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Abstract: Serial crystallography (SX) is a cutting-edge technique in structural biology, involving the
systematic collection of X-ray diffraction data from numerous randomly oriented microcrystals. To
extract comprehensive three-dimensional information about the studied system, SX utilises thousands
of measured diffraction patterns. As such, SX takes advantages of the properties of modern X-ray
sources, including Free Electron Lasers (FELs) and third and fourth generation synchrotrons, as well
as contemporary high-repetition-rate detectors. Efficient analysis of the extensive datasets generated
during SX experiments demands fast and effective algorithms. The FDIP library offers meticulously
optimised functions tailored for preprocessing data obtained in SX experiments. This encompasses
tasks such as background subtraction, identification and masking of parasitic streaks, elimination of
unwanted powder diffraction (e.g., from ice or salt crystals), and pinpointing useful Bragg peaks in
each diffraction pattern. The library is equipped with a user-friendly graphical interface for facile
parameter adjustment tailored to specific datasets. Compatible with popular SX processing software
like OnDA, Cheetah, CrystFEL, and Merge3D, the FDIP library enhances the capabilities of these
tools for streamlined and precise serial crystallography analyses.

Keywords: serial crystallography; masking artefacts; peak finding algorithm; real-time feedback

1. Introduction

In recent years, serial crystallography (SX) [1,2] has become an established technique
for the determination of protein structures with a particular application in the investigation
of small or radiation-sensitive crystals and for the study of fast or irreversible protein
dynamics [3–6]. This has been enabled by the development of new generation X-ray
sources such as X-ray Free Electron Lasers (FELs) and the third and fourth generation
synchrotron radiation facilities, which produce very bright and coherent X-ray beams,
combined with improvements in beamline design and optics, which increase flux density at
the sample and thereby decrease the exposure time required to obtain a measurable signal.

Many diffraction patterns are required for the 3D structure determination of a molecule
using SX because each crystal is typically exposed only once in a random orientation.
Fortunately, the development of modern X-ray detectors made it possible to collect data
at an average rate of several kHz [7] so that a full dataset can be acquired in just several
minutes [8]. At the same time, such a high data collection rate poses a challenge for data
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analysis, primarily when used for online feedback. Tools like OnDa [9] offer real-time data
analysis of X-ray diffraction experiments, providing investigators with rapid feedback on
so-called hit rates [10] and helping them make timely decisions regarding data collection
strategies for the current sample. However, the analysis routines must be highly efficient to
keep up with the mentioned high data rate.

Before processing the diffraction patterns measured during SX experiments, some pre-
processing has to be performed. This includes masking unwanted diffraction and unreliable
regions of the diffraction patterns as well as the determination of some features used for
further analysis (usually Bragg peaks). Such tasks have to be performed automatically
using highly optimised algorithms [11]. Precisely for this reason, the open-source library
FDIP was written.

In an SX experiment, the properties of the X-ray source, sample delivery, and detector
must all be compatible. Various sample delivery systems have been employed or investi-
gated for delivering micro- to nano-scale crystalline samples into the X-ray beam [12,13].
One class of methods generates a free jet of a liquid suspension of crystals [14,15] that flows
continuously across the X-ray beam, and a diffraction pattern is acquired at each X-ray
pulse or exposure, whether the beam intersects a crystal or not. A conceptually different
approach is to deposit crystals onto a solid supporting membrane, which is then raster
scanned in the X-ray beam to collect diffraction in a similarly random fashion [16]. The
liquid in the jet, on the substrate or in the crystal, cause radially symmetric background
noise. Moreover, the sharp edges of the liquid jets or features on the substrates may produce
artefacts in the diffraction image (see Figure 1). The presence of such unwanted diffraction
introduces a significant impact on data analysis, necessitating meticulous attention and
corrective measures.

Other artefacts, such as ice or salt rings (see the left plot in Figure 2), can also sig-
nificantly affect the final result of data processing. Conventional crystallography usually
excludes these artefacts by omitting the whole resolution ranges where the rings are ob-
served. However, the advantage of serial crystallography is that such artefacts may not be
present in every recorded diffraction pattern. So, the resolution ranges containing rings
must be excluded only for the patterns where the rings are detected and not for the patterns
without observable ice and salt diffraction. Thus, in the case of SX, the final dataset can be
complete and not influenced by the rings’ artefact.

The initial step of indexing measured diffraction patterns involves precisely determin-
ing the positions of the Bragg peaks. Many peak-finding algorithms rely on discerning these
peaks from the background, often leveraging the inherent radial symmetry to estimate back-
ground levels. This approach is exemplified in the peak f inder8 algorithm, as implemented
in Cheetah [10]. However, challenges arise when radial symmetry is disrupted, as seen in
scenarios such as the presence of shadows or an asymmetrical attenuator, as illustrated in
Figure 3. In such cases, a local background estimation becomes advantageous, and this
strategy is integrated into the peak f inder9 algorithm, a component of the FDIP library.

Peaks in the diffraction pattern not only originate from the crystal but many diffraction
artefacts, such as the streak from the jet (see Figure 4), may contain or resemble peaks or
rings (see Figure 2). To exclude these peaks from the crystal diffraction analysis, the region
of the artefacts has to be excluded from the peak search area by masking. This can be
performed automatically with the streakFinder and ringFinder algorithms. Both algorithms
rely on calculation of the radial profile for every diffraction pattern. That is why an efficient
algorithm for calculating the radial profile of a pattern was developed. The developed
algorithm takes special care to handle circles with small radii, containing only a few pixels.

Different functions of the FDIP have multiple parameters to tune for each collected SX
dataset. To adjust the parameters, a GUI was developed named FDIP_tweaker. This GUI
allows a user to load a set of patterns and, while modifying different parameters, observe
the performance of each applied filter in real time or as the results of the peak finding.
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(a)

(b) (c) (d)

Figure 1. Streaks observed in diffraction patterns from the same dataset. (a) The whole assembled
detector has a streak artefact. Other artefacts are the strong water ring and a shadow; (b) mid-size
vertical streak; (c) thin horizontal streak; and (d) thick vertical streak.

Figure 2. Example of a diffraction pattern without ringFinder mask on the (left side) and with
ringFinder mask on the (right side).
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Figure 3. Diffraction image with peaks found by peak f inder8 (red squares) and peak f inder9 (green
circles). The experiment setup contains a non-centred attenuator to prevent saturation at low Q. The
inverse attenuator scaling is applied to compensate for the effect of the attenuator. Due to detector
artefacts, the scaled part contains more noise than the unscaled part. This leads to wrong standard
deviation estimation in the peak f inder8 algorithm in some parts of the image since the background es-
timation is performed on a radial basis. The peak f inder9 algorithm does local background estimation,
and thus, does not suffer from this problem.
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Figure 4. Streak fluctuating at its ending. Huge streaks tend to fluctuate at their ends. For this reason,
some inertia had to be added to the streak-following algorithm.

2. Materials and Methods
2.1. Handling a Bad Pixel Mask

X-ray detectors commonly exhibit non-functional pixels called bad pixels. Additionally,
parasitic diffraction regions frequently arise, necessitating their exclusion from the analysis.
These designated areas are delineated within a mask, conventionally stored as an array
where each element corresponds to an individual pixel.

The good practice is to store the mask in the files according to community-accepted
metadata standards [17,18]. But internally, every software package can treat the mask
differently. Various software tools, such as Cheetah [10] and OnDA [9], utilise arrays
of bytes, while CrystFEL software [19] employs arrays of integers. Since elements from
the mask array are frequently accessed, optimising access efficiency is paramount. To
achieve this, we adopt a strategy of embedding the mask directly into the data by changing
the intensity of the pixels that have to be masked by some special value. This conserves
memory loads and minimises cache space usage, decreasing execution time.

Additionally, we explore the option of saving the mask as a sparse array, especially
suitable for masks with a small number of masked pixels. In this scenario, only the
coordinates of the masked pixels are stored, potentially accelerating the merging process.

2.2. Algorithm Descriptions

The following functions and programs of FDIP are described in detail:

• Radial background subtraction—a set of functions used to calculate radial background
for further subtraction on the pattern-by-pattern basis.

• StreakFinder—an algorithm to mask the radial streaks at the diffraction patterns.
• RingFinder—an algorithm to mask the sharp rings at the diffraction patterns. It also

works with just a set of strong Bragg peaks at a single radius (not just uninterrupted
rings).

• peak f inder9—an algorithm to find Bragg peaks in diffraction patterns, that is, using
local background estimation to determine the peaks’ location.

• FDIP_tweaker—a GUI that can be used for the optimisation of parameters for all the
algorithms mentioned above.

2.2.1. Radial Background Subtraction

The background in diffraction patterns typically arises from the scattering of X-rays
by air or the sample’s supporting medium. Consequently, this background is generally
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characterised by radial symmetry (after applying polarisation correction and taking care of
the shadows). Estimating and subtracting the radial background from the data per image
for subsequent analysis is often needed. All the radial background estimation functions
described here rely on the good knowledge of the detector geometry [20].

The crux of radial background subtraction lies in accurately estimating the background,
denoted as I(r), where r represents the radius. One straightforward approach involves
dividing the radius into equally sized bins and calculating an average value for each bin.
This approach has one obvious drawback: bins close to the centre of the diffraction pattern
(the position of the direct beam at the detector) contain just a few pixels. Therefore, the
error in estimating the average value might be high. One approach to overcome this issue
is pixel splitting, used in pyFAI [21], where the geometrical size of the pixel is used to
distribute the value of each pixel to different radial bins. We use a different approach to
address this issue: dynamically sized bins. The selection of bin sizes is critical: each bin
must encompass enough values to ensure a robust statistical estimate while covering a
minimum radius range. This approach is computationally efficient and works well for the
data where the background changes slowly with the radius (typical for SX).

We introduce the parameters minValuesPerBin and minBinWidth to achieve a suit-
able distribution. Starting from the closest pixel to the centre, the dynamic bin width
is set to the smallest possible value, limited by minBinWidth. The bin contains a min-
imum of minValuesPerBin pixels. To enhance the performance, not every pixel within
a bin contributes to the statistical estimation. If a bin surpasses the limit defined by
maxConsideredValuesPerBin, only maxConsideredValuesPerBin evenly distributed pix-
els are considered. The bins and their associated pixels are pre-computed at program
startup. These modifications of the standard radial average calculation considerably speed
up the calculation.

Following the allocation of data to the bins, the kth order statistic, representing the kth
smallest value within each bin, is computed. The parameter rank defines k on a scale from
0 to 1, proportional to the range from 0 to the number of considered values in the bin. For
instance, setting rank = 0.5 calculates the median, while rank = 0 and rank = 1 yield
the minimum and maximum values, respectively. This flexibility is crucial because opting
for the median might be inappropriate in scenarios dominated by extremely high or low
values, as exemplified in Figure 5 where streaks are prevalent.

Figure 5. Two examples of generating streak masks by the streakFinder algorithm on diffraction
patterns collected with pnCCD detectors during an experiment conducted at the Atomic Molecular
and Optical (AMO) beamline at LCLS in 2016.

In evaluating I(r), the values within the bins undergo linear interpolation or extrapola-
tion. Subsequently, the background subtraction entails assessing I(r) at the corresponding
radius for each pixel and deducting this value from the pixel intensity.
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2.2.2. Streak Masking

Streaks are defined as artefacts pointing in the radial direction having an overall
decreasing intensity with the increasing radius. Streaks are generally very noisy, so the
intensity decrease is not monotonic. Figure 1 shows sample diffraction patterns with a
streak artefact.

The StreakFinder algorithm searches for streak-like features near the detector centre,
using the pre-set of pixels defined by streakStartPixelCandidates (usually pixels close
to the centre of detector). After a streak is identified, it is traced to its end in a radially
increasing direction. Having found the streak’s end, all pixels along the streak (lying in a
radial direction between the beam centre and the streak end) are masked.

To identify the streak a custom non-linear filter is applied, which amplifies the streak
pixels and suppresses the rest, in particular, the Bragg peaks—see Figure 6a,b. This filter
works in the following way: lines of pixels in the radial direction are replaced by the
average of the pixels’ intensity values, which are smaller than the median of all intensity
values of that line. In this way, the filter gets rid of all Bragg peaks with the size smaller
than the half length of the lines. At the same time the streaks are preserved if they have
a length comparable to that of the lines—Figure 6b. The filter is parameterised via the
parameters filterLength and filterStep, where filterLength defines how many pixels
will be taken into account for every filter value and filterStep defines how far the
pixels are separated from each other. The line segment’s length can be computed as
(filterLength - 1) * filterStep.

The application of the filter is very computationally expensive. Thus, instead of ap-
plying the filter to the entire detector, a lazy estimation scheme is used, i.e., a filtered
value is calculated only when requested. To further boost the execution speed, all posi-
tions of the pixels (the lines) needed to compute the filtered values are pre-computed at
program startup.

Finding the end of a streak is not trivial since the intensities of the pixels along the
streak tend to fluctuate, especially at the end of the streak (see Figure 4). This is solved
by adding inertia to the streak tracing. Only when hitting several consecutive non-streak
pixels, the end of a streak is defined. The exact number of consecutive non-streak pixels are
defined in the parameter streakElongationMinStepsCount and a number proportional
to the radius. The latter is parameterised via streakElongationRadiusFactor. Such
an approach is justified by the fact that long streaks fluctuate significantly more than
short ones.

To estimate the statistics of the background signal, the pixels that do not belong to
the streaks are used. To find such pixels, knowledge about the streak location is needed.
Typically, at one diffraction pattern, the streaks are oriented in only one direction. Defining
several rectangular regions evenly distributed at a radius where streaks usually occur has
the effect that some of these regions will be located in a streak-free environment with a
sufficiently high probability. The parameter backgroundEstimationRegions defines the
rectangular background estimation regions. Due to the increased likelihood of a region
being hit by a streak, the statistics from the region with the second smallest mean are
taken as the actual background estimation. A pixel is recognised as a streak pixel if
the filter outcome is sigmaFactor times the standard deviation higher than the mean of
the background.

After a found streak is masked, all the neighbouring pixels are also masked. The size
of the additionally masked region is defined by the parameter streakPixelMaskRadius.
Figure 6c shows an example of masked streaks. All pixels that must be masked for each
possible streak end are pre-computed at program startup to reduce this time.

The streakFinder algorithm has been successfully used in [22] as well as for many other
beamtimes, especially aimed for merging the measured intensities into the 3D reciprocal
space [23,24].
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(a)

(b)

(c)

Figure 6. Diffraction patterns with streak artefacts used to visualise the algorithm’s performance.
(a) Two complex cases are selected: a weak (left) and a thin (right) streak. (b) Diffraction patterns
from (a) filtered with the custom non-linear radial filter described in Section 2.2.2. The Bragg peaks
are suppressed in the filtered image, and the streak artefacts are enhanced. (c) Diffraction patterns
from (a) masked by the streakFinder algorithm. The mask is indicated by black pixels surrounding
the masked area. Both the weak streak and the thin streak are correctly masked. Despite the presence
of many Bragg peaks, no false positives occurred.

2.2.3. Ring Masking

Ring artefacts do not always cover all angles but can have a predominant angle range
(see the left plot in Figure 2). A ring artefact usually appears due to undesired diffraction
from some crystalline powder (ice, salt, concentrated SX sample, etc.)—a so-called Debye–
Scherrer ring. Such a ring is generally several pixels wide and contains pixels with high
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values. The radial average, computed with a bin width of 1 pixel, is employed to identify
ring artefacts. Although utilising the kth order statistic might yield superior results at this
stage, we have opted for the radial average due to its significantly lower computational
cost than the kth order statistic. Post-processing operations are applied to address noise in
the radial average. These operations are specifically designed for radial bins, making them
computationally inexpensive.

The idea behind the ring masking is that significantly well-observable rings will be
present in a graph of radial averages as rather sharp peaks. These peaks are identified by
comparing the actual radial averages with a version smoothed by a median filter. This
method will also work if the observable parasitic diffraction does not form uninterrupted
rings but is present in several large diffraction spots observed at the same radius.

The first operation applied to the radial bins is a median filter with a length defined
by the parameter smoothWindowRadius—this operation produces a smooth radial curve.
The median filtered bins m are subtracted from the actual radial bins b and normalised by
b, leading to the relative difference d = b−m

b . For further noise reduction, d′ is constructed
from d by filtering it with a median filter of width 3. This excludes cases where a strong
Bragg peak at low Q (close to the direct beam position at the detector) can significantly influ-
ence the radial average. Bins in d′ exceeding the parameter relaltiveRingDiff are marked
as ring radii. Since rings can have smooth borders, the program allows for the widening of
the found rings by the parameter ringDilationRadius. The parameters minRingRadius
and maxRingRadius define the the radial shell over which to search for rings.

2.2.4. Peak Finding

Bragg peaks manifest as relatively small, high-intensity regions on the detector, often
characterised by a Gaussian-shaped intensity profile. The diameter of a Bragg peak can
vary based on the experiment setup and crystal size, ranging from as small as one pixel to
significantly larger, spanning 16 or more connected pixels. A standard and efficient method
for identifying Bragg peaks in diffraction image analysis involves signal and background
estimation. This method identifies a peak if the signal-to-noise ratio surpasses a specified
threshold. Notably, this approach has demonstrated speed and utility, being employed
in programs like Cheetah [10], CrystFEL [19], OnDA [9], and XDS [25]. Hence, we adopt
this established approach, emphasising the combination of robust signal and background
estimation to achieve minimal execution times.

A straightforward approach to background estimation involves defining constant
background statistics. While this method is the quickest, it may fall short in scenarios where
backgrounds vary. In SX diffraction images, the background often exhibits radial symmetry,
making it meaningful to estimate the background statistics depending on the radius. This
fast method can provide excellent statistics since many data points are available to estimate
every value. Notably, the widely used peak f inder8 algorithm in Cheetah software adopts
this radial approach [10].

Alternatively, a local background estimation can yield superior results for diffraction
images lacking a radially symmetric background. Radial symmetry may be disrupted
by diverse characteristics in different detector panels, parasitic shadows from various
beamline components or the sample holder, other sources of parasitic scattering, or a
special experimental design that disrupts the radial symmetry. An example of the latter is
using an off-centred attenuator, as illustrated in Figure 3.

While local background estimation might be computationally intensive, it is the most
versatile method. In the case of the peak f inder9 algorithm, we chose the local, instead of
radial, background estimation to avoid issues due to the shadows and unwanted diffraction.

The fundamental concept behind the peak f inder9 algorithm remains consistent with
that of peak f inder8. Noise is presumed as uncorrelated and Gaussian distributed, allowing
for a straightforward description of a confidence interval using the mean and standard de-
viation. Notable distinctions from peak f inder8 include advancements in local background
estimation and additional options for fine adjustment.
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Whether a pixel is considered as a peak pixel relies on analysing its local square-
shaped neighbourhood, as defined by the parameter windowRadius. This neighbourhood
is subdivided into three distinct regions: the direct eight neighbours of the pixel, the border
pixels, and the remaining interior pixels (refer to Figure 7 for a visual representation).

Each pixel is subjected to a series of filter conditions designed to filter out most
non-peak pixels in the initial stages with minimal computational effort:

1. Ix,y > IBorder + c1
2. Ix,y > Ix±1,y±1

3. Ix,y > µ + c2 · σ
4. ∑Ia,b>µ+c3·σ Ia,b > µ + c4 · σ

Here, Ix,y stands for the intensity of the pixel at position (x/y), µ and σ are the mean
and standard deviation of the border pixels, and c1 to c4 are constants for the adjustment of
the accuracy of the algorithm.

Border Border Border Border Border Border Border

Border Border

Border Border

Border Border

Border Border

Border Border

Border Border Border Border Border Border Border

IX,Y

Figure 7. Visualisation of the peak f inder9 parameters. The (left figure) demonstrates the pixel
neighbourhood of radius equal to 3 for a pixel. The pixel itself, as well as its borders and direct
neighbours, are accentuated. The (right figure) explains three non-trivial parameters (c2, c3, c4) that
allow for the detection of weak peaks while still being noise resistant. The left part of the figure
illustrates a peak. The right part of the figure illustrates the sum of three peak pixels. c2 defines the
threshold that the intensity of the strongest pixel in the peak has to pass. c3 defines the threshold
that the intensities of all pixels in the peak have to pass. c4 defines the threshold that the sum of all
intensities of the peak pixels have to pass.

The first condition trades speed for accuracy. Peak pixels should have higher intensity than
non-peak pixels. c1 sets a constant offset that the peak pixel has to surpass each border pixel to
be recognised as a peak pixel. c1 is defined by minimumPeakOversizeOverNeighbours. For
performance reasons, the implementation does not check all border pixels, but only three
on each side of the border, i.e., 12 in total. The checking process is structured to prioritise
the pixels most likely present in the cache memory, ensuring that they are examined first to
minimise the overall memory load.

The second condition ensures that the pixel has higher intensity compared to its direct
neighbours. This way, only the most intense pixel of a peak passes the condition. Without
this condition, multiple pixels of a peak could be identified as valid peaks, and there would
be a need for an additional step that selects the largest of the pixels as the peak centre.

The third condition, shared with peak f inder8, assumes a Gaussian distribution, es-
tablishing a confidence interval based on statistics estimated from the border pixels. The
parameter sigmaFactorBiggestPixel defines the threshold c2.

For the last condition, the peak is integrated by summing up all pixels within the
region in the confidence interval defined by c3, i.e., the ones that are big enough to count as
peak pixels. Only integrated peaks that are strong enough to be in the confidence interval
of c4 pass the last condition. A meaningful setting of the constants can be constrained by
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c3 ≤ c2 ≤ c4. This way, weak pixels belonging to a peak are respected while still robust
to noise. For even more robustness, only connected pixels are respected. The parameters
defining c3 and c4 are sigmaFactorPeakPixel and sigmaFactorWholePeak, respectively.

A visualisation of the three parameters of c2 to c4 can be found in Figure 7.

2.3. Parameter Tweaker

Tweaking parameters of the described functions for different datasets can be cum-
bersome if the user does not have a tool for fast feedback. We created the graphical
user interface (GUI) for tweaking parameters (visit the repository of FDIP_tweaker https:
//gitlab.desy.de/oleksandr.yefanov/fdip_tweaker, accessed on 31 January 2024). It is a
Python-based GUI that uses C++ code of the FDIP library.

The FDIP_tweaker executes the algorithms in the following order:

• peak f inder8;
• ringFinder;
• radialBackgroundSubtraction;
• streakFinder;
• peak f inder9

The GUI of the FDIP_tweaker is presented in Figure 8. The execution parameters
are specified in an accuracyConstants.ini file. Only algorithms defined in the .ini file are
executed and applied to the loaded diffraction image.

The graphical user interface (GUI) facilitates the navigation through images within a
dataset, displaying mask and image data and the identified peaks from the peak f inder8
and peak f inder9 algorithms. An update button within the GUI allows users to seamlessly
modify parameters in the accuracyConstants.ini file without exiting the interface.

Figure 8. The screenshot of the FDIP_tweaker program’s graphical user interface (GUI) employed
the FDIP library. Here, red squares represent the result of applying peak f inder8, and green circles—
peak f inder9.

3. Results

The core concept behind the FDIP library was to create functions tailored for efficient
and reliable processing of serial crystallography (SX) data. These functions were devel-
oped to meet the challenges and address specific tasks observed during SX experiments
conducted at various facilities. Each function underwent rigorous testing with real datasets
to ensure robust performance across diverse scenarios.

https://gitlab.desy.de/oleksandr.yefanov/fdip_tweaker
https://gitlab.desy.de/oleksandr.yefanov/fdip_tweaker
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This chapter presents the outcomes of applying the developed functions to real data,
showcasing their effectiveness. Additionally, selected FDIP functions are compared with
analogous functions from other packages, such as the comparison between peak f inder9
from FDIP and peak f inder8 from Cheetah.

3.1. Execution Time Measurement

All execution time measurements are conducted on a CPU with an E5-2640 v3 proces-
sor operating at a clock speed of 2.60 GHz. It is important to note that the data is presumed
to be loaded and fully pre-processed to enable the algorithm to execute. While all the
algorithms presented here were optimised to minimise adverse effects on concurrently
executed threads, the evaluation focuses explicitly on single-thread performance. This
choice is deliberate to avoid the impact by the parallel execution of different algorithms.

3.2. Radial Background Subtraction

To assess the effectiveness of the radial background subtraction algorithm presented
in this study, we conduct a comparative analysis against the widely adopted radial back-
ground subtraction algorithm found in the Cheetah software [10]. We focus the evaluation
on the most critical parts of the radial background subtraction: parts of the image with few
pixels available for statistics estimation, streak artefacts, and execution time.

We compared the background subtraction function in our provided method (FDIP)
and the corresponding function utilised in Cheetah. This evaluation was performed on two
datasets, each comprising 2000 patterns, captured with different detector sizes: PILATUS
6M (collected during SARS-CoV-2 research at the P11 beamline of the Petra III synchrotron
in 2020 [26]) and Eiger 16M (from unpublished research at P14 in 2019). As depicted in
Table 1, the key finding is that the FDIP background subtraction function is approximately
80 times faster than Cheetah for the 6M detector size. For the 16M detector size, it is about
99 times faster. This improvement is due to the pre-calculation of the radial bins and their
corresponding sparse selection of contributing pixels, which has to be performed once for
all diffraction patterns. It takes about 1 s for Pilatus 6M and almost 4 s for the Eiger 16M.

Table 1. The speed comparison of background subtraction functions in FDIP (Fast Diffraction Image
Processing) and Cheetah [10].

Eiger 16M PILATUS 6M

FDIP 0.05 s 0.02 s

Cheetah 4.96 s 1.63 s

3.3. Streak Masking

The pre-computation time required for the efficient execution of the streakFinder is
notably influenced by the detector size and the parameter streakStartPixelCandidates.
For the CSPAD detector [27], this pre-computation typically takes around 4 s. However,
the pre-computation time can extend to 1 min or more for detectors featuring larger ASICs.

The execution time of the streak finder is predominantly contingent on the presence of
a streak. On the CSPAD detector [27], in the absence of a streak, the execution time is less
than one millisecond. For patterns containing small streaks, the execution time ranges from
1 to 2 ms, while for larger streaks, it reaches approximately five milliseconds. In setups
where a streak can cover half of the detector, the execution time may be higher. Despite
its inherent complexity, it is noteworthy that the streak-finding algorithm constitutes an
insignificant portion of the overall execution time in the entire data processing pipeline.

To assess the performance of the streakFinder algorithm, we utilised a dataset from
an experiment conducted at the Atomic Molecular and Optical (AMO) beamline at LCLS
in 2016. The liquid jet was used as a sample delivery method, generating streaks of high
intensity when the beam hit the wall of the jet. The dataset was measured with pnCCD
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detectors, capturing soft X-rays and exhibiting extensive streaks. Visual comparisons of
patterns before and after applying the streakFinder algorithm are presented in Figure 5.

3.4. Ring Masking

The ringFinder algorithm underwent testing on datasets for two samples, each com-
prising 2000 patterns, collected during SARS-CoV-2 research at the P11 beamline, PETRA
III [28], with a Pilatus 6M detector (refer to Figure 2). The evaluation involved visual
comparisons and calculations of such figures of merits for data quality assessment as CC*
and Rsplit, respectively (see Figure 9)—the way how those metrics are calculated can be
found in [19,29,30]. CC* ranges from 0 to 1, with values closer to 1 indicating a better fit
between the observed and calculated structure factors. Rsplit is an analogue of Rmerge, used
in conventional crystallography: a lower Rsplit value indicates better agreement between
two halves of the datasets, and thus, higher precision.

3.5. Peak Finding

The peak f inder9 algorithm is based on the widely used peak f inder8 algorithm. The
differences are the local background estimation in peak f inder9 instead of the radial back-
ground used in peak f inder8. This makes the algorithm more robust to different obstacles
often observed in diffraction patterns. Since the evaluation of the peak finding of weak
peaks (i.e., border cases, where the option of having a more flexible threshold gives a bene-
fit) is hard to quantify and relies heavily on parameter tweaking, we focus the evaluation
on the local background estimation and the execution time.

Figure 9. Comparison of CC* and Rsplit metrics calculated for the datasets with and without apply-
ing ringFinder mask for two samples collected during SARS-CoV-2 research conducted at the P11
beamline, PETRA III [28]. Red lines—before the application of ringFinder, and green—after.

In cases of a radially symmetric background in a diffraction pattern, the performance
of radial background estimation and local background estimation are very similar. Still,
cases exist where the experiment setup imposes a highly non-symmetric background. One
such case can be seen in Figure 3, where a non-centred attenuator was used to avoid
saturation at low Q while still recording both the low and high Q diffraction. The part of
the detector under the attenuator was scaled to compensate for the attenuation effect. Due
to the detector behaviour, the scaled part contains more noise than the unscaled part. This
leads to an incorrect estimate of the standard deviation in the peak f inder8 algorithm in
some parts of the image since the background estimation is performed on a radial basis.
The peak f inder9 algorithm employs local background estimation, and thus, does not suffer
from this problem.

The execution time of peak f inder9 depends on the number of peaks found, but the
variation is insignificant with the usual numbers of peaks found on real diffraction images.
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The most significant impact on the execution time is the parameter c1 (see Section 2.2.4).
Measurements show that proper tweaking of this parameter decreases the execution time
by a factor of 3. On a typical diffraction image on the CSPAD detector [27], the mean
execution time of peak f inder9 with a properly tweaked parameter c1 is about 15 ms, while
the mean execution time of peak f inder8 is around 80 ms. Such an improvement in the
execution speed is mostly due to the better code optimisation of the peak f inder9 compared
to the peak f inder8. The faster version of peak f inder8 is now used in the recent versions of
CrystFEL (versions 0.10.X).

The peak f inder9 algorithm achieves significantly shorter execution times while using
local background estimation and allows for finer settings for peak characterisation.

4. Discussion

Serial crystallography requires the acquisition of numerous diffraction snapshots to
obtain 3D structural information on the studied protein. Fortunately, modern X-ray sources
and detectors allow for data acquisition at very high rates—up to several kHz. This means
that the measurement of each sample in SX can be performed within minutes [8]. However,
such a high acquisition rate often results in a vast volume of collected data, making
it essential to develop efficient data processing algorithms and ready-to-use libraries.
This paper presents a set of functions that can be used for the efficient pre-processing of
diffraction patterns needed for further data analysis.

During any diffraction experiment, the recorded signal (diffraction pattern) may
contain some parasitic effects: shadows and undesired scattering from, for example, ice
crystals or the sample-supporting medium. One has to mask shadows, bad regions, and
’misbehaving pixels’ of the detector (like hot pixels) because they could cause problems at
later stages of data processing. Different sample delivery methods can affect the diffraction
pattern: for example, liquid jets can cause artefacts like streaks, which must be removed
before further data processing steps. Another example of the undesired artefact is ice or salt
diffraction, which results in rings or strong peaks in the diffraction image. Such undesired
diffraction has to be masked to avoid its influence on the data processing results.

The next step after masking the undesired artefacts at the diffraction pattern is the
search of the Bragg peaks (peakfinding). Most peakfinder algorithms estimate the back-
ground in each diffraction pattern and identify pixels that significantly exceed it. This
process is exemplified in software tools such as Cheetah [10], CrystFEL [19], OnDA [9],
XDS [25], and others. The developed peak f inder9 algorithm performs local background
estimation, yielding superior results for diffraction images lacking a radially symmetric
background. The benefits of peak f inder9 are obvious in the cases when various factors,
such as variation in the response of different panels of the detector or parasitic shadows at
the detector, compromise the radial symmetry of the diffraction pattern.

Every function in the FDIP library has multiple parameters to make the function
customisable. The drawback is the need to tune the parameters for each dataset. To
simplify this process, the GUI called FDIP_tweaker was developed as a part of the FDIP
package. In the future, we plan to automate the tuning of the different parameters using
machine learning. Among future plans is the integration of some fast indexing algorithm—
for example, the one developed for GPU [31].

The FDIP library functions were developed for processing challenging datasets mea-
sured at different facilities. All the functions were successfully applied to the real data,
improving the results of data processing. Some examples are presented in this paper, but
even more examples will follow: FDIP functions made it possible to process some datasets
that could not be processed using standard SX tools. peak f inder9 can be used in CrystFEL
suite as an optional dependency. Also, the FDIP functions are being integrated into the
automatic data processing pipeline of the P09 beamline (High-throughput Pharmaceutical
X-ray screening) at the Petra III synchrotron.

The FDIP library can be used not only for processing SX data, but for any diffraction
data measured in different experiments. For example, some functions can be used in
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powder diffraction [32], for data collected using x-rays at high pressures [33,34], or even
for the diffraction data collected with electrons. In general, for the background estimation
or for finding diffraction peaks and rings at two-dimensional diffraction patterns, the use
of the FDIP library is well justified due to its flexibility and well-optimised code.
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