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a technique was performed by Slagmolen et al. [20] to directly assess the linewidth, free spectral

range (FSR), and coupling condition of a cavity.

If both the local oscillator and probe field are injected into the cavity at the same mirror as was

done by Slagmolen et al., both the light in the fundamental mode of the cavity as well as the

higher order modes of both lasers will interact and have an effect on the phase and amplitude of

the interference beat-note. Calculating the cavity parameters from this measurement therefore

requires precise knowledge of the spatial coupling of the lasers to the cavity.

In this article, we propose a technique which leverages the advantages of this scheme, while

also making use of the spatial filtering of the cavity itself. If the probe and local oscillator fields

are instead injected via opposite ends of the cavity, only the light in the cavity eigenmode will

contribute to the interference beat-note. This technique thus requires no prior knowledge of the

spatial coupling of either laser to the cavity, leading to an improvement of more than a factor of

10 in the accuracy of measurements when compared to Slagmolen et al.

In the following, we show how the complex frequency dependent reflectivity can be examined

to reveal several critical cavity parameters, a technique which has been previously applied to

superconducting microwave cavity characterization [21,22]. This method is then demonstrated

on a 19 m cavity to measure the individual mirror transmissivities and round-trip excess optical

losses with an accuracy on the order of 2 ppm.

2. Theory

Consider a Fabry-Perot cavity consisting of two mirrors, M1 and M2, with reflection and

transmission coefficients r1 and t1, and r2 and t2, respectively. For each mirror the reflectivity

R, transmissivity T , and excess optical losses L in terms of power can be represented by the

following equations,

R1,2 =

��r1,2

��2 (1)

T1,2 =

��t1,2

��2 (2)

Conservation of energy requires that, for each mirror,

1 = R + T + L (3)

It should be noted here that by using the definition above and assuming the losses on the path

between the cavity mirrors are negligible, the excess losses per reflection are included in the

mirrors’ coefficients of reflection.

For a monochromatic laser field Ei coupled into the cavity via M1, using the plane wave

approximation, the field circulating in the cavity Ecav can be expressed as an infinite sum [23],

Ecav =

∞∑
n=0

t1Ei

(
r1r2eikl

)n

(4)

Here, the term r1r2eikl expresses the attenuation and phase shift experienced by the field in

each round-trip through the cavity due to its optical path length l, which is twice the mirror

separation, and the reflection coefficients of the mirrors. In this equation, k is the wave vector of

the input field and is equal to 2π/λ with λ being the wavelength of the input field.

Since the term in the summation is a geometric series, the previous expression is equivalent to

the following equation,

Ecav =
t1Ei

1 − r1r2eikl
(5)

It is apparent from this equation that the cavity will be on resonance when the total roundtrip

phase accumulation is an integer multiple of 2π. If we ignore the contribution of the Gouy phase

and the reflected phases of the mirrors this means the maximum circulating field will occur when

l is some integer multiple of λ.
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2.1. Complex cavity reflectivity

In the case of perfect mode matching between the input field and the cavity, the reflected field can

be represented as the following superposition of the promptly reflected input field, given by r1Ei,

and the fraction of the cavity circulating field that leaks through the input mirror, t1r2eiklEcav.

Eref = r1Ei − t1r2eiklEcav (6)

Here we adopt the beamsplitter sign convention, wherein the transmitted leakage field gains a

π phase shift relative to the promptly reflected field. Using Eq. (5) for Ecav, Eref then becomes

Eref = Ei

(
r1 −

t2
1
r2eikl

1 − r1r2eikl

)
. (7)

The frequency-dependent cavity complex reflectivity R is given by the ratio of the reflected

and incident fields. For a high-finesse cavity near resonance, this can be approximated as

R(∆ν) ≡ Eref

Ei

≈ 1 − T1

A
2
− 2πi∆ν

f0

, (8)

where A = T1 + L1 + T2 + L2 is the total attenuation of the circulating power during a single

cavity round-trip, ∆ν is the frequency difference between the input laser field and the nearest

cavity resonance, and f0 is the cavity FSR.

Figure 1 shows a representation of Eq. (8) on the complex plane. As the frequency difference

between the laser and the cavity resonance, ∆ν, is scanned, the equation traces out a circle on the

complex plane revealing several important cavity parameters. The ratio of the circle’s diameter

to the distance from the origin of its furthest point, b
a+b

is equivalent to the ratio 2T1/A. For an

under-coupled cavity, this ratio is less than one, as this diagram shows, and the origin of the plot

lies outside the circle. For a critically coupled cavity the ratio would be one and the circle would

pass through the origin, while an over-coupled cavity would have a ratio greater than one and the

origin would lie inside the circle. The frequency of the heterodyne beat-note when the probe field

is on resonance with the fundamental cavity mode, indicated by the point on the circle closest to

the origin, will be some integer number of FSRs. By measuring the beat-note frequency at this

point, the FSR can be precisely measured. The blue semicircle in the diagram centered on the

cavity resonance shows the frequency region of the complex reflectivity where the laser is within

the cavity linewidth. The value of ∆ν at each of the end points of this semicircle corresponds to

the half-width-half-maximum (HWHM) of the cavity resonance and can be used with the FSR

measurement to calculate the total attenuation in the cavity. Therefore, by measuring an arc of

the circle traced by scanning the frequency of the input field relative to the cavity resonance, A,

T1, and f0 can all be measured, in situ, for a given eigenmode position on the cavity mirror.

2.2. Heterodyne transmission measurement

Measuring the complex reflectivity is complicated by the fact that conventional photo-detectors

only measure power, and not the phase of the electric field. Furthermore, the spatial coupling of

the input field to the cavity must also be considered. With a cavity that is near critical coupling,

even a small mismatch in the spatial mode of the incident laser with respect to the cavity can

have a large effect on the measured power in reflection near resonance.

We circumvent these issues by using heterodyne interferometry with an auxiliary local oscillator

(LO) laser coupled into the cavity from the opposite side of the cavity. By interfering a probe

field in reflection with the LO in transmission at the cavity mirror, only the portion of the probe

field’s light which is in the spatial mode of the cavity contributes to the beat-note amplitude and
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Fig. 1. Illustration of the field reflected from the cavity plotted on the complex plane. The

quantity a + b gives the amplitude of the input field Ei. The point on the circle closest to

the origin shows when the cavity resonance condition is met (∆ν = 0), with a giving the

amplitude of the reflected field when the cavity is on resonance. As the frequency ∆ν is

varied, R(∆ν) traces out a circle with diameter ‘b’ which can be used to calculate the quantity

2T1/A. Here, the blue semicircle shows frequencies that lie within the cavity linewidth

(|∆ν |< HWHM).

phase. To show this, we can express the mode of probe field in reflection of the cavity |ΨPr〉, as a

superposition of the fundamental cavity mode |ψ00〉 and the higher order modes |ψHOM〉.

|ΨPr〉 =
√

PPr exp{i(ω1t + φ)}(η R(∆ν)|ψ00〉 +
√

1 − η2 |ψHOM〉) (9)

Here PPr is the power of the probe laser incident on the cavity and ω1 is its angular frequency

given by ω1 = 2π(ν1 + ∆ν) where ν1 is the laser frequency corresponding to the closest cavity

resonance. The spatial overlap between the probe laser and the fundamental eigenmode of the

cavity is given by η with η2 giving the fraction of laser power in the spatial mode of the cavity.

R(∆ν) is the cavity reflectivity function given by Eq. (8).

In this case the field of the LO laser can just be represented by the fundamental mode of the

cavity.

|ΨLO〉 =
√

PLO exp{iω2t}|ψ00〉 (10)

PLO is then the LO power in transmission of the cavity and ω2 is the angular frequency of the LO

laser which can be expressed as ω2 = 2π(ν1 − nf0) with nf0 being some non-zero integer multiple

of the FSR of the cavity. Therefore the frequency difference between the probe laser and the LO

is ∆ω = 2π(nf0 + ∆ν).
With this the field reflected by the cavity is given by the following equation.

|ΨPr〉 + |ΨLO〉 = eiω2t
(√

PPrηei(∆ωt+φ) R +
√

PLO

)
|ψ00〉 + eiω1t

√
PPr

√
1 − η2 |ψHOM〉 (11)

The power in reflection PR of the cavity can then be found by calculating the absolute

square of the field, keeping in mind that |ψ00〉 and |ψHOM〉 are orthogonal and their cross terms

〈ψ00 |ψHOM〉 = 〈ψHOM |ψ00〉 = 0, while 〈ψ00 |ψ00〉 = 〈ψHOM |ψHOM〉 = 1 .

PR = 2
√

PLOPPrη {Re[R] cos(∆ωt − φ) + Im[R] sin(∆ωt − φ)}

+

(
1 − η2

(
1 − |R|2

))
PPr + PLO

(12)

Here the terms on the first line show the interference beat-note between the two lasers oscillating

at the difference frequency ∆ω, while the terms on the bottom line give the static reflected power.
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The real and imaginary parts of R can be measured as the probe field frequency is scanned over

resonance by measuring the reflected power and then demodulating at ∆ω with both sine and

cosine functions.

We will refer to the data demodulated with the cosine function as the ‘in-phase’ component of

the power PI , while the data demodulated with the sine function will be called the ‘quadrature’

component PQ. As the following equations show, the in-phase component of the power is

dependent on the real part of R while the quadrature component gives the imaginary part of R.

PI = 〈PR cos(∆ω)〉 = η
√

PLOPPr Re[eiφ R] (13)

PQ = 〈PR sin(∆ωt)〉 = η
√

PLOPPr Im[eiφ R] (14)

PI and PQ can be measured as the frequency ∆ω is scanned over the resonance of the cavity. This

typically is represented as an amplitude and phase response on a bode plot, where the amplitude

response is given by
√

P2
I
+ P2

Q
and the phase response is arctan

(
PQ

PI

)
. The following equations

show how we can derive the functional form of R from this.√
P2

I
+ P2

Q
= η

√
PLOPPr |R | (15)

arctan

(
PQ

PI

)
= arg(eiφ R) (16)

While the term η
√

PLOPPr of Eq. (15) scales the measured amplitude, a fit can be performed over

R on the complex plane with the scaling left as a free parameter. Likewise, the phase offset

between the interference beat-note phase and the phase of the demodulation signal φ may also be

left as a free parameter in this fit. Since the term inside the arctan is a power ratio, it is clear

that calculating the amplitude and phase of R for a measurement requires no knowledge of the

calibration of the photodetectors measuring the beat-note, the power levels of the lasers, nor their

spatial overlap to the cavity.

Nevertheless, for poor spatial coupling of the lasers to the cavity, the shot noise contribution

of the higher-order modes will lead to a lower signal to noise ratio for the laser PDH and PLL

control loops. For this reason, care should be taken to ensure the highest spatial coupling

possible when using this method for cavity characterization. It should also be noted that the

higher-order modes experience the complex reflectivity of the cavity, but here we are only

considering a cavity in which the Gouy phase separation between the modes is sufficient to

prevent any degeneracies with the fundamental mode. Because of this R takes a value of one in

the pre-factor of |ψHOM〉 in Eq. (9) and no higher-order modes are present in the representation

of the LO laser in transmission of the cavity in Eq. (10). In the case when the cavity exhibits

degeneracies between the fundamental mode and higher-order modes, the value of R for each of

these modes will be subject to the frequency difference between the resonance of these modes

and the probe laser. While the technique can still measure the complex reflectivity under these

conditions, it will lose its independence from the spatial coupling of the lasers to the cavity and

this information will be necessary to properly calibrate the results.

3. Methods

A diagram of the optical system, control electronics, and readout scheme for the experiment is

shown in Fig. 2. The cavity used in this study was formed by two mirrors mounted on separate

optical benches within a shared vacuum enclosure consisting of two end tanks connected by a

beam tube.

Two lasers, Laser 1 and Laser 2, are located on opposite sides of the cavity, on the same optical

tables as Mirror 1 and Mirror 2, respectively. Laser 1 is a non-planar ring oscillator (NPRO)
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Fig. 3. Diagram representing the relative frequencies of the individual fields in reflection of

M2. The local oscillator field is provided by Laser 1 in transmission of the cavity while the

upper sideband of Laser 2, located approximately one FSR away, is used as the probe field.

Using the PLL to maintain the relative frequency between L1 and the carrier of L2 fPLL, the

amplitude and phase of the beat-note between the local oscillator and the swept probe field

is measured at each frequency point of the scan.

The complex reflectivity of the cavity R is encoded in the amplitude and phase of the beat-note

generated between the local oscillator and the scanned probe field. This is measured using a

digital frequency response analyzer (FRA) that generates a sine wave with frequency fswept. This

frequency is then swept over the cavity’s first FSR f0 ≈ 7.892 MHz and the beat-note amplitude

and phase are measured at points near the cavity resonance. To optimize the measurement

resolution, we set the span of the sweep to be roughly a cavity linewidth of approximately 200 Hz.

The PLL offset frequency is generated by digitally mixing the FRA output swept sine with

the EOM modulation frequency and low-pass filtering, resulting in a signal with frequency

fPLL = fswept − fEOM. Therefore as fswept is scanned, the offset between Laser 1 and Laser 2

changes accordingly.

The frequency control scheme described here allows the Laser 2 carrier frequency to remain

off resonance of the cavity as the measurement is performed. This is preferred over a simplified

method wherein Laser 2 is directly locked to Laser 1 in transmission and scanned over resonance

for two reasons. First, for a nearly-impedance matched cavity, the amplitude of the beat-note used

to control the frequency of Laser 2 diminishes, causing the PLL to become unstable once the

probe field approaches resonance. Secondly, the phase information of the beat-note is obfuscated

by the PLL, which actively works to correct for any relative deviations in phase between the two

fields. In this case, the key difference between the two techniques is that the frequency and phase

relationship between the carrier of Laser 2 and Laser 1 always must be fixed in reflection of

the cavity. Therefore, the PLL will compensate for any phase changes as the Laser 2 carrier is

scanned over a resonance. When using a sideband the relationship between the Laser 2 carrier

and sidebands is fixed before the laser is incident on the cavity, and the phase relationship is able

to change in reflection as the sideband is scanned over the resonance.

The beat-note amplitude and phase between Laser 1 and the probe field are then measured as a

function of frequency in the FRA by demodulating the signal with fswept as it is scanned over the

cavity resonance. In order to measure the cavity reflectivity from M1, the roles of Laser 1 and

Laser 2 (and their associated control loops) are exchanged and the measurement is repeated.

4. Results

The results of a single frequency response measurement are given in Fig. 4. The upper plot gives

the amplitude of the interference beat-note as it is scanned over the resonance of the cavity, while

the lower plot is of the phase.
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4.1. Data analysis

The fit was performed by calculating the minimum of the following expression with the MATLAB

function lsqnonlin. ������X1 + iX2 − (a1 + ia2)
©­«
1 − a3

a4 + i
2π(X0−f0−a0)

f0

ª®¬
������ (17)

Here X1 and X2 represent the in-phase and quadrature components of the measured data, while

X0 is the difference frequency between the probe field and the LO. The variables denoted by

ai represent the fitting parameters. In this case a1 + ia2 gives the location of the interference

beat-note on the complex plane, a3 is analogous to Ti, a4 is A/2, and a0 + f0 gives the precise

FSR of the cavity. Here f0 is a fixed parameter representing the initial measurement of the cavity

FSR which is accurate to 100 Hz.

Figure 5(a) shows the data measured on the complex plane as blue points much like the diagram

in Fig. 1. The red curve shows the full circle resulting from the constrained fit, while the yellow

circle is the result of the unconstrained fit. The agreement between the data and the fits are

apparent from this plot.

This same data is plotted in three dimensions in Fig. 5(b) with the frequency dependence

represented by the third axis. The results of the constrained and unconstrained fits are shown

again as the red and yellow curves, and again the fits agree well with the measured data. In the

background of this figure the data are projected onto three separate two dimensional planes to

show the relation between the three dimensional representation of this plot, the arc of Fig. 5(a),

and the Bode plot in Fig. 4. The projection on the vertical right plane of Fig. 5(b) shows how the

data represented independent of the frequency information gives the two dimensional arc of R on

the complex plane. The projection at the bottom shows how, when the frequency is close to the

resonance of the cavity, the plot of the real component of R versus the frequency approximates to

the amplitude data of the Bode plot in Fig. 4. The vertical left projection of Fig. 5(b) then shows

how the plot of the imaginary component of R versus the frequency approximates to the phase

data of the Bode plot near the cavity resonance.

4.2. Measured cavity parameters

Table 1 shows the results for the attenuation A and input mirror transmissivities T1 and T2,

measured using the methods in the previous section. Here the first value for the total attenuation in

each mirror is calculated from the storage time measurement made before and after the frequency

scans were performed. The storage times of 1.298 ± 0.003 ms and 1.300 ± 0.002 ms correspond

to attenuations of 195.2 ± 0.5 ppm and 194.9 ± 0.4 ppm obtained at the time of the measurements

of Mirror 1 and 2 respectively. In this case, we believe that the drift of the eigenmode position

over the course of the measurement and in the time between measuring Mirror 1 and Mirror 2 is

responsible for the error, as well as slight change of the storage time.

The unconstrained fits for the frequency scan measured total attenuation of 197.5 ± 0.5 ppm

for Mirror 1 and 193.0 ± 0.4 ppm for Mirror 2. The error bars for these measurements were

calculated based on the statistical uncertainty of 41 consecutive measurements for Mirror 1 and

50 measurements for Mirror 2. While the results of the unconstrained fit agree with the storage

time measurement to an accuracy of nearly 1% in both mirrors, it is also apparent that the error

bars of these two measurements do not overlap. This discrepancy is not completely understood.

For the measurement of the transmissivity of Mirror 1, the constrained fit gave 89.5 ± 0.2 ppm,

while the unconstrained fit gave 90.5 ± 0.2 ppm. For Mirror 2 the constrained fit found a

transmissivity of 90.2 ± 0.1 ppm, with the unconstrained fit giving 89.4 ± 0.2 ppm. These results

show that for both mirrors the constrained and unconstrained fits gave a transmissivity to within

1 ppm of each other. In the measurements of both mirrors the error bars on the constrained
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Table 1. The resulting cavity attenuation (A), and mirror transmissivities (T1 and T2)
obtained from applying the two fitting methods to measurements of the cavity mirrors.

Mirror 1 Mirror 2

parameter method value (ppm) parameter method value (ppm)

A storage time 195.2 ± 0.5 A storage time 194.9 ± 0.4

A complex reflectivity
unconstrained

197.5 ± 0.5 A complex reflectivity
unconstrained

193.0 ± 0.4

T1 complex reflectivity
constrained

89.5 ± 0.2 T2 complex reflectivity
constrained

90.2 ± 0.2

T1 complex reflectivity
unconstrained

90.5 ± 0.2 T2 complex reflectivity
unconstrained

89.4 ± 0.2

fits shown in the table were determined by the uncertainty on the attenuation from the storage

time measurements. This error was significantly higher than the statistical uncertainty over

series of frequency scans of each mirror. In the case of the unconstrained fits the error of these

measurement has no dependence on the uncertainty in the storage time and is rather determined

by the statistical error in the frequency scan measurements.

It should also be noted that if a selection criteria was applied to the unconstrained fits, the

values for A and T were closer to the results obtained by the storage time measurement and

constrained fit, than when no selection criteria was applied. In this case, measurements passed the

selection criteria if the mean square of their residuals was less than the average mean square for all

measurements of a particular mirror. For Mirror 1 with this selection criteria the unconstrained

fit gave A = 197.1 ± 0.5 and T1 = 90.2 ± 0.3. For Mirror 2, applying the selection criteria

lead to A = 194.0 ± 0.5 and T1 = 89.8 ± 0.2. This implies, that for the unconstrained fits, the

measurements may have been slightly biased by the measurements with higher residuals.

Applying the selection criteria to the constrained fits had no significant impact on their results.

It is suspected that due to the simplicity of measuring the attenuation via the storage time

technique, this method, when combined with the constrained fit of the frequency scan, is the more

robust way of identifying these parameters. The fact that the selection criteria had no impact on

the result with this technique, while it did push the results using the constrained fit closer to the

values obtained with the storage time and constrained fit appears to reinforce this conclusion.

One example of the possible sources of noise is the length changes of the cavity itself during

single measurements. Over the 30 s measurement time typical length changes were of the order

of 100 nm, leading to changes in the FSR of 0.3 Hz, thus detuning the setup by 0.1% of the cavity

linewidth and slightly distorting the shape of the resonance. However, this is not believed to be

the limiting the sensitivity of these measurements and is just one of several sources of noise

currently investigation.

We would also like to mention that the combined transmissivities of the mirrors of the cavity

reported here of 180 ± 1 ppm with corresponding attenuation of 195 ± 2 ppm give round-trip

optical losses of 15 ± 2 ppm. With a length of 18.9944 m this is better than 1 ppm/m excess loss

per unit length, which is comparable to the lowest loss cavities in the world for such lengths [18].

5. Conclusion

Here we have shown how the cavity FSR, round-trip attenuation and excess optical losses, and

the individual mirror transmissivities can all be derived from a measurement of the complex

reflectivity using a transmitted local oscillator field. These parameters can be measured in-situ at

the spatial eigenmode position of operation, are independent of the spatial coupling of the lasers

to the cavity, and can be used with any cavity impedance matching configuration. This technique

was demonstrated on a 19 m, high-finesse optical resonator and is capable of measuring the
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cavity mirror losses and transmissivities with an accuracy on the order of several ppm. The total

round-trip attenuation agrees with measurements made using cavity ring-downs to 1%.

This technique is widely applicable to optical cavities of all lengths. While it is shown here

on a resonator with a relatively long storage time of 1.30 ms, it may be even more accurate for

shorter storage time cavities due to the reduced length noise over the measurement time. With

respect to longer baseline experiments, the next generation of gravitational wave detectors could

also be well suited to utilize this technique to initially characterize components of their optical

systems. Finally, this method could prove to be important for light-shining-through-a-wall style

experiments such as ALPS II, where the calibration of the experimental sensitivity relies on the

precise knowledge of the cavity mirror transmissivities.
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