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Accelerator physics relies on numerical algorithms to solve optimization problems in online ac-
celerator control and tasks such as experimental design and model calibration in simulations. The
effectiveness of optimization algorithms in discovering ideal solutions for complex challenges with
limited resources often determines the problem complexity these methods can address. The ac-
celerator physics community has recognized the advantages of Bayesian optimization algorithms,
which leverage statistical surrogate models of objective functions to effectively address complex
optimization challenges, especially in the presence of noise during accelerator operation and in
resource-intensive physics simulations. In this review article, we offer a conceptual overview of
applying Bayesian optimization techniques towards solving optimization problems in accelerator
physics. We begin by providing a straightforward explanation of the essential components that
make up Bayesian optimization techniques. We then give an overview of current and previous work
applying and modifying these techniques to solve accelerator physics challenges. Finally, we explore
practical implementation strategies for Bayesian optimization algorithms to maximize their per-
formance, enabling users to effectively address complex optimization challenges in real-time beam
control and accelerator design.

I. INTRODUCTION

Future accelerator-based experiments serving the high-
energy physics, nuclear physics, and photon science com-
munities will require a considerable increase in the capa-
bilities of accelerator facilities to achieve the research as-
pirations of the next decade [1]. Higher energy and higher
brightness particle beams with more stringent require-
ments on reproducibility will unavoidably require com-
plex accelerator operation stemming from an increase of
nonlinear phenomena, stringent beam parameter require-
ments, machine protection limits, and the varied needs
of different user communities. Additionally, accelerator
scientists designing future state-of-the-art accelerator fa-
cilities will need to explore and configure combinations
of increasingly nonlinear and specialized accelerator el-
ements to reach accelerator design goals, all while re-
specting practical constraints and minimizing construc-
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tion costs.

Central to both of these challenges is the need to op-
timize a set of free parameters to attain a predefined
objective. Examples of this include, varying accelerator
control parameters during operations to maximize per-
formance (online tuning/optimization), identifying opti-
mal parameters during the accelerator design process (of-
fline simulated optimization), and matching simulated
beam dynamics to experimental measurements (model
calibration). Advancements in optimization algorithms
enable us to tackle more challenging optimization prob-
lems (ones with more free parameters or more complex
behaviors), which in turn, improves the performance and
capabilities of accelerators.

Numerical optimization algorithms have long been
used to address these challenges, but often suffer from
slow convergence to optimal parameter sets, are unsta-
ble in noisy environments, and can get trapped in lo-
cal extrema, making them difficult to apply in practice
while limiting the complexity of optimization tasks that
can be addressed. Recently, a particular class of algo-
rithms known as Bayesian optimization (BO) [2–4] has
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gained popularity inside the accelerator field as an effi-
cient approach for solving both online and offline opti-
mization problems. These algorithms’ inherent flexibil-
ity, low initialization effort, fast convergence, and robust-
ness to noisy environments make them particularly useful
for accelerator physics applications. Multiple groups in-
side the accelerator physics community have investigated
the advantages and disadvantages of these algorithms for
solving various accelerator physics problems. Further-
more, accelerator physics-specific modifications of basic
BO components have been developed to leverage beam
physics information, tailor optimization to maintain ma-
chine stability, and take advantage of high performance
computational clusters. With these developments, the
study of BO techniques in the context of accelerator
physics has matured to the point that these techniques
are usable in regular accelerator operations and as a gen-
eral high performance optimization tool in simulation.
This review article aims to inform and facilitate the

wider use of BO techniques in accelerator physics by pro-
viding an easily accessible guide and reference for this
class of optimization algorithms. We begin with a dis-
cussion of the optimization challenges faced by the ac-
celerator physics community in regards to both online
control of accelerator facilities and offline optimization
of simulations for beam dynamics and equipment design,
which motivates the use of BO algorithms. We then dis-
cuss basic and advanced approaches to the principal com-
ponents of BO algorithms: the Gaussian-process surro-
gate model most commonly used in BO; the definition
of BO acquisition functions; and how the acquisition
function is maximized to choose the next set of mea-
surements. Throughout we highlight how to incorporate
beam physics information into BO algorithms in order to
improve optimization performance. Finally, we conclude
with a discussion that places BO in the context of other
optimization algorithms, describes best-practices for ap-
plying BO algorithms to solving optimization challenges,
and future directions for research in this area.

II. BACKGROUND AND MOTIVATION

Optimization algorithms aim to solve the general prob-
lem

x
∗ =argmax f(x) (1)

s.t. ci(x) ≤ 0 ∀i ∈ [1, . . . ,m] (2)

In the above formulation, Equation 1 represents the ob-
jective function, wherein we seek a parameter set x∗ that
optimizes the function f(x) subject to the m constraints
specified in Equation 2. These constraints may be bounds
on the parameter set x, or observables, such as safety and
performance requirements. The formulation can be triv-
ially transformed into a minimization problem by negat-
ing the objective function.

Iterative optimization algorithms are a popular choice
used to find solutions to Eq. 1. Given an initial point
in parameter space, the algorithm generates a point or
set of points which are evaluated using the objective and
constraining functions. Results from the evaluations are
then passed back to the algorithm to generate the next
point(s) to be evaluated. The final solution is determined
once the algorithm reaches a termination condition, for
example, a fixed number of iterations or a satisfactory
objective function value. Selecting the right algorithm
for a given optimization task is critical to success, as it
directly influences the quality of the final solution, the
relative speed (number of iterations) needed to identify
the optimum parameter set, and resource efficiency of the
applied routine (e.g., required beam time, computational
resources).
The difficulty of finding a solution of a generic opti-

mization problem is influenced by the number of opti-
mization parameters and the complexity of the objective
and constraining functions. The so-called “curse of di-
mensionality” describes the exponential growth of possi-
ble parameter states with increasing parameter space di-
mensionality. As a result, optimization algorithms that
perform well when optimizing a small number of param-
eters (such as the fitting of three beam matrix elements
to quadrupole scan data) can fail to find a solution in
a reasonable amount of time when applied to higher di-
mensional problems (such as tuning the parameters of an
entire accelerator beamline).
The complexity of the objective functions also plays a

role in the performance of optimization algorithms. Ob-
jective functions that are not convex have a number of lo-
cal extrema, only one of which is the global optimum. De-
pending on their construction, optimization algorithms
can converge to a local extremum near the initial start-
ing parameter set, so-called local optimization. Global

optimization algorithms on the other hand, are designed
to escape local extrema and explore the entire parame-
ter space in search of the global optimum. For complex
objective functions, finding the global optimum is often
much more challenging [5].

A. Optimization Challenges in Accelerator Physics

In addition to these general optimization challenges,
online optimization of accelerators and offline optimiza-
tion of physics simulations adds further, unique compli-
cations that need to be considered when selecting an ideal
optimization algorithm.

1. Online Accelerator Control

Accelerator measurements are also often subject to
aleatoric (random noise) or epistemic (systematic) uncer-
tainties. Random noise in accelerators makes it difficult
for iterative algorithms to maintain stability throughout
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(2) the cost of evaluating objectives (and potentially con-
straints), (3) the cost of decision-making inside the opti-
mization algorithm (i.e. selecting the next point in pa-
rameter space to evaluate), and (4) the initialization cost
associated with setting up the optimization algorithm.
Choosing the correct algorithm for solving an opti-

mization problem requires balancing the trade-offs be-
tween the different costs associated with performing op-
timization. To observe these effects we consider a toy
model of the total cost of solving a single optimization
problem. We start by assuming that the steps of per-
forming iterative optimization are done sequentially with
a single evaluation of the objective function at a time.
We also assume that an optimization algorithm A, takes
N(A) steps to find a solution that meets a predefined op-
timization goal. Evaluating the objective and constraint
functions has a constant cost E and the algorithm makes
decisions (chooses the next point to observe) with a con-
stant cost D(A). Finally, preparing the algorithm to per-
form optimization has a one-time initialization cost I(A).
With these assumptions, the total cost T of reaching the
predefined optimization goal is given by

T = N(A)[E +D(A)] + I(A). (3)

From this formula we can observe how making trade-
offs between different aspects of performing optimization
can be leveraged to reduce the overall cost of finding an
optimal solution. For example, if the evaluation cost is
large, we can select more “sample efficient” optimization
algorithms that incur a larger decision making cost in
order to reduce the number of iterations needed to find
a solution. On the other hand, if the evaluation cost
is relatively low, an inexpensive optimization algorithm
can be used to reduce overall cost, even if that means
an increase in the number of iterations needed to find a
solution. However, if poor decision making can for in-
stance, lead to safety violations or negatively effect ma-
chine stability, it makes sense to use additional resources
to make good decisions, regardless of the evaluation cost.
Finally, if more initialization effort leads to faster con-
vergence speed then it makes sense to accept this initial-
ization cost, especially in contexts where optimization of
the same problem is repeated multiple times or if the
evaluation costs are large. A careful consideration of all
of these factors will minimize the total cost of solving a
given optimization problem.

C. Bayesian Optimization

Bayesian optimization (BO) is an iterative, model-
based optimization algorithm that is particularly
well-suited for sample-efficient optimization of noisy,
expensive-to-evaluate functions. In general, BO consists
of three steps, as illustrated in Figure 3 and is summa-
rized in Algorithm 1. The first is the construction of
a statistical surrogate model of the objective and con-
straining functions based on measured data, often using

Gaussian process (GP) modeling [4]. The second step
is the definition of an acquisition function based on the
GP model, which defines the relative “value” of potential
future measurements in input space in order to achieve
optimization goals. The final step solves for the point
(or set of points) that maximize the acquisition func-
tion and are thus predicted to provide the most value
towards optimization goals. Points that are selected in
the last step are then passed to the objective and con-
straint function(s) to be evaluated; the results of which
are then passed back to the algorithm to be incorporated
into the model data set. This process repeats until an
optimization criteria is met.
An additional benefit of BO is that the model created

and trained during the optimization process can also be
used outside of the context of optimization. For exam-
ple, the model can provide information about objective
function sensitivities to accelerator parameters, be inte-
grated as a fast-executing surrogate into other models of
the accelerator, or be used to identify unknown param-
eters of the beamline, such as element misalignments or
hysteresis effects. Finally, as a result of the BO sam-
pling process, these models are often most accurate in
regions of parameter space that are of the highest in-
terest, namely regions of parameter space that are near
optimal parameter sets.

D. Demonstrations of BO in Accelerator Physics

Bayesian optimization has already been used to solve
a wide variety of optimization problems in accelerator
physics. These demonstrations include:

• Single-objective, online and offline optimization of
accelerator parameters, e.g. of magnetic optics, RF
parameters, in conventional linear [7–13] and circu-
lar [14, 15] accelerators, as well as novel accelerator
concepts [16–21].

• Time-dependent optimization to maintain optimal
tuning configurations in problems subject to drift
[9, 22, 23] (Sec. III C 4).

• Online optimization that leverages prior
physics knowledge or simulations [8, 24]
(Sec. III C 1, III C 2).

• Online optimization subject to repeatability errors
(hysteresis, motor backlash) [25] (Sec. III C 6).

• Autonomous characterization of objective func-
tions in experiment [26] (Sec. IVB1).

• Optimization with unknown constraints [27–29]
(Sec. IVB2).

• Multi-objective optimization to discover ideal
trade-offs between competing objectives in experi-
ments [20, 30] and simulations [31–33] (Sec. IVB3).
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term (which ignores any priors on the parameters)

θ∗MLE = argmax
θ

p(D|θ). (6)

If the likelihood takes the form of a Normal distribution,
this is equivalent to performing mean squared error curve
fitting.
The second analysis method is maximum a posteriori

(MAP), which also determines point-like values of the
parameters θ, this time by maximizing a quantity that is
the mode of the posterior distribution

θ∗MAP = argmax
θ

p(D|θ)p(θ). (7)

which incorporates the prior without having to compute
the full posterior probability distribution. Finally, we
can also determine an approximate posterior probability
distribution of θ using variational inference, which uses
optimization to fit a computationally tractable distribu-
tion to values of the exact posterior distribution in order
to minimize the evidence lower bound (ELBO) in terms
of the Kullback-Leibler divergence (see [37] for details).
Depending on the application, any of these three meth-
ods can be used to estimate posterior parameter values
using Bayesian inference, albeit with varying computa-
tional costs required to solve the respective optimization
problems associated with performing each type of infer-
ence.

B. Gaussian Process Modeling Basics

Gaussian process models [4] are non-parametric mod-
els that use Bayes’ rule to describe unknown functions
by leveraging high level functional behavior to establish
correlations between function values at points in objec-
tive space. As opposed to parametric models, which use
Bayes’ rule to identify probability distributions of model
parameters, GP models use Bayes’ rule to predict prob-
ability distributions of function values at arbitrary loca-
tions in parameter space using measured data.
We start by assuming that the output y of a function

f at input parameter x is given by

y = f(x) + ǫ (8)

where corrupting noise is given by ǫ ∼ N (0, σ2
ǫ ). A GP

model is a distribution of possible functions

f(x) ∼ GP(m(x), k(x,x′)) (9)

where m(x) = E[f(x)] is referred to as the prior mean

function, and k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))]
is commonly called the covariance kernel function. Fi-
nally, the probability distribution of the observable y is
given by our assumed likelihood, which in this case is a
Normal distribution p(y|f(x)) = N (f(x), σ2

ǫ ). To sim-
plify calculations the prior mean function is often spec-
ified to be m(x) = 0, although a fixed non-zero prior
mean can also be learned from the data.

Given a set of n collected data samples D = {X,y},
we can make predictions for the probability distribution
of the function value evaluated at n∗ test points using
Bayesian inference. The resulting posterior distribution
p(y∗|X∗,D) = N (µ∗,σ

2
∗
) with the mean and variance

given by [38]

µ∗ = K(X∗, X)[K(X,X) + σ2
ǫ I]

−1
y (10)

σ
2
∗
= K(X∗, X∗)− (11)

K(X∗, X)[K(X,X) + σ2
ǫ I]

−1K(X∗, X)T

where K(X,X) is an n × n covariance matrix between
each data set element locations, K(X∗, X) is an n∗ ×
n covariance matrix between test points and data set
element locations, K(X∗, X∗) is an n∗ × n∗ covariance
matrix between test point locations, and I is the identity
matrix.

An example of GP predictions is shown in Fig. 5, as-
suming that the noise parameter σǫ = 0. Figure 5(a)
shows the prior mean and confidence bounds (equal to
2σ above and below the mean) of the observable y for
a set of 100 test points in the domain x∗ ∈ [0, 1]. At
an arbitrary point in parameter space, the GP prior dis-
tribution p(y|x∗) is a Normal distribution with a mean
of zero and a unit variance. By adding a data set D to
the GP, the model predictions are updated to form the
posterior predictive distribution as shown in Fig. 5(b).
Posterior predictions at a single test point also take the
form of Normal distributions with predictive means and
variances conditioned on the data set according to Eq. 10
and 11. We can also draw individual function samples at
points in parameter space from the posterior distribu-
tion, as shown in Fig. 5(c). These function samples are
generated by drawing multiple random values from the
Normal distribution at every point in input space.

Conceptually, GP models use Bayes’ rule to derive a
posterior probability distribution of the function value
f(x) conditioned on the observed data set and covari-
ances in function values between observed data and test
points. These covariances are defined by the kernel func-
tion k(x,x′) and a likelihood function (which describes
probabilities due to measurement noise). A physical ana-
log of GP modeling is a vibrating string with a collection
of fixed nodes along the string length. The possible lo-
cations of the string at any point along its length is con-
strained by where the nodes are located on the x−y plane
(observed data) and the elasticity of the string (kernel
function). For a given string we can be quite confident
where the string is in space close to fixed nodes. However,
far away from any nodes the string position possibilities
can vary widely. Increases in the elasticity of the string
creates more uncertainty in both of these cases owing to
its’ ability to stretch; this corresponds to weaker covari-
ances between function values.







11

terms, each having an interpretable role. The first term,
which is the only term that contains training data, is
the data fit term which is maximized when model pre-
dictions accurately predict experimental data. The sec-
ond term describes model complexity and is maximized
given the simplest model, ie., models whose kernel matri-
ces have determinants close to zero. The final term is a
normalization constant based on the number of training
points in the data set. Maximizing the MLL naturally
regularizes fitting of the GP, resulting in model hyperpa-
rameters that create the simplest model which accurately
reproduces the training data. For relatively small data
sets (< 300 data samples), maximizing the MLL takes a
few seconds on most modern CPUs, making it feasible
to perform this process during each iteration of BO (see
Sec. VI F for details).

Alternatively, fixed individual hyperparameter values
can be specified before modeling occurs, based on prior
knowledge of the function, either from previous sets of
data or physics knowledge. While fixing hyperparameter
values circumvents the need for retraining the model at
each optimization step during BO, this limits the ability
of BO to adapt to novel functional behavior that is not
well characterized by the fixed hyperparameter values.

Since maximizing the MLL is itself an optimization
problem, this process suffers from the same complexities
and challenges associated with solving general optimiza-
tion problems in practice. A wide variety of numerical op-
timization algorithms can be used for this purpose, given
that the number of hyperparameters that are included
inside the GP model is generally small (< 5− 10). Cur-
rent state-of-the-art software packages developed for GP
modeling (see Sec. VIE) employ two strategies to maxi-
mize speed and robustness when optimizing the MLL.

The first strategy uses of so-called differentiable cal-
culations, which allow cheap computation of the MLL
gradient with respect to the hyperparameters. This en-
ables the use of gradient-based optimization algorithms
that scale well towards performing optimization given a
large number of hyperparameters. Since gradient descent
optimization algorithms often converge to local extrema,
optimization can be repeated in parallel, starting with
randomly chosen initial points in hyperparameter space
to improve the chances of finding a global extrema.

The second strategy used to improve MLL maximiza-
tion robustness is training data normalization and stan-
dardization. As is common in other machine learning
disciplines, it is recommended that training data sets are
transformed such that they are near unity value when
passed to the model, thus preserving unit scale gradients
with respect to hyperparameters. For GP modeling, it
is common to normalize input data into the unit domain
[0, 1] and standardize the outcome data such that it has
a mean of zero and a standard deviation of one (to match
the default zero prior mean and unit standard deviation
in most GP modeling frameworks).

These two strategies make maximizing the MLL fairly
robust in practice, such that monitoring and customiz-

ing the fitting of model hyperparameters in BO is only
necessary in specialized cases.

3. Observation noise and heteroskedasticity

In most cases when performing online optimization of
accelerator parameters, measurements of the objective
function are corrupted by noise and/or systematic un-
certainties. Through the use of Bayesian inference, GP
models explicitly support a notion of measurement uncer-
tainty when making predictions. Furthermore, depend-
ing on the application, GP models can be tailored to ac-
count for measurement uncertainty in a variety of ways
based on measurements or prior physics information.
The most straightforward method for representing

measurement uncertainty uses a noise hyperparameter
σǫ that is incorporated into Eq. 10 and 11 by assuming
a fixed Gaussian model of the uncertainty for all mea-
surements. This homoskedastic uncertainty assumption
adds σ2

ǫ terms to the diagonal elements of the kernel ma-
trix, in what is sometimes referred to as Tikhonov reg-
ularization or ridge regression [41]. In cases where no
noise is present, as in deterministic simulations, this pa-
rameter can be set to zero, resulting in GP models that
predict exact values at training data locations, as shown
in Fig. 7(a). In the case of experimental measurements
containing noise, the noise hyperparameter can be deter-
mined during optimization alongside other model hyper-
parameters by maximizing the MLL. This process serves
to regularize the GP model, mitigating high-frequency
behavior and treating it as uncertainty at measurement
locations, as exemplified in Fig. 7(b).
In some situations, observation uncertainty is known

beforehand either from systematic uncertainties or
stochastic noise. This uncertainty can be different for
each measurement, or heteroskedatic in nature. If the
observation uncertainty can be estimated, e.g. by tak-
ing repeat measurements to estimate stochastic noise, or
by specifying systematic measurement uncertainty, this
information can be included for each point individually
in a heteroskedastic model. In this case, different values
of σ2

ǫ,i can be added to the diagonal elements of the co-
variance matrix for each data point yi. This allows for
individual measurement uncertainty to be accounted for
explicitly in the GP model, as illustrated in Fig. 7(c). An
alternative approach is to use a second GP to model the
variance (or log-variance) over the parameter space and
use this model to provide the weighting of the GP of the
observations.

4. Computational costs

If the likelihood of the GP model is a Normal distri-
bution then calculating the posterior distribution is ana-
lytical via matrix computations. However, for more com-
plex models the posterior cannot be obtained analytically
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minimize the timing jitter by tuning up to 10 controller
variables as optimization variables and ensuring an up-
per threshold on the timing jitter in order for the lasers
to not lose the lock.
A comparison of the algorithms used for performing

constrained BO on a simple test problem is shown in
Fig. 17. Figure 17(a) shows that weighting the acqui-
sition reduces the chances of violating the constraint,
although there are no guarantees the constraint viola-
tions will not occur. On the other hand, methods that
restrict the optimization of the acquisition function to
within a valid sub-domain of the parameter space, such
as MoSaOpt (Fig. 17(b)) and SafeOpt (Fig. 17(c)), do not
allow points that are predicted to violate the constraint
to be sampled, ensuring safety.
It is important to note that both of these approaches

to constrained optimization rely on accurate models of
the constraining functions to effectively reduce the num-
ber of violations during optimization. As a result, most
constraint violations happen during the initial stages of
optimization, where few observations of the constraining
functions are available to create an accurate GP model.
In order to prevent this, it is critical to start with a valid
point in parameter space and conservatively explore the
local region in the initial first steps or include prior in-
formation about the constraining functions into the GP
model of the constraints.
Finally, it is reasonable to expect that concepts from

the two methods currently used for constraining BO in
accelerator physics can be combined into a single algo-
rithm that contains the benefits provided by both meth-
ods. Additionally, characterization of the trade-offs be-
tween safety tolerance and optimization speed should also
be investigated.

3. Multi-objective optimization

In accelerator physics, it is often the goal of optimiza-
tion to simultaneously minimize or maximize more than a
single objective, referred to as multi-objective optimiza-
tion. These objectives can compete with one another, re-
quiring trade-offs between objectives to reach an optimal
solution. For example, it is difficult to simultaneously
maximize the lifetime and dynamic aperture of electron
storage rings [73], or minimize the bunch size and beam
emittance in a photoinjector due to space charge [6, 49].
One strategy to solve this problem is to combine the ob-
jectives into a single objective by weighting the contribu-
tion of each objective to a single term, a process known
as scalarization. However, the goal of multi-objective op-
timization is to determine what is known as the Pareto

front (PF). A PF represents a set of non-dominated solu-
tions, where no other solution can improve one objective
without degrading at least one other objective. These so-
lutions are considered Pareto-optimal because they form
the best compromise among the multiple conflicting ob-
jectives.

One of the most popular methods for solving multi-
objective optimization problems is the use of evolution-
ary algorithms [74], which use evolutionary heuristics to
generate a large population of candidate points in pa-
rameter space from the previous generation to search for
the PF. While these algorithms are easy to implement
and use, they are incredibly inefficient, requiring the use
of massively parallelized evaluation of many candidate
points to converge to a solution set. As a result, multi-
objective optimization is computationally expensive in
the case of simulated optimization of beam dynamics and
nearly impossible to use during beamline operations.

Special acquisition functions in BO have been de-
veloped to quickly identify the PF solution in multi-
objective optimization problems. These acquisition func-
tions rely on a metric known as the PF hypervolume (de-
noted H), shown in Fig. 18(a). The hypervolume is a
widely used quality indicator in multi-objective optimiza-
tion and is particularly useful for problems with more
than two objectives. It measures the size of the domi-
nated space, i.e., the portion of the objective space that
is not covered by the PF. The larger the hypervolume,
the better the set of solutions is considered because it
indicates a better coverage of the objective space and a
higher degree of Pareto optimality. To calculate the hy-
pervolume, a reference point is specified in the objective
space, typically set to be a point with worst values for
all objectives. Then, for each non-dominated solution
in the PF, the hypervolume is computed as the volume
of the space dominated by the reference point and the
current solution. The total hypervolume of the entire
PF is the sum of these individual hypervolumes. Once
additional observations of the objective values no longer
increase the hypervolume then the current PF is said to
have been identified.

The Expected Hypervolume Improvement (EHVI) [76]
acquisition function uses the notion of an increase in PF
hypervolume to select points in parameter space. Start-
ing with a PF containing previous measurements of the
objectives, EHVI predicts the average expected increase
in hypervolume (as shown in Fig. 18) as a function of
optimization parameters using GP models for each ob-
jective. As a result, BO using EHVI will select points
that are more likely to maximally increase the hyper-
volume of the PF than other algorithms, whereas ge-
netic algorithms select points only based on their opti-
mality. When applied to identifying the PF of the AWA
photoinjector containing 7 objectives (beam sizes, beam
emittances, and energy spread), EHVI was able to con-
verge to a maximum hypervolume several orders of mag-
nitude faster than evolutionary algorithms, as shown in
Fig. 18(b).

EHVI is able to increase the PF hypervolume through
two means, shown in Fig. 18(c). One method “fills-in”
the multi-dimensional surface of the PF, leading to hy-
pervolume increase that improves the detail described by
the Pareto set. The second method increases the hyper-
volume by selecting observations that will likely dominate
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ments compared with traditional exploration methods
such as a Grid Search (GS). During the experiment, the
extra computation time associated with GP fitting and
EHVI acquisition function optimization is small (below
5 s per iteration) relative to the reduction in beam prop-
erty evaluation time associated with faster convergence
of HV. Currently, the major limitation is the time taking
electron beam diagnostics, by implementing highly effi-
cient single-shot, non-destructive and automated electron
beam diagnostics, > 103 data points could be obtained
within a shorter time. This enhancement could improve
the accuracy of GP and fully exploit the advantages of
the MOBO algorithm.

4. Multi-point optimization and virtual objectives

In some optimization tasks, each acquisition requires
a secondary scan in a separate domain to calculate the
objective function. In engineering, this type of measure-
ment process is referred to as a multi-point query (see e.g.
[78]). Consider, for example, the task of aligning particle
beams through the magnetic center of quadrupole focus-
ing magnets. If the beam is misaligned with respect to
the magnetic center of quadrupoles in the beamline, scan-
ning the quadrupole strength results in a centroid kick
causing further misalignments downstream. This can be
corrected through the use of steering magnets which pro-
vide an angular kick to the beam such that it intercepts
the center of the quadrupole, resulting in no kick as the
quadrupole strength is varied. However, determining the
optimal steering strength requires either beam position
monitors at the quadrupole location, or constant scan-
ning of the quadrupole strength while varying the steer-
ing parameter to estimate the beam misalignment. This
is relatively simple for a single quadrupole but becomes
increasingly complex when using multiple steering ele-
ments to align through multiple quadrupoles.
To address this problem using BO techniques, an ac-

quisition function known as Bayesian Algorithm Execu-
tion (BAX) [79] has been developed which uses a so-called
“virtual” objective to make control decisions. In the
quadrupole alignment problem, the virtual objective is
to minimize the slope of the beam centroid with respect
to the quadrupole strength, which is proportional to the
beam misalignment. Instead of directly measuring this
slope every time the steering parameter is varied, BAX
builds a model of the beam centroid as a function of both
the quadrupole strength and the steering parameter, as
shown in Fig. 19(a). This model of the beam centroid is
then used to predict the magnitude of centroid deflection
as the quadrupole strength is varied (slope) as a func-
tion of the steering parameter, shown in Fig. 19(b). The
BAX acquisition function uses these predictions to eval-
uate which future measurements will provide the most
information about the steering current that leads to a
minimization of the centroid deflection. This aspect is
seen in Fig. 19(c), where the maximum of the acquisition

function is at the edges of the quadrupole parameter do-
main (which provides the most information about the
slope) and close to the optimal steering parameter. In
the limit of many measurements, BAX will continue to
make measurements close to the optimal steering param-
eter in order to improve model confidence in that region
of parameter space.

This method of using virtual objectives can be ex-
tended to more complex situations. For example, per-
forming alignment through multiple quadrupoles in both
horizontal and vertical directions can be done by sim-
ply adding or multiplying multiple virtual objectives to-
gether into a single objective. BAX also supports more
complex virtual objectives such as transverse beam emit-
tance [34]. In this case, the virtual objective involves
fitting polynomials to the beam size squared as a func-
tion of quadrupole strength using predictions from the
GP model. At FACET-II, BAX was able to match the
best emittance found by hand-tuning, while at LCLS,
the solution found by BAX produced about 25% lower
emittance than hand-tuning. In simulation studies, BAX
minimizes the emittance using 20 times fewer beam size
measurements than traditional BO. The dramatic im-
provement results from both increased sampling effi-
ciency (by selecting single beam-size measurements at
each acquisition) and from modeling the beam-size func-
tion rather than the noisier emittance values.

5. Proximal Biasing

Unlike optimization problems in other fields, online
particle accelerator optimization sometimes requires in-
cremental traversal of parameter space to maintain ac-
celerator stability. Accelerator facilities often have many
interconnected subsystems that are independently con-
trolled through feedback systems to maintain accelerator
parameters, such as water temperature, RF phase, and
beam steering. As a result, making rapid changes in ac-
celerator parameters can negatively affect these feedback
loops, causing instabilities in accelerator operation that
can ultimately shut down the accelerator. One strat-
egy for mitigating this issue is to place a strict upper
bound on the travel distance from the current location
in parameter space. Unfortunately, this in turn limits
the exploration of parameter space needed to success-
fully find global extrema in BO. While it is possible (and
sometimes necessary in sensitive systems) to place this
hard limit on the maximum travel distance during each
optimization step, it is sometimes more useful to bias
the acquisition function towards making smaller steps in
parameter space. This can be done through a technique
known as “proximal biasing” [80]. Proximal biasing mod-
ifies a base acquisition function by adding a multiplica-
tive term

α̃(x) = α(x) exp
(

−
(x− x0)

2

2l2

)

(22)
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Iterative, black-box optimization algorithms, such as
Nelder-Mead simplex and RCDS can also be used to max-
imize the acquisition function. However, in most cases,
maximizing the acquisition function is often best done
using gradient-based optimization algorithms. The most
straightforward example of this is gradient descent algo-
rithms such as Adam [85]. Higher order gradient algo-
rithms, such as limited-memory-BFGS (L-BFGS) which
uses an implicit estimation of the inverse Hessian, are also
often commonly used to further speed up convergence. In
both cases, accurate calculations of the gradients can sig-
nificantly reduce the number of iterations needs to reach
convergence. Acquisition function calculations that are
differentiable can be used to quickly calculate accurate
gradients to speed up optimization. This is usually done
by implementing the GP model and acquisition functions
in a machine learning library that supports differentia-
bility, such as PyTorch [86]. Unfortunately, these algo-
rithms are themselves local optimization algorithms. To
improve chances of finding the global maximum of the
acquisition function, parallel optimization from multiple
random starting points is often used to explore diverse
regions of parameter space.

B. Trust region optimization

One disadvantage of BO is that common acquisition
functions tend to over-prioritize exploration over ex-
ploitation in high dimensional parameter spaces. This
is due to the relatively large posterior uncertainties of
GP models that result from the exponential growth of
parameter space volume with dimensionality (models in
high dimensional space need more data to update prior
function distributions). As a result, BO tends to pick
points at the extremes of the domain in high dimensional
parameter spaces even if optimal points are found in a
local region, see Fig. 20(a) for an example of this behav-
ior. In addition, GP models used in BO aim to create a
global description of the objective function, which may
not be appropriate for functions that have varying local
characteristics in different regions of parameter space.
Trust region BO (TurBO) [87] aims to address both

of these issues by restricting optimization of the acquisi-
tion function to within a so-called “trust region” around
previous measurements where the model is expected to
be the most accurate. The trust region is a local region
centered at the best previously observed measurement
so far during optimization, with side lengths equal to a
base length L multiplied by the relative length scale of
the GP model along each axis in parameter space. As op-
timization progresses, the location and size of the trust
region is continuously updated to be centered at the best
measured point in parameter space and scaled to match
length scales of the GP model. Additionally, the base
length of the trust region is increased or decreased based
on the number of consecutive successes (improvements in
the solution) or failures (no improvement) respectively.

As a result, the trust region shrinks in cases where the
model does not correctly identify the location of optimal
solutions or expands the trust region when the model is
making accurate predictions that result in continuous im-
provements in the objective function value. By limiting
exploration of the parameter space within a local region,
TurBO transforms BO from a global optimization algo-
rithm into a local one, resulting in substantially faster
convergence to local extremum in high-dimensional pa-
rameter spaces than conventional BO.

A 1-dimensional example of TurBO applied to a test
minimization problem is shown in Fig. 21. Despite large
model uncertainties at the edge of the domain, which
would normally cause BO to sample points on the bound-
ary, TurBO chooses observations that are in the local
trust region around the best observed solution. In cases
where the new observations do not improve over the best
solution, the trust region contracts around the optimal
point to increase model accuracy. If new observations do
improve over the previous optimal point, the trust region
is re-centered at the location of those observations and
expanded to find potential new solutions. Throughout
the course of optimization, TurBO will develop a locally
accurate BO model near observed optimal solutions, in-
stead of trying to accurately describe the global function
behaviour. While in this example TurBO shrinks and
expands the trust region after every step, a threshold for
successes and failures is usually set such that multiple
failures or successes in a row are necessary to change the
overall trust region size.

TurBO was used on the ESRF-EBS storage ring [88] for
the optimization of lifetime and compared to the exist-
ing optimization procedure. The 192 sextupoles and 64
octupoles available for the optimization of lifetime have
been sorted and selected into 24 tuning parameters. To
have fast and reproducible values for the optimization the
sum of all signals from the 128 beam loss detectors was
used as objective of the minimization rather than the life-
time value itself. Figure 22 shows the resulting lifetime
during the optimization process performed with: TurBO,
simplex and UCB. The same parameters and procedure
for optimization are used in all cases, only the optimiza-
tion algorithm is changed. More details on the measure-
ment can be found in [89]. The TurBO optimization was
repeated three times and led in all cases to similar life-
time values within the same optimization time and with
comparable final sextupole and octupole settings. Also
starting from degraded storage ring conditions, TurBO
could quickly recover the optimal set point for the mag-
nets.

TurBO can also be slightly modified to improve explo-
ration of tightly constrained problems where a majority
of the input space violates one or more constraining func-
tions. In this case, the goal is to reduce the number of
constraint violations during optimization through the use
of a conservative trust region. Instead of centering the
trust region at the best observed solution, this approach
centers the trust region at the average value of valid ob-
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acquisition function:

qEI(x) ≈
1

N

N
∑

i=1

max
j=1,...,q

{max(ξij − f∗, 0)} (24)

ξi ∼ p(f |D)

where f∗ is the best observed objective value so far.
To maintain the inexpensive computation of gradients

for MC-based acquisition functions using automatic dif-
ferentiation, a technique known as the “‘reparameteriza-
tion trick” [60] is used. Instead of sampling directly from
the posterior of the GP model, samples are drawn from
a unit Normal distribution, then scaled and shifted such
that the distribution matches GP predictions. This pre-
serves differentiability by sidelining the stochastic gener-
ation of random samples.

2. Local Penalization Techniques

Local penalization is proposed as an alternative
method for performing batched BO [94]. Instead of max-
imizing the joint distribution as in the q-sampling ap-
proach, it selects the samples in the batch sequentially
and thus scales better with the input dimensions and
batch sizes. The i-th sample is selected by maximizing
the product of the acquisition α and the penalization

φ =
∏i−1

1 φj , where φj ∈ (0, 1] denotes the local pe-
nalization function around a previously selected point xj

in the batch. It effectively excludes the region around
previously chosen points and goes to 1 elsewhere. The
behavior of the penalization is governed by the Lipschitz
constant of the objective function, which could be in-
ferred from the GP model.
The local penalization method has been used in the

simulation study at the linear accelerator FLUTE for ra-
diation optimization [95]. It enabled an efficient selec-
tion of parameters to run parallelized simulations in a
high-performance computing cluster, resulting in better
performance compared to using the genetic algorithm.

3. Large scale parallelization

In cases where objective functions can be evaluated
in a massively parallelized fashion (> 100 simultaneous
evaluations), i.e. in simulation on high performance com-
puting clusters, optimizing the acquisition function us-
ing the strategies outlined above may exceed the com-
putational cost of evaluating the objective itself. As
a result, it makes sense to use alternative methods for
acquisition function optimization. Evolutionary or ge-
netic algorithms are extensively employed towards solv-
ing optimization problems using large-scale paralleliza-
tion. These algorithms use simple heuristics to generate
candidate points, which is much cheaper than repeatedly
numerically optimizing an acquisition function. Thus, it

is advantageous to generate a large number of candidate
points using a genetic algorithm and then determine a
subset of those candidate points using a model-based ac-
quisition function to be evaluated in BO. Combining ge-
netic algorithms with BO takes advantage of both of their
strengths, generating large sample sizes in a relatively
short amount of time while still incorporating model in-
formation and acquisition function definitions into the
selection of candidates for evaluation.
The Multi-Objective Multi-Generation Gaussian Pro-

cess Optimizer (MG-GPO) represents one such algorithm
that takes advantage of this combination [33, 96]. This
algorithm attempts to solve multi-objective optimiza-
tion problems by first generating a number of candi-
date points using evolutionary heuristics (mutation [97],
crossover [98], and flocking operations). A subset of can-
didate points are then selected to be evaluated on the
real objective by using a GP surrogate model (based on
previous measurements or simulation results) to predict
which candidate points are likely to dominate over pre-
vious measurements. By leveraging information in the
learned GP surrogate model, the candidate points gener-
ated by MG-GPO are more likely to improve the Pareto
optimal set when compared to model-free evolutionary
algorithms (such as NSGA-II).
A slight modification can be made to MG-GPO to

improve its performance by choosing a subset of candi-
dates based on expected hypervolume improvement (as
is done in conventional multi-objective BO) instead of
predicted Pareto-optimality. This has the added bene-
fit of selecting candidates that not only will improve the
Pareto front, but will maximize improvement according
to the predicted increase in hypervolume once observed.
The MG-GPO method has been applied to design op-

timization of storage ring lattices [73]. It has also been
applied experimentally to the SPEAR3 storage ring and
the APS accelerator complex to demonstrate its online
optimization capability with several important problems,
including storage ring vertical emittance minimization
with skew quadrupoles [96], nonlinear beam dynamics
optimization with sextupoles [96, 99], and linac front-
end transmission tuning with steering and optics param-
eters [100]. In each case it was shown that the algorithm
can effectively improve the performance of the machine
when compared to other algorithms.

VI. DISCUSSION

In this section we discuss several aspects of BO that
are relevant to its use in accelerator physics. We first de-
scribe the relationship between BO algorithms and other
algorithms currently used in accelerator physics for opti-
mization and control. We then discuss how to interpret
and monitor BO performance during optimization and
general best practices for improving optimization per-
formance. Additionally, we highlight software packages,
both inside and outside the accelerator physics field, that
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are used to implement BO algorithms. Furthermore, we
provide estimations of run time and computational mem-
ory usage for BO algorithms. Finally, we describe future
research avenues in BO methods for accelerator physics.

A. BO in relation to other optimization algorithms

Here, we describe how classical BO relates to various
other types of optimization and control algorithms. We
also highlight the conceptual differences and similarities
between online optimization and continuous control. Fi-
nally, we discuss the impact of different function approx-
imations and ML model choices within those paradigms.
Note that we cannot make definitive, general state-

ments about algorithm performance. The performance
of a particular algorithm on a given accelerator problem
is dependent on numerous factors, including, but not lim-
ited to, the specific algorithmic hyperparameters chosen,
as well as the problem dimensionality, nonlinearity, con-
vexity, multi-modality, and noise.

1. Episodic optimization

Typically when describing “optimization,” we mean an
episodic process of adjusting settings to reach an optimal
combination, that then ideally remains fixed for some pe-
riod of time. Aside from BO, various other optimization
algorithms have been developed and are actively used
in the accelerator physics domain. Generally, these al-
gorithms can be split into gradient-based and gradient-
free (black box) algorithms, and, additionally, algorithms
which learn some underlying representation of the system
and those that do not.
Gradient-based algorithms use direct information

about the gradient of the cost function, or approxi-
mations of it (for example via finite difference meth-
ods), to determine setting changes during optimization.
Gradient approximations on non-differentiable systems
(whether in simulation or on an experiment) can be time-
consuming to obtain, particularly as the number of vari-
ables increases. In some instances in accelerators, gra-
dient information has been approximated from machine
jitter, allowing small, minimally-invasive setting changes
to slowly compensate for drift or move toward an opti-
mum [101]. Gradient-based algorithms can also easily
become stuck in local minima, although techniques do
exist to work around this (e.g. providing warm starts
from a system model or previously-known global solu-
tion, restarting the algorithm several times at different
random starting points).
Gradient-based algorithms, such as stochastic gradient

descent and variants (e.g. Adam, RMSProp [85, 102,
103]), can scale well to higher dimensions particularly in
cases where the evaluation of the objective function is fast
and gradients are directly available. Consequently, they
are used frequently in ML for training neural networks.

In that context, updates to model parameters using small
batches of data help to avoid local minima by adding
noise to the gradient.

Gradient-based methods can also be used in conjunc-
tion with differentiable models, e.g. through differen-
tiable physics simulations [25, 104–106], codes such as
Bmad-X [107] or Cheetah [47, 108], or surrogate mod-
els based on function approximators such as neural net-
works [25, 109].

Nelder-Mead Simplex (NM) [110] is a gradient-free
heuristic method that has been used extensively in accel-
erators for tuning [111–115]. It does not learn a model
or use curve fitting, but adjusts a “simplex” in search
space at each iteration. NM requires very little prepa-
ration prior to use and is typically computationally in-
expensive. For examples of studies that have run NM
and BO on the same problem, see [8, 10, 44, 116, 117].
Theoretically speaking, NM is best suited to convex and
noise-free objective functions [118], but it is difficult to
assess how this translates to real-world experience in ac-
celerators, where NM has performed well in practice even
on quite noisy objectives.

Robust conjugate direction search (RCDS) [119] has
been used for numerous accelerator tuning problems, par-
ticularly in rings for nonlinear dynamics optimization. In
RCDS, local curve fitting at each iteration is used to aid
estimation of the curvature of the objective function and
the corresponding optimal direction in which to move
settings. The addition of curve fitting adds robustness in
the face of measurement noises and occasional machine
failures. A successor variant RCDS-S [120] takes safety
constraints and machine drifts into consideration.

A similar approach is taken in the BOBYQA algo-
rithm, which constructs a second-order local model of
function values near a candidate set of optimal parame-
ters [121]. This algorithm has been used to perform opti-
mization in simulation [122, 123]. These approaches are
similar to BO in the way that they create local models of
the objective function to inform parameter selection for
episodic optimization.

From the domain of feedback and control, Extremum
Seeking (ES) has been applied to many accelerator prob-
lems [124–126]. ES adjusts settings with specific am-
plitudes and frequencies to approximate the gradient of
the cost function and gradient descent, meaning that it
works well as a local optimizer. Furthermore, ES param-
eter selection is much less expensive than BO methods,
allowing it to be used to provide faster feedback than
ABO approaches discussed in Sec. III C 4. However, ES
can become stuck in local minima if not provided a suf-
ficiently good starting point (e.g. provided by a system
model [127]), and it does require careful adjustment of
the main hyperparameters (the dither amplitude and fre-
quency).

Finally, Deep Reinforcement Learning (RL) has also
found application in the accelerator domain [128–132].
While RL is traditionally used to train dynamic feedback
controllers, it can also be used to train domain-specific
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optimization algorithms. In the case of RL, this may be
referred to as Reinforcement Learning-trained Optimisa-
tion (RLO) [133]. Deep RL is computationally cheap and
sample efficient at application time, but requires signif-
icant upfront engineering effort to train. A case study
comparing RL and BO on an accelerator tuning problem
was conducted in [116].

2. Relation to Continuous Control and Time-Dependent
Control

By “continuous control”, we refer to processes that are
adjusting settings continuously as the accelerator is run-
ning (e.g. orbit feedback, corrections to LLRF phases
and amplitudes to maintain the beam energy, etc). A
further distinction can be made between algorithms that
take into account the sequential nature or time-evolution
of a problem and those that do not. In some classi-
cal control techniques such as model predictive control
(MPC) [134] and in reinforcement learning (RL) [135],
the sequentially-dependent nature of a system is formal-
ized as a Markov Decision Process [136], in which an ob-
served system “state” is sufficient to predict the following
system evolution. MPC and RL include direct considera-
tion of the dynamic evolution of the system over a future
time horizon when making decisions in the present. To
accomplish this, these algorithms have access to or learn
the dynamics of the system, and/or approximate solu-
tions to the dynamic optimal control problem.
In contrast, classical BO assumes a stationary (i.e.

non-drifting) system where the sequence of control ac-
tions is not taken into account in decision making. For
example, when magnets are not affected by hysteresis,
the problem of tuning magnets can be treated as non-
sequential. When hysteresis effects are present, the se-
quence of magnet current settings affects the resultant
magnetic field; as a result, the problem becomes sequen-
tial and this state information should be taken into ac-
count in decision making. Additionally, because BO is
learning a stationary model of the objective function,
its performance can degrade when being run on a non-
stationary (i.e. drifting) system; this is why adjustments
such as the adaptive BO approaches described in earlier
sections are needed in order to run BO continuously as a
feedback.

3. Relation to Feed-forward Corrections and Warm Starts

“Warm starts” or feed-forward corrections from
learned models can be used both in continuous control
and optimization in accelerators. For example, learned
models can be used to provide fast setting changes when
different setups are desired (e.g. see [109, 127]), followed
by fine-tuning with optimization algorithms such as BO.
Indeed, the system model that provides the warm start
can even be the GP model obtained from previous BO

runs. Continuously-running feed-forward corrections us-
ing ML models have also been used in accelerators; for ex-
ample, this type of approach has been used for source size
stabilization in light sources by compensating for optics
deviations induced by different insertion devices [137].

B. Model Choices

Bayesian optimization takes advantage of Gaussian
Process models, which can learn functions that are suit-
able for interpolation from very few samples and provide
fairly robust uncertainty estimates, to perform efficient
optimization of expensive objective functions. However,
GP models do not scale as well as other model types,
such as neural networks, to large data sets often required
to solve high dimensional optimization problems. As a
result, they are more computationally expensive and typ-
ically slower to execute when solving high dimensional
optimization problems. For high-dimensional optimiza-
tion and faster execution, BO can use other types of ML
models so long as an uncertainty estimate is also avail-
able, including, but not limited to, Bayesian neural net-
works, quantile regression with neural networks or neu-
ral network ensembles [45, 102, 138, 139]. Using different
types of surrogate models inside BO can also facilitate in-
clusion of high-dimensional contextual information (such
as initial beam images), which can improve convergence
speed.

C. Interpreting BO Performance

Unlike other optimization algorithms commonly used
in accelerator physics, basic BO algorithms are designed
to solve global optimization problems. This can some-
times lead to behaviors (shown in Fig. 23) that are un-
familiar to users expecting to see strong convergence to
optimal values during optimization. Local optimization
algorithms, such as Nelder-Mead simplex, often mono-
tonically improve the objective function value, with small
excursions around a local optimum to explore the objec-
tive function, as shown in Fig. 23(a,d). As we see in
Fig. 23(a) this can sometimes lead to converging to a
local optimum instead of the global one.
In contrast, BO algorithms often explore the domain

to build a global model of the objective function in pa-
rameter space before sampling in a local region around
the predicted optimal point. The number of iterations
needed to perform this exploration can depend on the
relative weighting of exploration vs. exploitation in the
acquisition function, the dimensionality of the parame-
ter space, and characteristics of the objective function.
For example, when the UCB acquisition function is used
with roughly even weighting between exploration and
exploitation (β = 2), BO briefly explores parameter
space before exploiting regions the GP model predicts
are likely to be optimal, as shown in Fig. 23(b,e). In-
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mizer loop). The overall scaling is consistent with expec-
tations, with model fitting and evaluation showing O(n3)
growth as a function of number of collected points n.
However, the progression is not smooth, with repeatable
deviations at particular sizes due to different bottlenecks
and code paths that are encountered depending on in-
ternal PyTorch configuration. Note also that there is a
constant time floor of 100 − 1000 ms per BO loop due
to initialization, data copies, and Python overhead - in
practice this limits BO applications to making sub-1Hz
decisions (although data acquisition can take place at a
higher rate).
The ultimate limit on number of model points is de-

termined by available memory, and is encountered at
∼ 25k points on a 40GB GPU (at which point CPU
is too slow even if there is sufficient RAM). Approxi-
mate GP methods can extend this limit, but are not
particularly popular in BO applications. Our practical
recommendation is to limit problem sizes to 10k points
with a GPU and 3k with a CPU-only machine, and ap-
ply BO only in cases when objective evaluation time is
sufficiently long to amortize computational costs for your
particular choice of model, acquisition function, and hy-
perparameters (see Sec. II B). This ensures that BO use
is worthwhile in terms of overall wall-clock convergence
speed.

G. Future directions for BO research in accelerator
science

While BO algorithms have been shown to be able to
solve a wide variety of accelerator physics problems in
an efficient manner, there are still ample opportunities
for future improvements towards using BO in accelerator
science.
First and foremost is continuing research in the inte-

gration of physics information into GP models. As has
been highlighted in several sections of this review, im-
proving the accuracy of GP modeling improves decision-
making during optimization, leading to faster conver-
gence to optimal solutions and reductions in the num-
ber of constraint violations. Incorporating information
into GP models before performing optimization is espe-
cially critical in making good decisions during the first
few iterations. Furthermore, if uncertainties exist in the
sources of information used, these uncertainties should
be incorporated into the GP model as well.
In both online accelerator operations and in simulated

optimization, improving the orchestration of objective
function evaluation, GP model generation, and acquisi-
tion function maximization is another source of major po-
tential improvements. The development of a centralized
control framework that dispatches these tasks contained
in BO on parallel resources could lead to major reduc-
tions in the overall cost of performing optimization. A
potential example of this would be an online accelerator
control program that would send current and/or future

potential machine states to be evaluated on high per-
formance computing clusters outside the control room.
Results collected from these physics simulations could be
used to inform online control in real-time, similar to what
is done in [148].

VII. CONCLUSION

In conclusion, BO algorithms are an effective, extend-
able way of solving a wide variety of optimization chal-
lenges in accelerator physics. BO algorithms are par-
ticularly valuable when dealing with optimization chal-
lenges that involve significant resource expenses, such
as beam time, personnel, or computational resources.
These algorithms use statistical surrogate models based
on gathered data to inform optimization, reducing the
number of objective function evaluations versus other
black box optimization schemes. As a result, the BO
framework provides a straightforward and robust way to
incorporate prior knowledge (either from past measure-
ments or physics information) or approximate measure-
ments/computation into the modeling process to further
improve optimization convergence speed. By modify-
ing standard acquisition functions, BO algorithms can
be customized to solve a wide variety of single, multi-
objective, and characterization problems in accelerator
physics. Using BO algorithms can reduce the overall cost
of performing optimization when compared to conven-
tional black box optimization algorithms, allowing accel-
erator scientists to address more complex optimization
challenges.
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learning and optimization techniques: Towards a survey
of the state of the art, in International Workshop on
the Foundations of Trustworthy AI Integrating Learn-
ing, Optimization and Reasoning (Springer, 2020) pp.
123–139.

[69] R. Roussel, D. Kennedy, A. Edelen, S. Kim, E. Wis-
niewski, and J. Power, Demonstration of autonomous
emittance characterization at the argonne wakefield ac-
celerator, Instruments 7, 29 (2023).

[70] H. H. Sohrab, Basic real analysis, Vol. 231 (Springer,
2003).

[71] Y. Sui, V. Zhuang, J. Burdick, and Y. Yue, Stagewise
safe bayesian optimization with gaussian processes, in
International conference on machine learning (PMLR,
2018) pp. 4781–4789.

[72] M. Turchetta, F. Berkenkamp, and A. Krause, Safe ex-
ploration for interactive machine learning, Advances in
Neural Information Processing Systems 32 (2019).

[73] M. Song, X. Huang, L. Spentzouris, and Z. Zhang, Stor-
age ring nonlinear dynamics optimization with multi-
objective multi-generation gaussian process optimizer,
Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment 976, 164273 (2020).

[74] H. R. Maier, S. Razavi, Z. Kapelan, L. S. Matott,
J. Kasprzyk, and B. A. Tolson, Introductory overview:
Optimization using evolutionary algorithms and other
metaheuristics, Environmental modelling and software
114, 195 (2019).

[75] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A
fast and elitist multiobjective genetic algorithm: Nsga-
ii, IEEE Transactions on Evolutionary Computation 6,
182 (2002).

[76] S. Daulton, M. Balandat, and E. Bakshy, Differentiable
expected hypervolume improvement for parallel multi-
objective bayesian optimization, Advances in Neural In-
formation Processing Systems 33, 9851 (2020).

[77] F. Ji, A. Edelen, R. Roussel, X. Shen, S. Miskovich,
S. Weathersby, D. Luo, M. Mo, P. Kramer, C. Mayes,
M. A. K. Othman, E. Nanni, X. Wang, A. Reid,
M. Minitti, and R. J. England, Multi-objective bayesian
active learning for mev-ultrafast electron diffrac-
tion, arXiv preprint arXiv:2404.02268 [physics.acc-ph]
(2024).

[78] R. P. Liem, G. K. W. Kenway, and J. R. R. A. Martins,
Multimission aircraft fuel-burn minimization via mul-
tipoint aerostructural optimization, AIAA Journal 53,
104 (2015).

[79] W. Neiswanger, K. A. Wang, and S. Ermon, Bayesian
algorithm execution: Estimating computable properties
of black-box functions using mutual information, in In-
ternational Conference on Machine Learning (PMLR,
2021) pp. 8005–8015.

[80] R. Roussel and A. Edelen, Proximal biasing for bayesian
optimization and characterization of physical systems,
in Workshop on Machine Learning and the Physical Sci-
ences (2021).

[81] B. Letham and E. Bakshy, Bayesian Optimization
for Policy Search via Online-Offline Experimentation



40

(2019), arXiv:1904.01049 [cs, stat].
[82] J. Wu and P. I. Frazier, Continuous-fidelity bayesian op-

timization with knowledge gradient, in 31st Conference
on Neural Information Processing Systems (2017).

[83] F. Irshad, S. Karsch, and A. Döpp, Leveraging trust
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