reliable binding site

alignments.

2.4 | Evaluation of the impact of ligand
radius‐defined and predicted binding sites

Binding sites defined by ligands introduce a bias since the binding

site description includes the ligand's exact location and size.

Therefore, we evaluated the impact of predicted binding sites on

SiteMine's performance on the ProSPECCTs benchmark data sets.

To ensure the correctness of the compared binding site,

DoGSite3's[57] new mode for detecting difficult ligand‐occupied

pockets was used. Here, ligand fragments are only used to bias the

binding site grid if the ratio of the bound solvent‐accessible

surface area and the unbound solvent‐accessible surface area is

below 0.35 (maxSASLigandRatio). Using this feature, we ensure

that we use the ligand‐occupied pocket without biasing the

binding site dimensions based on the ligand alone. The Supporting

Information includes all AUC values and EFs for SiteMine on all

ProSPECCTs data sets (Supporting Information S1: Table S10).

SiteMine with predicted pockets performs slightly worse in terms

of AUC for the Successful Applications and NMR Structures data

sets. For both Decoy Structures data sets, a similar performance is

observed. In contrast, the mean Spearman's Rho correlation

coefficients decrease for the Decoy Structures data sets (Support-

ing Information S1: Tables S11 and S12) as mutations might lead to

different binding site dimensions. SiteMine performs similarly with

both types of binding site definition for the Structures with Identical

Sequences data set.

Using predicted pockets, SiteMine performs significantly poorer for

the Kahraman and ROCS Structures data sets (see Figure 1). Both data

sets have a substantial similarity: the similar binding site pairs contain

similar or identical ligands. The similarity classification for the other data

sets except Barelier relies on the protein instead of the ligand. Due to

the ligand radius‐based binding site definition, per se, the comparison is

biased, focusing on the probably most similar parts of the sites: Similar

or identical ligands in the ROCS Structures or the Kahraman data set

show some similarity when evaluating size alone. The pockets are

considerably larger when not selecting site residues based on the ligand.

The increased binding site size leads to poor scoring performance, as the

score is normalized by the larger binding site in terms of the number of

solvent‐exposed heavy atoms. In addition, SiteMine was optimized on a

set of ligand‐derived sites with similarly sized ligands.

However, one of the most common applications of binding site

comparison is screening a database of ligand‐based pockets against a

predicted site to find potential ligands or off‐targets, necessitating a

high early enrichment rather than a promising overall performance.

Given the comparison of the Efs for ligand radius‐based and

predicted pockets, SiteMine performs equally well in both scenarios.

TABLE 5 Performance comparison of SiteMine with ML‐based methods for the ProSPECCTs data sets.

Method

Structures with

Identical

Sequences

NMR

Structures

Decoy

Structures

Rational

Decoy

Structures

Shape Kahraman Barelier

Successful

Applications Mean

SiteMine Precise 1.00 1.00 0.69 0.72 0.78 0.61 0.91 0.82

SiteMine Fast 1.00 0.98 0.65 0.71 0.74 0.56 0.89 0.79

Site2Vec 1.00 1.00 0.99 0.99 0.86 0.53 0.66 0.87

BindSiteS‐CNN 0.94 0.83 0.91 0.79 0.66 0.62 0.78 0.79

DeeplyTough 0.95 0.90 0.76 0.75 0.63 0.54 0.83 0.77

Note: The table shows the area under curve (AUC) values for the individual data sets. The results of the other methods were extracted from previous
studies.[16,24,27]

F IGURE 1 Receiver operating characteristics (ROC) curves for
the ROCS Structures data set for SiteMine settings with both types of
binding site definitions: ligand radius‐based (Radius) and DoGSite3‐
defined (DoGSite3).
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2.5 | The Balanced Vertex data set

ProCare,[20] which is not ML‐based, was not evaluated on the

ProSPECCTs[14,18] data sets. Instead, the authors modified the

Vertex[17] data set to create a balanced version with 676 pairs (338

similar and dissimilar). The Vertex data set, as the ROCS Structures

data set, was developed based on the hypothesis that similar ligands

bind to similar sites. Therefore, the similar site pairs were derived

from their ligand‐based similarity. Both data sets differ in the

considered ligands for data set generation. In contrast to the ROCS

Structures data set, the Vertex data set considers binding affinities.

Due to the ambiguity of some binding site ligands for the Balanced

Vertex[20] data set, we have revised the ligand identifiers of the

binding site pairs (see Supporting Information S1: Table S13). Note

that it is undocumented how the ambiguity was resolved by the other

tools. ProCare compares VolSite‐predicted[21] binding sites. For the

Balanced Vertex[20] data set, SiteMine was benchmarked using

DoGSite3‐defined (maxSASLigandRatio = 0.35) and ligand radius‐

defined binding sites to allow a fair comparison (Table 6). Here,

SiteMine with the Precise setting performs better than the Fast

setting, as observed for the ProSPECCTs data sets regarding the

AUC. Also, ligand radius‐defined binding sites result in a higher AUC

than DoGSite3‐defined pockets. SiteMine performs better than

ProCare except for the Fast setting with predicted pockets. ProCare's

average pairwise run time of 2 s is several orders of magnitude slower

than SiteMine's (see Table 2).

Looking at the performance of the analyzed tools for this data

set, it meets the eye that methods performing only mediocrely in

previous studies perform best on this data set (PocketMatch and

ProBiS), while more reliable tools (KRIPO and SiteAlign) show a

poorer performance. This finding can be partially attributed to the

high overall similarity of the pairs classified as similar, leading to a

good performance of approaches relying solely on the pockets'

residues sequence in a 7 Å radius and using sequence identity as the

scoring measure (AUC of 0.9).[17] Furthermore, the Vertex data set

includes pairs of structurally and functionally related protein pairs

(e.g., protein kinases or phosphodiesterase enzymes) in both the

active and inactive pairs, which might be caused by their selection

relying solely on data available in the ChEMBL database.[58] In

summary, we can conclude that the Balanced Vertex data set cannot

reflect realistic scenarios for which elaborate binding site comparison

tools are indispensable.

2.6 | Cathepsin L—searching for similar sites in
the PDB

Cathepsins belong to the peptidase C1 family and play a role in the

hydrolytic degradation of the extracellular matrix.[59] They also

participate in apoptosis and antigen processing, as well as

lysosomal recycling of cellular proteins. Cathepsin L, in particular,

plays a pivotal role in the infection of human coronaviruses such as

SARS‐CoV and SARS‐CoV‐2 by facilitating their entry into the cell

through proteolysis of the spike protein.[60] Inhibition of this

protease can thus prevent infection, making it a target of interest

for SBDD.[37,61]

A sequence‐culled PDB subset was created with PISCES[62] (see

Supporting Information S1: Table S14 for parameters) to speed up the

search. For this subset of 40,207 PDB entries, a database was built

using ligand radius‐defined binding sites. For searching, SiteMine's

Fast setting was used. The query binding site was defined via the

bound inhibitor (radius of 6.5 Å, ligand identifier: 424) of PDB entry

2xu1. Searching this database with 63,106 binding sites took 230 s

single‐threaded on a single desktop computer, corresponding to an

average run time per comparison of about 3 ms.

We inspected the 30 top‐scored (normalized by the larger

binding site, Supporting Information S1: Table S15) binding site

superpositions and mostly found papain‐like proteases of a similar

fold. Searching for nonobvious similarities in differently folded

structures, we also inspected the top 30 superpositions of non‐

normalized scores (raw scores, Supporting Information S1:

Table S16). On rank 27, we found the active site of human calpain 1

(PDB entry 1 zcm). Interestingly, the rank within the normalized

scores is much higher at 573 but still within the top 85% (Supporting

Information S1: Figure S2).

The sequence identity is low (14.5%, EMBOSS Needle[63]), but

both proteins belong to the same family of cysteine proteases. This

similarity becomes more evident when examining the binding site

superposition (Figure 2). It shows eight superimposed identical

residues with similar side chain orientations. These residues are near

the catalytic center of the reactive cysteines (cathepsin L—Cys25,

calpain 1—Cys115).

TABLE 6 Performance comparison for the Balanced Vertex data
set.20

Method AUC
Completeness
(%)

SiteMine Precise (Radius) 0.906 98.5

SiteMine Precise (DoGSite3) 0.898 98.1

ProBiS 0.896 64.2

PocketMatch 0.895 99.4

SiteMine Fast (Radius) 0.874 98.5

KRIPO 0.862 95.2

SiteAlign 0.859 100.0

SiteMine Fast (DoGSite3) 0.846 98.1

FuzCav 0.831 100.0

ProCare 0.811 99.7

Shaper 0.774 99.7

Note: The results of the other methods were extracted from previous
studies.[20] For SiteMine, the revised version was used (Supporting
Information S1: Table S13).

Abbreviation: AUC, area under the receiver operating characteristics
curve.
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Also, the pockets differ in several aspects (Figure 3). Regarding

the binding site shape, in calpain 1, residues Met260 and Glu261

narrow the pocket moderately and cause a slight closure in the

front part of the pocket (S1 pocket[67]). Furthermore, the

properties of some residues in the posterior (S2, S3 pocket[67])

part of the binding site differ. While cathepsin L is predominantly

lipophilic (lipophilic: Ala135, Ala214, Leu69, Met70; hydrophilic:

Ser216, and Asp71), calpain 1 has predominantly hydrophilic

F IGURE 2 The SiteMine binding site superposition of human cathepsin L (orange, PDB entry 2xu1) and human calpain protease (blue, PDB
entry 1zcm). Identical residues of chain A of the binding sites are shown. The image was created with UCSF Chimera.[64]

F IGURE 3 SiteMine binding site alignment of cathepsin L (left, PDB entry 2xu1) and human calpain protease (right, PDB entry 1zcm). Top:
residue arrangement. Bottom: the surface representation. The residues are color‐coded according to the hydrophobicity scale of Kyte and
Doolittle[65] in UCSF Chimera[64] and UCSF ChimeraX[66] (low hydrophobicity—blue, high hydrophobicity—red). The catalytic residues (His163
and Cys25, His272 and Cys115) in their hydrophobicity scale and further site residues are labeled.
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residues (hydrophilic: Ser251, Arg347, Glu349, Ser209, Thr210,

and Ser211).

The identified binding site similarity assists in SBDD. On the one

hand, the two binding sites have a high global similarity, meaning that

inhibitors binding to calpain 1 could also bind to cathepsin L (drug

repurposing, off‐target prediction). On the other hand, selectivity is

achievable by exploring the identified differences. One possibility

would be to superpose available structures with bound inhibitors and

derive the core and specificity‐mediating fragments to design new,

potentially more specific binders.

3 | CONCLUSION

Searching for similar protein binding sites can support several SBDD

challenges, such as drug repurposing, analyzing protein–ligand and

protein–protein complexes, and off‐target or function prediction.

According to the review by Eguida and Rognan,[13] almost 40 software

tools have been developed in the past 20 years. However, only a few

were evaluated based on unique benchmark sets[14,18] to determine

strengths and weaknesses and, thus, their application domains. None

of the comprehensively benchmarked tools showed a promising

F IGURE 4 Binding site modeling with SiteMine. SiteMine supports using (1a) ligand radius‐defined or (1b) predicted binding sites. The solvent‐
accessible atom selection results in an atom subset (2). Tetrahedra are built and selected to represent the query‐binding site (3). Element‐specific
atom coloring: cyan/beige—carbon, red—oxygen, blue—nitrogen, yellow—sulfur. The image was created with UCSF ChimeraX.[66]

F IGURE 5 Binding site comparison with SiteMine.
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performance regarding critical criteria for reliable SBDD, that is, good

performance in terms of AUC and early enrichment for all data sets,

the possibility of comparing predicted binding sites, and reasonable run

time to screen extensive collections of protein binding sites.

In this work, we introduced SiteMine, a new database‐driven

binding site comparison method providing similarity scores and the

corresponding alignments. We evaluated it using the ProSPECCTs

benchmark data sets, also comparing it to published tools. SiteMine is

one of the best‐performing tools for all data sets, demonstrating its

broad applicability. In the run time comparison, SiteMine is slower

than fingerprint‐based methods but among the fastest for tools with

comparable features regarding binding site modeling and the

possibility of providing alignments. SiteMine is available for Linux,

macOS, and Windows as part of the NAOMI ChemBio Suite (https://

uhh.de/naomi) and is free for academic use and evaluation purposes.

To enable screenings for similarity searches in huge databases,

we established a second parameter set (Fast) in addition to the

Precise setting. Therefore, we recommend the Fast setting for a

large‐scale similarity screening with subsequent Precise setting runs

to improve scores and superposition on a promising selection.

Potential binders of novel detected binding sites can be predicted by

screening for similar ligand‐bound pockets, representing a frequent use

case of automated binding site comparisons. These comparisons are

particularly useful for binding sites in proteins with a low overall structural

similarity to already known structures. We showed that our method

performs reliably using both predicted and ligand‐defined binding sites.

We also realized a significant performance loss upon comparing

differently sized binding sites, indicating the importance of adjusting the

score normalization in screenings for similar sites with one query.

Given the rising number of developed binding site comparison

tools, the scientific community might further benefit from even

better‐performing methods. However, it renders choosing a suitable

tool infeasible without commonly used benchmark sets and unique

evaluation pipelines. Current ML‐based approaches gain attention,

but their applicability suffers from the lack of binding site alignments.

With SiteMine, we present a novel tool to the SBDD community that

is easy to use, applicable to predicted sites, and shows promising

performance regarding the most crucial quality criteria.

Despite SiteMine's comparably good run time within alignment‐

providing methods, a similarity search within the AlphaFold database with

over 200 million structures seems challenging. This task becomes even

more complex when using structure ensembles to consider protein

flexibility.

SiteMine can be successfully applied for selectivity analyses and the

discovery of novel targets for known drugs. In an application showcase,

we used SiteMine to search for similar binding sites for cathepsin L. We

found a high similarity to the active site of calpain 1. Thus, some inhibitors

derived from calpain 1 might also bind cathepsin L, opening a potential

avenue for drug repurposing. Similarly, calpain 1 should be considered a

potential off‐target when profiling cathepsin L binders for selectivity.

In summary, we hope the scientific community will benefit from

using SiteMine in various SBDD projects and find the depicted similarity

for cathepsin L and calpain 1 inspiring for searching for new inhibitors.

4 | EXPERIMENTAL

In the following, we describe and visualize the SiteMine comparison

algorithm and outline tailor‐made benchmarking data sets and the

performance assessment (see also Figures 4 and 5). Subsequently, we

provide details regarding the parameter optimization of SiteMine.

4.1 | Binding site definition

Predefined binding sites can easily be fetched from the GeoMine

database. SiteMine also parses DoGSite3‐predicted[57] binding sites

or site atoms in a 6.5 Å radius of the ligand's heavy atoms.

Alternatively, a custom binding site can be specified using residue

IDs. The identification of interactions, protonation and tautomeric

states, and hydrogen orientations generated by Protoss is described

elsewhere.[68]

4.2 | Selecting search atoms

For 3D geometrical query generation, all solvent‐accessible heavy

atoms of all site residues, each aromatic ring center (His, Phe, Trp,

and Tyr), and all side chain carbon atoms of hydrophobic residues

(Ala, Ile, Leu, Lys, Met, Pro, and Val) are selected.

4.3 | Building and selecting tetrahedra

A series of search tetrahedra is constructed using the selected atoms

as corners (Figure 4). As searching for all possible tetrahedra

(counting to N4, where N is the number of selected atoms) is

prohibitive, we introduced an algorithm for tetrahedra selection. The

algorithm aims for an equal distribution of tetrahedra across the

binding site according to atom usage.

In the first step (Algorithm 1), tetrahedra fulfilling distance and

properties constraints are created (L.2). Distances between search atoms

corresponding to tetrahedron edge lengths have to be between 1 and

8Å. The property constraints are the number of atom types representing

the tetrahedron corners (see Section 4.8 for details). The user can adapt

the distance values for specific application scenarios. Property constraints

can be turned on or off.

All resulting tetrahedra are sorted in descending order by the

sum of their edge lengths (L.3) to ensure that large tetrahedra with

most atoms of minimum atom usage are preferred (L.9). Initially

and during tetrahedra selection, the occurrence of every site atom

as tetrahedron corner in selected tetrahedra is counted (atom

usage count, L.4). The algorithm ensures that we always select

tetrahedra with the maximum number of atoms as corners with

minimal occurrence so far (L.9). Adding a tetrahedron to the

selection list implies its deletion in the list of all tetrahedra and the

update of the atom usage counts (L.8–12). The process terminates

once the selected number of tetrahedra exceeds a user‐defined
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count (default: 30) if each atom already occurs inin at least one

tetrahedron (L.6), ensuring a complete binding site representation.

4.4 | Filter building

The selected tetrahedra represent the 3D geometrical queries (called

filters in the following) to search within the GeoMine database for

atom mappings in binding sites. The atoms constitute search points

annotated by their coordinates, atom types (acceptor, donor,

acceptor & donor, aromatic, hydrophobic, anion, or cation), and

solvent accessibility. The coordinates are only used to calculate

superpositions in the match‐processing step. Tetrahedra edges are

translated to distance ranges (search point distances including

relative tolerances, default: 20%).

4.5 | Match processing

Found filter matches in the target binding sites result in atom mappings.

Binding site superpositions are calculated by the C++ Eigen library[69]

implementation of the Umeyama algorithm.[70] A prescore is computed

by counting the query Cα atom occupancy. An atom within a 6Å radius

(rounded average amino acid diameter 10.6Å[71]) of a target Cα atom is

considered occupied. This prescore serves as superposition quality

estimation. The highest prescored N superpositions per binding site

are chosen, where N is the number of query hits found for the binding

site. This heuristic limitation does not influence the quality of

the result while simultaneously reducing compute resources otherwise

spent for more expensive similarity score calculations.

4.6 | Binding site similarity scoring

For each target binding site superimposed on the query, a so‐

called SP‐score consisting of a shape and a pharmacophore

component is calculated. For each solvent‐exposed atom

(solvent‐accessible surface > 0 Å2) in the query‐binding site,

neighboring solvent‐exposed target atoms in a predefined radius

of 1.5 Å are searched. If at least one atom is found, an atom pair is

formed, and the shape score is increased by one. If more than one

atom is found, the closest one is chosen to build the atom pair.

The atom pair's similarity is evaluated by a pharmacophore‐based

scoring matrix (pharmacophore score, Table 7) and added up to

the pharmacophore score. The shape and pharmacophore scores

are equally weighted, summed up, and normalized to form the

binding site similarity SP‐score. For normalization, the score is

divided by the maximum number of solvent‐exposed atoms of the

two compared binding sites. Among all possible superpositions,

the one maximizing the SP‐score is finally selected. The complete

comparison process with SiteMine is summarized in Figure 5.

4.7 | Benchmark data sets

The ProSPECCTs[14,18] data sets and the Balanced Vertex[20] data set

are used for method evaluation (Table 8). ProSPECCTs aims to reveal

the strengths and weaknesses of binding site similarity search tools.

We compared the performance of SiteMine and other binding

site comparison methods evaluated in earlier benchmark stud-

ies.[14,18] Hence, the same evaluation metrics, that is, the AUC and

the EF, are applied.

Algorithm 1 Procedure of the tetrahedra selection algorithm

1: procedure SELECTTETRAHEDRA(atoms, max, nofTetrahedra)

2: allTetrahedra = createAllPossibleTetrahedra(atoms, max)

3: sortTetrahedra(allTetrahedra)

4: atomTetrahedraUsage = {atom1 = 0, atom2 = 0,…, atomn = 0}

5: selectedTetrahedra = ∅

6: while | selectedTetrahedra | < nofTetrahedra and min(atomTetrahedraUsage) == 0 do

7: for i = 4 down to 1 do

8: for each tetrahedron ∈ allTetrahedra do

9: if tetrahedron has i atoms with min(atomTetrahedraUsage) then

10: selectedTetrahedra.add(tetrahedron)

11: allTetrahedra.delete(tetrahedron)

12: increase(atomTetrahedraUsage, tetrahedron)

13: end if

14: end for

15: end for

16: end while

17: return selectedTetrahedra

18: end procedure
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4.8 | Parameter optimization

For filter and parameter optimization of SiteMine, a subset of the

ROCS Structures data set[18] was created, named the Optimization

Structures data set (Supporting Information S1: Table S17).

All ligands of the similar binding site pairs of the ROCS

Structures data set were extracted as SD files and loaded in KNIME

4.3.3.[72] Their ECFP4 fingerprints were calculated using the CDK

Fingerprints node. Next, a Tanimoto coefficient‐based distance

matrix was calculated for a k‐Medoids clustering with a partition

count of 150. This procedure was also applied to the ligands of the

dissimilar binding site pairs using a partition count of 450. To

compile a data set of 150 “active” and 450 “inactive” site pairs for

parameter optimization, we extracted all respective pairs per

clustered ligand (this ligand had to be in at least one binding site).

Finally, we randomly selected one pair not already chosen to

represent a previously chosen ligand.

The search time of SiteMine is mainly influenced by the distances

(tetrahedra edge lengths), their tolerance, the number of filters, and

the search point properties (atom types).

To investigate the run time behavior of the filters composed of

different point properties, we created filters with all possible property

combinations and uniform edge lengths (4.5 Å with a tolerance of 3.5 Å

representing a distance range between 1 and 8Å). We found that filters

became faster with increasing numbers of aromatic, anion, and cation

points. The opposite was observed with increasing numbers of acceptor,

donor, acceptor and donor, and hydrophobic points. The number of

matches is inversely proportional to the run time (see Supporting

Information S1: Table S18 for details). To find a compromise between

optimum run time and performance, we derived the following rules:

TABLE 7 Scoring scheme for an atom pair according to its pharmacophore similarity.

Acc/Don Acc Don Aro HyPhob Cα Pos/Don Neg/Acc

Acc/Don 1 0.6 0.6 0 0 0 0.6 0.6

Acc 1 0 0 0 0 0 0.8

Don 1 0 0 0 0.8 0

Aro 1 0.8 0 0 0

HyPhob 1 0 0 0

Cα 1 0 0

Pos/Don 1 0

Neg/Acc 1

Abbreviations: Acc/Don, hydrogen bond acceptor and donor; Acc, hydrogen bond acceptor; Don, hydrogen bond donor; Aro, atom is part of an aromatic
system; HyPhob, hydrophobic atom; Cα, alpha carbon atom; Pos/Don, positively charged hydrogen bond donor; Neg/Acc, negatively charged hydrogen
bond acceptor.

TABLE 8 Brief overview of the used data sets.

Data set name
Number of
similar pairs

Number of
dissimilar pairs Evaluation purpose

Structures with Identical

Sequences[14,18]
13,430 92,846 Influence of the binding site definition

NMR Structures[14,18] 7,729 100,512 Influence of the binding site flexibility

Decoy Structures Rational[14,18] 13,430 13,430 Differentiation of minor physicochemical changes

Decoy Structures Shape[14,18] 13,430 13,430 Differentiation of minor shape changes

Barelier[51] 19 43 Identification of unrelated binding site pairs with identical ligands

in similar environments

Kahraman[38] 1,320 8,680 Recovery of sites with identical ligands and cofactors

Successful Applications[14,18] 115 56,284 Recovery of known similar binding site pairs

ROCS Structures[18] 15,339 56,179 Recovery of similar sites with similar ligands in similar
conformations in sequentially unrelated site pairs

Optimization Structures 150 450 SiteMine's parameter optimization (subset of ROCS Structures)

Balanced Vertex[20] data set 338 338 Recovery of similar sites with ligands with similar binding affinities
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Filters must include at least one aromatic, anion, or cation point and two

hydrophobic points at maximum. The latter rule limits the maximum

number of hydrophobic points since these considerably contribute to

the run time costs compared to acceptor, donor, and acceptor and

donor points.

Using these rules, the remaining three parameters were optimized

in a brute‐force approach (Supporting Information S1: Table S19). The

results of this parameter optimization can be found in Supporting

Information S1: Table S20. We selected two parameter combinations

based on the AUC, EFs, and run time: Fast and Precise (Table 9).
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